Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (17): 3384-3397.doi: 10.3864/j.issn.0578-1752.2024.17.006

• PLANT PROTECTION • Previous Articles     Next Articles

Cloning and Expression Analysis of Genes of Small Heat Shock Protein in Setosphaeria turcica

ZHANG ShuHong1(), ZHANG YunFeng1, GAO FengJu1, WU QiuYing1, XU Ke1, LI YaZi1, LI YanMei1, GU ShouQin2, FAN YongShan1(), GONG XiaoDong2()   

  1. 1 Department of Life Sciences, Tangshan Normal University/Hebei Key Laboratory of Plant Biotechnology Research and Application/ Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Tangshan 063000, Hebei
    2 College of Life Sciences/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Baoding 071000, Hebei
  • Received:2024-04-26 Accepted:2024-06-16 Online:2024-09-01 Published:2024-09-04
  • Contact: FAN YongShan, GONG XiaoDong

Abstract:

【Objective】The objective of this study is to clone the small heat shock protein (sHSP) genes in Setosphaeria turcica, elucidate their structural characteristics, and explore their expression profiles during pathogen development and in response to HT-toxin induction.【Method】The hidden Markov model (HMM) was used to identify sHSP family members across the entire S. turcica genome. PCR technology was used to clone sHSP genes from S. turcica strain 01-23. Bioinformatics methods were then applied for the analysis of physicochemical properties, subcellular localization, structural prediction, and phylogenetic analysis of the sHSP genes obtained. Additionally, RNA-Seq and RT-qPCR were performed to determine the expression of sHSP genes across different developmental stages and during HT-toxin induction in S. turcica.【Result】Three sHSP family members (StHSP37.2, StHSP37.0 and StHSP22.6) were identified from the genome of S. turcica. The corresponding DNA sequences were successfully cloned from strain 01-23. The encoded sHSP proteins were weakly acidic and hydrophilic proteins, without transmembrane domain or signal peptide. Random coil in the secondary structure accounted for 58.97% to 60.35%, and β-turn ranged from 2.69% to 7.83% only. Subcellular localization prediction indicated that StHSP37.2 and StHSP37.0 were located in the nucleus, while StHSP22.6 was located in both nucleus and cytoplasm. Conserved ACD_sHSP-like domains were identified near C-terminus, with 2, 3, and 5 conserved motifs in StHSP37.2, StHSP37.0, and StHSP22.6, respectively. The monomer tertiary structure models of sHSP were constructed using SWISS-Model and AlphaFill. Phylogenetic analysis indicated close relationships between StHSP22.6 and sHSP in Alternaria alternata, and between StHSP37.2/StHSP37.0 and sHSP in Bipolaris maydis. The sHSP genes of S. turcica had the highest expression levels in hyphae, followed by germ tubes, appressoria, and penetration pegs, with the lowest expression levels in conidia. StHSP22.6 and StHSP37.2 showed significant negative correlations with HT-toxin induction, and the relative gene expression was upregulated by 6.45 and 18.12 folds on day 14, respectively. On day 21 and 28, StHSP37.2 showed modest upregulations of 2.56 and 1.78 folds, respectively, while StHSP22.6 did not differ from the wild-type (WT). StHSP37.0 exhibited significant positive correlations with HT-toxin induction, with a significant downregulation by 59.23%, 86.30%, and 88.11% on day 14, 21, and 28, respectively. Exploration of expressed genes significantly associated with sHSP of S. turcica suggested that StHSP37.2 and StHSP22.6 were mainly related to HSP90, HSP104, catabolism, and mitochondrial Mg2+ transport, while StHSP37.0 appeared to be associated with vacuolar alkaline amino acid transport, organic synthesis, and substance secretion.【Conclusion】The sHSP family members in S. turcica demonstrate a high degree of conservation yet exhibit structural and phylogenetic differences from other sHSPs. They are integral to the development of hyphae, germ tubes, appressoria, and penetration pegs, and also exert significant regulatory functions during HT-toxin induction.

