Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (7): 1319-1334.doi: 10.3864/j.issn.0578-1752.2024.07.009

• PLANT PROTECTION • Previous Articles     Next Articles

Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function

LIAO XinLin(), GUO Xin(), YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua()   

  1. College of Life Sciences, Zhejiang Normal University, Jinhua 321000, Zhejiang
  • Received:2023-09-22 Accepted:2024-01-11 Online:2024-04-01 Published:2024-04-09
  • Contact: JIANG DongHua

Abstract:

【Objective】Tobacco bacterial wilt caused by Ralstonia solanacearum is the main disease of tobacco in cash crops. In this paper, the actinomycetes with strong antagonism against R. solanacearum were screened from the soil of different habitats, and their antibacterial mechanism and biocontrol effect were determined, which provided a theoretical basis for the further development of anti-disease microbial agents.【Method】After screening the target actinomycetes by co-culture method and Oxford cup method, the target strain was identified by morphological studies, physiological and biochemical experiments and polygenic phylogenetic analysis. The minimum inhibitory concentration (MIC) of actinomycetes crude extract against R. solanacearum was determined by the 96-well plate method. After co-culture treatment of R. solanacearum with crude extract, the growth dynamics of R. solanacearum were detected and the morphological changes of R. solanacearum were observed. The effects on membrane permeability and membrane composition were observed by measuring β-galactosidase activity and propidium iodide (PI) fluorescence experiments and Fourier transform infrared spectroscopy. The antibacterial activity and mechanism of target actinomyces antagonistic R. solanacearum were preliminarily explored by measuring protein synthesis, extracellular polysaccharides (EPS), intracellular reactive oxygen species (ROS), and so on. The effect of the target actinomycetes on tobacco bacterial wilt control was determined by pot experiments.【Result】According to the morphological characteristics, physiological and biochemical experimental results and sequencing results, the target actinomyces strain Sa-21 was identified as Streptomyces rapamycinicus, and the diameter of the inhibition zone against R. solanacearum was 47.9 mm. The results of mechanism experiments showed that the minimum inhibitory concentration of Sa-21 strain crude extract inhibiting R. solanacearum was 0.5 μg·mL-1, which also had a significant inhibitory effect on bacterial proliferation, and the inhibitory effect increased with the increase of crude extract concentration in the test range. Scanning electron microscopy showed that the structure of R. solanacearum changed after crude extract treatment, resulting in perforation and shrinkage of the bacteria, and with the increase of the concentration of crude extract in the test range, the number of ruptured bacteria increased, and the degree of shrinkage increased. After crude extract treatment, propidium iodide could pass through the cell membrane and bind to intracellular substances to fluoresce, and the activity of β-galactosidase was significantly increased, indicating that the permeability of the cell membrane of R. solanacearum was improved. Further studies showed that crude extract treatment could lead to the accumulation of intracellular reactive oxygen species and the decrease of extracellular polysaccharide production in R. solanacearium, indicating that the cell membrane was damaged to a certain extent. The results of potted plant disease control test showed that the relative control effect of 10-fold dilution of fermentation filtrate of treatment group was 67.61%, while the relative control effect of 10-fold dilution of fermentation filtrate of prevention group was 85.89%.【Conclusion】Streptomyces Sa-21 can inhibit the proliferation of R. solanacearum and destroy the cell membrane structure, which has a good control effect on tobacco bacterial wilt, and has certain development potential and application value.