Key words: Setosphaeria turcica, small heat shock protein (sHSP), gene cloning, structure analysis, HT-toxin induction

Table 1

The sequence of primers"

引物名称
Primer name
克隆用引物序列
Sequence for gene cloning (5′-3′)
引物名称
Primer name
表达分析用引物序列
Sequence for gene expression analysis (5′-3′)
StHSP37.2 F ACACCAGCAACTCCACAGAT StHSP37.2 F’ TATCGCGTTTCACGACCTCA
StHSP37.2 R CATTTACTACTCATAATCAACCATCA StHSP37.2 R’ GCTTTCTTTGCAGCATCCTTT
StHSP37.0 F GTAGGCAGTAGGATTCCGC StHSP37.0 F’ CCATTGTCGTTTGCGTCATTC
StHSP37.0 R CTCAACACACCATCCTCCAA StHSP37.0 R’ CCAAGATCCCTTTGCTCCAT
StHSP22.6 F ATCACTGCGCTCAACAATCTC StHSP22.6 F’ TCGCTAAGCAGTCGCAAGAG
StHSP22.6 R ACCACGATGCTGAGGATGC StHSP22.6 R’ GAAGGCAAAGGAGCGGTGG
β-tubulin F CAACGAAGCCTCCAACAACA
β-tubulin R CTCGGTGTAGTGACCCTTTGC

Fig. 1

PCR amplification (A) and structure analysis (B) of sHSP family genes in S. turcica A: M: DL2000 DNA Marker; 1: StHSP22.6; 2: StHSP37.0; 3: StHSP37.2"

Table 2

Physicochemical properties and subcellular localization prediction of sHSP family proteins in S. turcica"

项目Item StH<BOLD>SP</BOLD>22.6 StH<BOLD>SP</BOLD>37.2 StH<BOLD>SP</BOLD>37.0
分子式Formula C1000H1548N290O308S2 C1619H2522N474O532S4 C1595H2384N510O509S7
氨基酸数目Number of amino acids 196 334 342
等电点pI 6.19 5.04 5.74
疏水性系数Grand average of hydropathicity -0.997 -0.912 -1.030
不稳定系数Instability index 52.62 63.02 39.50
亚细胞定位
Subcellular localization
细胞核Nucleus
细胞质Cytoplasm
细胞核Nucleus 细胞核Nucleus

Table 3

Secondary structure prediction of sHSP family proteins in S. turcica"

家族成员
Family member
α-螺旋α-helix β-折叠β-sheet β-转角β-turn 无规则卷曲Random coil
数目
Number
比例
Ratio (%)
数目
Number
比例
Ratio (%)
数目
Number
比例
Ratio (%)
数目
Number
比例
Ratio (%)
StHSP37.2 91 27.25 37 11.08 9 2.69 197 58.98
StHSP37.0 67 16.92 59 14.90 31 7.83 239 60.35
StHSP22.6 59 18.91 54 17.31 15 4.81 184 58.97

Fig. 2

Phylogenetic tree (A), conserved Motif analysis (B), domain prediction (C), and Motif Logo (D) of S. turcica sHSPs and reviewed fungal sHSPs"

Fig. 3

Homologous alignment of S. turcica sHSPs and reviewed fungal sHSPs"

Fig. 4

Prediction of the tertiary structure model of sHSPs in S. turcica"

Fig. 5

Phylogenetic analysis of sHSPs in fungi, A. thaliana, and human"

Fig. 6

Expression level of sHSPs during different development stages in S. turcica"

Fig. 7

Expression pattern of sHSPs during HT-toxin induction in S. turcica and HT-toxin activity determination"

Table 4

Genes and functional annotations significantly correlated with StHSP37.2, StHSP37.0, and StHSP22.6"