Key words: Ralstonia solanacearum, Streptomyces rapamycinicus, actinomycete, biological control

Table 1

Primers used for amplifying gyrB, recA and rpoB housekeeping genes"

引物Primer 序列Sequence (5′-3′)
gyrB-F GTGGCCGATTCCGGCAACCCCAACG
gyrB-R TCAGATGTCGAGGA AGCGGACGTCC
recA-F ATGGCAGGAACCGACCGCGAGAAGG
recA-R TCAGCTCTTGGCCGCCGCGGCCTTG
rpoB-F TTGGCCGCCTCGCGCAATGCCTCGA
rpoB-R TCAGACCTCTTCGACGCTGCTCGGC

Table 2

Disease classification of tobacco bacterial wilt"

病情级别
Disease grade
症状
Symptom
0 全株无病The whole plant is disease-free
1 茎部部分出现褪绿斑,或发病一侧1/2以下叶片凋萎
Chlorotic spots appear on the stem part, or less than 1/2 of the leaves on the diseased side withers
3 茎部出现黑色条斑,但不超过茎高1/2,或发病一侧1/2至2/3叶片凋萎
Black stripe appears on the stem, but not more than 1/2 of the stem height, or 1/2 to 2/3 of the leaves on the diseased side withers
5 茎部黑色条斑超过茎高的1/2,但未达到茎顶部,或发病一侧2/3以上叶片凋萎
The black stripe on the stem exceeds 1/2 of the stem height, but does not reach the top of the stem, or more than 2/3 of the leaves on the diseased side withers
7 茎部黑色条斑到达茎顶部,或病株叶片全部凋萎
The black stripe on the stem reaches the top of the stem, or all the leaves of the diseased plant wither
9 病株基本枯死The diseased plant basically died

Fig. 1

Inhibitory effect of different actinomycete strains on R. solanacearum"

Table 3

Growth of Sa-21 strain on different media"

特征培养基
Characteristic medium
气生菌丝
Aerial mycelium
基内菌丝
Substrate mycelium
可溶性色素
Soluble pigment
菌落生长
Colony growth
高氏1号Gauze’s No. 1 白色White 黄绿色Yellow green - 茂盛,快Lush, quick
察氏Cha’s 深灰色Dark grey 深灰色Dark grey - 稀疏,慢Sparse, slow
葡萄糖天门冬素琼脂Glucose aspartin agar 白色White 淡黄色Pale yellow - 稀疏,慢Sparse, slow
无机盐淀粉琼脂ISP4 深灰色Dark grey 黄绿色Yellow green - 茂盛,快Lush, quick
甘油天门冬素琼脂ISP5 白色White 黄绿色Yellow green - 稀疏,慢Sparse, slow

Fig. 2

Microstructure of Sa-21 strain"

Table 4

Physiological and biochemical properties of Sa-21 strain"

项目Item 结果Result 项目Item 结果Result
淀粉酶Amylase + 硫化氢Hydrogen sulfide -
纤维素酶Cellulase + 黑色素Melanin -
蛋白酶Protease + 过氧化氢酶Catalase +
甲基红Methyl red (MR) - 脲酶Urease +
V-P - 脂肪酶Lipase +

Table 5

Growth of Sa-21 strain in different carbon and nitrogen sources"

碳源种类Carbon source 结果Result 氮源种类Nitrogen source 结果Result
α-乳糖α-lactose +++ 蛋白胨Peptone +++
D-麦芽糖D-maltose +++ KNO3 +++
D-木糖D-xylose + (NH4)2SO4 ++
蔗糖Sucrose + 谷氨酸Glutamate -
L(+)-鼠李糖L(+)-rhamnose ++ 甲硫氨酸Methionine +
棉子糖Raffinose +++ 赖氨酸Lysine +++
L(-)-阿拉伯糖L(-)-arabinose + 亮氨酸Leucine +++
肌醇Inositol +++ 组氨酸Histidine +++
D-甘露醇D-mannitol +++

Fig. 3

Phylogenetic analysis of Sa-21 strain"

Fig. 4

Inhibition of R. solanacearum by different concentrations of crude extract"

Fig. 5

Dynamic changes of R. solanacearum growth treated by different concentrations of crude extract"

Fig. 6

Effect of different concentrations of crude extract on bacterial morphology of R. solanacearum The concentration of crude extract was 1, 5 and 10 μg·mL-1, respectively"