靶基因
Target gene
正相关基因及功能注释
Positive correlation gene and functional annotation
负相关基因及功能注释
Negative correlation gene and functional annotation
StHSP37.2 117863* 2.A.1.44.1 L-氨基酸转运蛋白-3 The L-amino acid transporter-3, LAT3; r=0.98, P=4.0e-16 25166 1.A.35.5.1线粒体内膜Mg2+通道蛋白Mitochondrial inner membrane Mg2+ channel protein, Mrs2; r=-0.88, P=1.0e-08
150187 KOG0546 HSP90共伴侣HSP90 co-chaperone CPR7/ cyclophilin; r=0.98, P=3.1e-17 89201 PF09349OHCU脱羧酶Decarboxylase; r=-0.88, P=1.3e-08
162245 KOG2825亚砷酸盐转运ATP酶 Putative arsenite- translocating ATPase; r=0.98, P=7.2e-16 157713 PF08241甲基转移酶Methyltransferase; r=-0.90, P=1.6e-09
165581 KOG1667 Zn2+结合蛋白Zn2+-binding protein Melusin/ RAR1; r=0.98, P=1.6e-16 165190 KOG2393转录起始因子IIF Transcription initiation factor IIF, large subunit (RAP74); r=-0.88, P=1.8e-08
165808 KOG0156细胞色素P450 CYP2亚家族 Cytochrome P450 CYP2 subfamily; r=0.98, P=1.1e-16 166884 KOG0234果糖-6-磷酸2-激酶Fructose-6-phosphate 2-kinase/fructose-2,6-biphosphatase; r=-0.87, P=3.0e-08
166021 KOG0019分子伴侣(HSP90家族)Molecular chaperone (HSP90 family); r=0.98, P=3.0e-18 1337606 PF08427 Armadillo类螺旋结构域蛋白3 Armadillo-like helical domain-containing protein 3, C-terminal; r=-0.91, P=1.2e-09
StHSP37.0 31815 PF00545核糖核酸酶Ribonuclease; r=0.96, P=3.1e-14 28099 KOG1969 DNA复制检查点蛋白DNA replication checkpoint protein CHL12/CTF18; r=-0.83, P=5.0e-07
148030 PF10503酯酶PHB解聚酶Esterase PHB depolymerase; r=0.93, P=7.5e-11 43017 PF11754 Velvet因子Velvet factor; r=-0.83, P=6.9e-07
164754 PF06108未知功能蛋白Protein of unknown function (DUF952); r=0.94, P=2.0e-11 43464 KOG1974 DNA拓扑异构酶I互作蛋白DNA topoisomerase I-interacting protein; r=-0.84, P=2.6e-07
164808 KOG1614外泌体3′-5′核糖核酸酶复合物Exosomal 3′-5′ exoribonuclease complex, subunit Rrp45; r=0.93, P=6.0e-11 145658 未知蛋白Unknown protein; r=-0.85, P=1.2e-07
166696 PF13419卤酸脱卤酶样水解酶Haloacid dehalogenase-like hydrolase; r=0.97, P=6.9e-15 183743 KOG2483上游转录因子Upstream transcription factor 2/L-myc-2 protein; r=-0.89, P=7.8e-09
1467493 2.A.1.3.27液泡碱性氨基酸转运蛋白The vacuolar basic amino acid (Arg, Lys, His) transporter, Vba3; r=0.93, P= 5.4e-11 1116535 未知蛋白Unknown protein; r=-0.84, P=3.4e-07
StHSP22.6 91583 KOG1051分子伴侣HSP104及相关ATP-依赖Clp蛋白酶Chaperone HSP104 and related ATP-dependent Clp proteases; r=0.93, P=4.1e-11 28352 KOG2645核苷酸焦磷酸酶Nucleotide pyrophosphatase/Type I phosphodiesterase; r=-0.88, P=2.1e-08
163286 KOG0730 AAA+型ATP酶AAA+-type ATPase; r=0.95, P=2.3e-12 46176 IPR029069 HotDog域超家族HotDog domain superfamily; r= -0.85, P=1.1e-07
165491 KOG1051分子伴侣HSP104及相关ATP-依赖Clp蛋白酶Chaperone HSP104 and related ATP-dependent Clp proteases; r=0.95, P=1.5e-12 86594 KOG0960线粒体加工肽酶Mitochondrial processing peptidase, beta subunit, and related enzymes; r=-0.85, P=1.9e-07
174460 PF11951真菌特异性转录因子Fungal specific transcription factor domain; r=1.00, P=1.4e-28 99139 KOG0465线粒体延伸因子Mitochondrial elongation factor; r=-0.85, P=1.9e-07
1367638 KOG1192 UDP-葡糖醛酸基和葡糖基转移酶UDP-glucuronosyl and UDP-glucosyl transferase; r=0.94, P=4.5e-12 117439 GO:0000981 II型RNA聚合酶RNA polymerase II-specific; r=-0.86, P=6.3e-08
1465755 KOG0548分子伴侣Molecular co-chaperone STI1; r=0.93, P=4.4e-11 165190 KOG2393 转录起始因子Transcription initiation factor IIF, large subunit (RAP74); r=-0.84, P=2.1e-07
[1]
HILTON G R, LIOE H, STENGEL F, BALDWIN A J, BENESCH J L P. Small heat-shock proteins: Paramedics of the cell. Topics in Current Chemistry, 2013, 328: 69-98.
[2]
HARTL F U, BRACHER A, HAYER-HARTL M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356): 324-332.
[3]
JOOSTEN J, VAN SLUIJS B, EGBERTS W V, EMMANEEL M, JANSEN P W, VERMEULEN M, BOELENS W, BONGER K M, SPRUIJT E. Dynamics and composition of small heat shock protein condensates and aggregates. Journal of Molecular Biology, 2023, 435(13): 168139.
[4]
BROER L, DEMERATH E W, GARCIA M E, HOMUTH G, KAPLAN R C, LUNETTA K L, TANAKA T, TRANAH G J, WALTER S, ARNOLD A M, et al. Association of heat shock proteins with all-cause mortality. Age, 2013, 35(4): 1367-1376.
[5]
MURSHID A, EGUCHI T, CALDERWOOD S K. Stress proteins in aging and life span. International Journal of Hyperthermia, 2013, 29(5): 442-447.

doi: 10.3109/02656736.2013.798873 pmid: 23742046
[6]
张宁, 姜晶. 植物中小分子热激蛋白基因家族(sHSPs)研究进展. 植物生理学报, 2017, 53(6): 943-948.
ZHANG N, JIANG J. Research advances of small heat shock protein gene family (sHSPs) in plants. Plant Physiology Journal, 2017, 53(6): 943-948. (in Chinese)
[7]
PERKINS J M, PEDERSEN W L. Disease development and yield losses associated with northern leaf blight on corn. Plant Disease, 1987, 71(10): 940-943.
[8]
范永山, 曹志艳, 谷守芹, 董金皋. 不同诱导因素对玉米大斑病菌附着胞产生的影响. 中国农业科学, 2004, 37(5): 769-772.
FAN Y S, CAO Z Y, GU S Q, DONG J G. Effect of different induction factors on appressorium of Setosphaeria turcica. Scientia Agricultura Sinica, 2004, 37(5): 769-772. (in Chinese)
[9]
LINDQUIST S, CRAIG E A. The heat-shock proteins. Annual Review of Genetics, 1988, 22: 631-677.

pmid: 2853609
[10]
CASPERS G J, LEUNISSEN J A, DE JONG W W. The expanding small heat-shock protein family, and structure predictions of the conserved “alpha-crystallin domain”. Journal of Molecular Evolution, 1995, 40: 238-248.
[11]
GARRIDO C, PAUL C, SEIGNEURIC R, KAMPINGA H H. The small heat shock proteins family: The long forgotten chaperones. The International Journal of Biochemistry and Cell Biology, 2012, 44: 1588-1592.
[12]
TEDESCO B, CRISTOFANI R, FERRARI V, COZZI M, RUSMINI P, CASAROTTO E, CHIERICHETTI M, MINA F, GALBIATI M, PICCOLELLA M, CRIPPA V, POLETTI A. Insights on human small heat shock proteins and their alterations in diseases. Frontiers in Molecular Biosciences, 2022, 9: 842149.
[13]
HASLBECK M, BRAUN N, STROMER T, RICHTER B, MODEL N, WEINKAUF S, BUCHNER J. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO Journal, 2020, 39(12): e105112.
[14]
KRIEHUBER T, RATTEI T, WEINMAIER T, BEPPERLING A, HASLBECK M, BUCHNER J. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB Journal, 2010, 24(10): 3633-3642.

doi: 10.1096/fj.10-156992 pmid: 20501794
[15]
MÜHLHOFER M, PETERS C, KRIEHUBER T, KREUZEDER M, KAZMAN P, RODINA N, REIF B, HASLBECK M, WEINKAUF S, BUCHNER J. Phosphorylation activates the yeast small heat shock protein Hsp26 by weakening domain contacts in the oligomer ensemble. Nature Communications, 2021, 12(1): 6697.
[16]
CHUN J, KO Y H, KIM D H. Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica. Journal of Microbiology, 2022, 60(1): 57-62.
[17]
AHMED A A, PEDERSEN C, SCHULTZ-LARSEN T, KWAAITAAL M, JØRGENSEN H J L, THORDAL-CHRISTENSEN H. The barley powdery mildew candidate secreted effector protein CSEP0105 inhibits the chaperone activity of a small heat shock protein. Plant Physiology, 2015, 168(1): 321-333.