Fig. 7

Changes in β-galactosidase activity of R. solanacearum after treatment with different concentrations of crude extract"

Fig. 8

PI fluorescence pattern of R. solanacearum after crude extract treatment"

Fig. 9

Changes in PI fluorescence intensity of R. solanacearum after treatment with different concentrations of crude extract"

Fig. 10

Effect of crude extract on EPS of R. solanacearum"

Fig. 11

FTIR profile of the effect of crude extract on bacterial film composition of R. solanacearum"

Table 6

FTIR vibration peak assignment of R. solanacearum treated with crude extract"

振动峰分配
<BOLD>V</BOLD>ibration peak assignment
分类
Classification
振动峰<BOLD>V</BOLD>ariation peak (cm-1)
CK 0.25 μg·mL-1 10 μg·mL-1
碳水化合物中的C-O, C-C str, O-H, C-O-C伸缩振动峰
C-O, C-C str, C-O-H, C-O-C def of carbohydrates
糖原和核酸Glycogen and nucleic acid 1 060.175 1 061.139 1 062.585
磷酸二酯>PO2中P=O的不对称伸缩振动峰
P=O stretching (antisymmetric) of>PO2
主要是核酸Mainly nucleic acid 1 220.238 1 220.238 1 221.684
酰胺II中蛋白质N-H弯曲振动峰和C-N拉伸振动峰
Amide II (protein N-H bend, C-N stretch)
α螺旋α-helix 1 540.363 1 541.327 1 541.327
酰胺I的β-折叠结构Amide I of β-pleated sheet structures β-折叠β-pleated sheet 1 644.982 1 647.875 1 648.357
羟基O-H伸缩振动峰O-H str of hydroxyl groups 多糖和蛋白质Polysaccharide, protein 3 279.358 3 284.179 3 287.554

Fig. 12

Effects of crude extract on ROS of R. solanacearum"

Fig. 13

Crude extract promotes the accumulation of ROS in R. solanacearum"

Table 7

Control effect of Sa-21 strain fermentation broth on tobacco bacterial wilt in pot"

处理
Treatment
发病率
Incidence rate (%)
病情指数
Disease index
相对防治效果
Relative control effect (%)
阴性对照Negative control (CK1) 0 0 -
阳性对照Positive control (CK2) 86.68±2.54a 28.15±2.06a -
治疗组Treatment group (T1) 60.02±1.93b 8.89±1.25b 67.61±3.72b
预防组Prevention group (T2) 26.64±1.78c 3.70±1.83c 85.89±4.28a
[1]
彭成慧. 云南香蒲内生放线菌的分离鉴定及抗番茄青枯病活性研究[D]. 哈尔滨: 东北农业大学, 2021.
PENG C H. Isolation and identification of endophytic Actinobacteria from the root of cattail in Yunnan Province and their antibacterial activity against Ralstonia solanacearum[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
[2]
刘勇, 韦树谷, 叶鹏盛, 孙小芳, 代顺冬, 曾华兰, 赖佳, 阳苇丽, 黄玲, 盛玉珍. 烟草青枯病的发生流行及生防菌防控的根际微生物效应研究进展. 烟草科技, 2024, 57(2): 91-102.
LIU Y, WEI S G, YE P S, SUN X F, DAI S D, ZENG H L, LAI J, YANG W L, HUANG L, SHENG Y Z. Research progress on occurrence and epidemiology of tobacco bacterial wilt and effects of biocontrol agents on rhizosphere microbiota. Tobacco Science and Technology, 2024, 57(2): 91-102. (in Chinese)
[3]
郑雪芳, 陈燕萍, 肖荣凤, 陈梅春, 陈峥, 刘欣, 王阶平, 刘波. 福建青枯雷尔氏菌的遗传多样性及其生防放线菌的筛选. 中国生物防治学报, 2022, 38(5): 1269-1279.