doi: 10.1104/pp.15.00278 pmid: 25770154
[18]
GHOSH A. Small heat shock proteins (HSP12, HSP20 and HSP30) play a role in Ustilago maydis pathogenesis. FEMS Microbiology Letters, 2014, 361(1): 17-24.
[19]
谷守芹, 张运峰, 范永山, 路粉. 热激对玉米大斑病菌生长和发育的影响. 玉米科学, 2010, 18(4): 136-138, 141.
GU S Q, ZHANG Y F, FAN Y S, LU F. Effects of heat shock on the growth and development of Setosphaeria turcica. Journal of Maize Sciences, 2010, 18(4): 136-138, 141. (in Chinese)
[20]
王梅娟, 李坡, 吴敏, 范永山, 谷守芹, 董金皋. 高渗胁迫对玉米大斑病菌生长发育及STK1表达的影响. 中国农业科学, 2012, 45(19): 3965-3970. doi: 10.3864/j.issn.0578-1752.2012.19.007.
WANG M J, LI P, WU M, FAN Y S, GU S Q, DONG J G. Effect of hyperosmotic stress on the growth, development and STK1 expression of Setosphaeria turcica. Scientia Agricultura Sinica, 2012, 45(19): 3965-3970. doi: 10.3864/j.issn.0578-1752.2012.19.007. (in Chinese)
[21]
张淑红, 张运峰, 范永山. STK1基因对山梨醇高渗胁迫下玉米大斑病菌菌丝生长和发育的调控. 西北农林科技大学学报(自然科学版), 2018, 46(7): 80-86.
ZHANG S H, ZHANG Y F, FAN Y S. Regulation of mycelium growth and development of Setosphaeria turcica by STK1 gene under sorbitol hypertonic stress. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(7): 80-86. (in Chinese)
[22]
范永山, 谷守芹, 董金皋, 董娜. MAPK途径对玉米大斑病菌HT-毒素产生和生物学活性的调控作用. 中国农业科学, 2008, 41(1): 86-92.
FAN Y S, GU S Q, DONG J G, DONG N. Regulation of MAPK signal pathway on the production and biological activity of HT-toxin in Setosphaeria turcica. Scientia Agricultura Sinica, 2008, 41(1): 86-92. (in Chinese)
[23]
LI P, GONG X, JIA H, FAN Y, ZHANG Y, CAO Z, HAO Z, HAN J, GU S, DONG J. MAP kinase gene STK1 is required for hyphal, conidial, and appressorial development, toxin biosynthesis, pathogenicity, and hypertonic stress response in the plant pathogenic fungus Setosphaeria turcica. Journal of Integrative Agriculture, 2016, 15(12): 2786-2794.

doi: 10.1016/S2095-3119(16)61472-7
[24]
CHEN C, WU Y, LI J, WANG X, ZENG Z, XU J, LIU Y, FENG J, CHEN H, HE Y, XIA R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742.
[25]
张晓雅, 李学然, 薛江芝, 王小敏, 刘玉卫, 谷守芹, 董金皋. 玉米大斑病菌StSLT2基因结构与表达模式分析. 河北农业大学学报, 2019, 42(3): 32-37.
ZHANG X Y, LI X R, XUE J Z, WANG X M, LIU Y W, GU S Q, DONG J G. Gene structure and expression pattern analysis of StSLT2 in Setosphaeria turcica. Journal of Hebei Agricultural University, 2019, 42(3): 32-37. (in Chinese)
[26]
张运峰, 张淑红, 武秋颖, 范永山. STK1对玉米大斑病菌附着胞发育过程中糖原和脂肪积累的影响. 中国农业科学, 2017, 50(15): 2928-2935. doi: 10.3864/j.issn.0578-1752.2017.15.007.
ZHANG Y F, ZHANG S H, WU Q Y, FAN Y S. Effects of STK1 on glycogen and lipid accumulation during the appressorium development of Setosphaeria turcica. Scientia Agricultura Sinica, 2017, 50(15): 2928-2935. doi: 10.3864/j.issn.0578-1752.2017.15.007. (in Chinese)
[27]
KONG P Z, LI G M, TIAN Y, SONG B, SHI R. Decreased expression of FOXF2 as new predictor of poor prognosis in stage I non-small cell lung cancer. Oncotarget, 2016, 7(34): 55601-55610.
[28]
PAYSAN-LAFOSSE T, BLUM M, CHUGURANSKY S, GREGO T, PINTO B L, SALAZAR G A, BILESCHI M L, BORK P, BRIDGE A, COLWELL L, et al. InterPro in 2022. Nucleic Acids Research, 2023, 51(D1): D418-D427.
[29]
李艳, 张国强, 邵东燕, 师俊玲, 黄庆生, 杨慧, 李琦, 靳明亮. 小分子热休克蛋白的结构与功能. 生命科学, 2017, 29(1): 55-61.
LI Y, ZHANG G Q, SHAO D Y, SHI J L, HUANG Q S, YANG H, LI Q, JIN M L. The structure and function of the small heat shock proteins. Chinese Bulletin of Life Sciences, 2017, 29(1): 55-61. (in Chinese)
[30]
MORROW G, SAMSON M, MICHAUD S, TANGUAY R M. Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. The FASEB Journal, 2004, 18(3): 598-599.
[31]
DUVERGER O, PASLARU L, MORANGE M. HSP25 is involved in two steps of the differentiation of PAM212 keratinocytes. Journal of Biological Chemistry, 2004, 279(11): 10252-10260.

doi: 10.1074/jbc.M309906200 pmid: 14662766
[32]
俞佳虹, 冯坤, 程远, 叶青静, 阮美颖, 王荣青, 李志邈, 周国治, 姚祝平, 魏家香, 杨悦俭, 万红建. 植物小热激蛋白的研究进展. 分子植物育种, 2017, 15(8): 3016-3023.
YU J H, FENG K, CHENG Y, YE Q J, RUAN M Y, WANG R Q, LI Z M, ZHOU G Z, YAO Z P, WEI J X, YANG Y J, WAN H J. Research progress on small heat shock proteins in plants. Molecular Plant Breeding, 2017, 15(8): 3016-3023. (in Chinese)
[33]
LIM S M, KINSEY J G, HOOKER A L. Inheritance of virulence in Helminthosporium turcicum to monogenic resistant corn. Phytopathology, 1974, 64(8): 1150-1151.
[34]
WATHANEEYAWECH S, SIRITHUNYA P, SMITAMANA P. Study of the host range of northern corn leaf blight disease and effect of Exserohilum turcicum toxin on sweet corn. International Journal of Agricultural Technology, 2015, 11: 953-963.
[35]
李超, 管国波. 真菌Hsp90研究进展. 菌物学报, 2020, 39(11): 2025-2034.

doi: 10.13346/j.mycosystema.200184
LI C, GUAN G B. Recent progress in the study of the fungal Hsp90. Mycosystema, 2020, 39(11): 2025-2034. (in Chinese)

doi: 10.13346/j.mycosystema.200184
[36]
杨苏腾, 廖勇, 巴根, 吕雪莲, 杨蓉娅. 以Hsp90为靶点治疗真菌感染的研究进展和展望. 中国真菌学杂志, 2016, 11(1): 53-57.
YANG S T, LIAO Y, BA G, X L, YANG R Y. Research progress on targeting Hsp90 for antifungal therapy. Chinese Journal of Mycology, 2016, 11(1): 53-57. (in Chinese)
[37]
KOHLER V, KOHLER A, BERGLUND L L, HAO X X, GERSING S, IMHOF A, NYSTRÖM T, HÖÖG J L, OTT M, ANDRÉASSON C, BÜTTNER S. Nuclear Hsp Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nature Communications, 2024, 15(1): 315.
[38]
STANFORD K E, ZHAO X H, KIM N, MASISON D C, GREENE L E. Overexpression of Hsp104 by causing dissolution of the prion seeds cures the yeast [PSI+] prion. International Journal of Molecular Sciences, 2023, 24(13): 10833.
[39]
王娟, 范强旺, 周兵. 利用酿酒酵母转座子文库筛选线粒体镁代谢相关基因. 生物化学与生物物理进展, 2010, 37(1): 36-41.
WANG J, FAN Q W, ZHOU B. A transposon-based genetic screen in Saccharomyces cerevisiae reveals a role of YMR166C in mitochondrial magnesium homeostasis. Progress in Biochemistry and Biophysics, 2010, 37(1): 36-41. (in Chinese)
[40]
JUÁREZ-MONTIEL M, CLARK-FLORES D, TESILLO-MORENO P, DE LA VEGA-CAMARILLO E, ANDRADE-PAVÓN D, HERNÁNDEZ-GARCÍA J A, HERNÁNDEZ-RODRÍGUEZ C, VILLA- TANACA L. Vacuolar proteases and autophagy in phytopathogenic fungi: A review. Frontiers in Fungal Biology, 2022, 3: 948477.
[1] WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin. Bioinformatics and Expression Pattern Analysis of Maize ACO Gene Family [J]. Scientia Agricultura Sinica, 2024, 57(7): 1308-1318.
[2] ZHANG BoWen, ZHAO LiWen, XU Lu, LI Pan, ZENG FanLi, MENG YaNan, DONG JinGao. Identification and Gene Function Analysis of StCks1, a Cyclin- Dependent Kinase Subunit of Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2024, 57(5): 900-908.
[3] GUAN ZhiLin, JIN FengWei, LIU TingTing, WANG Yi, TAN YingYing, YANG ChunHui, LI RuiTong, WANG Bo, LIU KeDe, DONG Yun. Genetic Analysis and Gene Mapping of Glossy Leaf in Brassica napus [J]. Scientia Agricultura Sinica, 2024, 57(4): 650-662.
[4] ZOU JinPeng, YUE HaoFeng, LI HaiXiao, LIU Zheng, LIU Ning, CAO ZhiYan, DONG JinGao. Mechanism of StLAC2 and StLAC6 Differentially Affecting Setosphaeria turcica Based on Non-Targeted Metabonomics Analysis [J]. Scientia Agricultura Sinica, 2023, 56(16): 3110-3223.
[5] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[6] LI YuZe,ZHU JiaWei,LIN Wei,LAN MoYing,XIA LiMing,ZHANG YiLi,LUO Cong,HUANG Gui Xiang,HE XinHua. Cloning and Interaction Protein Screening of RHF2A Gene from Xiangshui Lemon [J]. Scientia Agricultura Sinica, 2022, 55(24): 4912-4926.
[7] HAO YuBin,LI HaiXiao,ZHANG Sai,LIU Ning,LIU YingZi,CAO ZhiYan,DONG JinGao. Identification and Functional Analysis of StSCD Family in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2022, 55(16): 3134-3143.
[8] QU Cheng,WANG Ran,LI FengQi,LUO Chen. Cloning and Expression Profiling of Gustatory Receptor Genes BtabGR1 and BtabGR2 in Bemisia tabaci [J]. Scientia Agricultura Sinica, 2022, 55(13): 2552-2561.
[9] ZHANG Li,ZHANG Nan,JIANG HuQiang,WU Fan,LI HongLiang. Molecular Cloning and Expression Pattern Analysis of NPC2 Gene Family of Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(12): 2461-2471.
[10] LI TianCong,ZHU Hang,WEI Ning,LONG Feng,WU JianYing,ZHANG Yan,DONG JinGao,SHEN Shen,HAO ZhiMin. The Expression Pattern and Interaction Analysis of the Homologues of Splicing Factor SC35 in Setosphaeria turcica [J]. Scientia Agricultura Sinica, 2021, 54(4): 733-743.
[11] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
[12] TAN YongAn,JIANG YiPing,ZHAO Jing,XIAO LiuBin. Expression Profile of G Protein-Coupled Receptor Kinase 2 Gene (AlGRK2) and Its Function in the Development of Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(22): 4813-4825.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] TAN YongAn,ZHAO XuDong,JIANG YiPing,ZHAO Jing,XIAO LiuBin,HAO DeJun. Cloning, Preparation of Antibody and Response Induced by 20-Hydroxyecdysone of Target of Rapamycin in Apolygus lucorum [J]. Scientia Agricultura Sinica, 2021, 54(10): 2118-2131.
[15] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!