doi: 10.16409/j.cnki.2095-039x.2022.06.002
ZHENG X F, CHEN Y P, XIAO R F, CHEN M C, CHEN Z, LIU X, WANG J P, LIU B. Genetic diversity of Ralstonia solancearum in Fujian Province and screening its biocontrol actinomycete. Chinese Journal of Biological Control, 2022, 38(5): 1269-1279. (in Chinese)
[4]
SHE S Y, NIU J J, ZHANG C, XIAO Y H, CHEN W, DAI L J, LIU X D, YIN H Q. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Archives of Microbiology, 2017, 199(2): 267-275.

doi: 10.1007/s00203-016-1301-x pmid: 27699437
[5]
黄成江, 李天福, 卢向阳, 周冀衡, 易克. 抗黑胫病烤烟品种资源筛选的研究初报. 云南农业大学学报, 2008, 23(4): 565-570.
HUANG C J, LI T F, LU X Y, ZHOU J H, YI K. Screening of flue-cured tobacco varieties resistance to tobacco black shank. Journal of Yunnan Agricultural University, 2008, 23(4): 565-570. (in Chinese)
[6]
李梅云, 李永平, 刘勇, 卢秀萍, 陈学军, 肖炳光. 抗黑胫病烟草种质资源的田间筛选. 云南农业大学学报(自然科学版), 2011, 26(5): 725-729.
LI M Y, LI Y P, LIU Y, LU X P, CHEN X J, XIAO B G. Screening of resistant tobacco germplasm to black shank disease in field. Journal of Yunnan Agricultural University (Natural Science), 2011, 26(5): 725-729. (in Chinese)
[7]
韩松庭, 丁伟. 烟草青枯病的化学防治研究进展. 植物医生, 2019, 32(5): 20-25.
HAN S T, DING W. Advances in chemical control of tobacco bacterial wilt. Plant Doctor, 2019, 32(5): 20-25. (in Chinese)
[8]
徐杰, 农婉晴, 张耀芳, 覃天涵, 杨金新, 黄文善, 朱英芝. Bacillus rugosus对香蕉枯萎病的防治及促生效果. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.s.20231025.1308.006.html.
XU J, NONG W Q, ZHANG Y F, QIN T H, YANG J X, HUANG W S, ZHU Y Z. Biological control effect of Bacillus rugosus on banana wilt disease. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.s.20231025.1308.006.html. in Chinese)
[9]
HARMAN G E. Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 2006, 96(2): 190-194.

doi: 10.1094/PHYTO-96-0190
[10]
LI J Y, ZHAO Q Q, WURIYANGHAN H, YANG C. Biocontrol bacteria strains Y4 and Y8 alleviate tobacco bacterial wilt disease by altering their rhizosphere soil bacteria community. Rhizosphere, 2021, 19: 100390.

doi: 10.1016/j.rhisph.2021.100390
[11]
KAARI M, JOSEPH J, MANIKKAM R, SREENIVASAN A, VENUGOPAL G. Biological control of Streptomyces sp. UT4A49 to suppress tomato bacterial wilt disease and its metabolite profiling. Journal of King Saud University-Science, 2022, 34(1): 101688.
[12]
黄伟, 宋博, 张丽娟, 王博, 王玮. 一株番茄青枯病拮抗细菌JK19的鉴定及其抑菌活性检测. 新疆农业科学, 2021, 58(7): 1355-1364.

doi: 10.6048/j.issn.1001-4330.2021.07.020
HUANG W, SONG B, ZHANG L J, WANG B, WANG W. Identification of bacterial wilt antagonistic bacteria JK19 and detection of its antibacterial activity. Xinjiang Agricultural Sciences, 2021, 58(7): 1355-1364. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2021.07.020
[13]
赖宝春, 姚锦爱, 戴瑞卿, 吴振强, 王家瑞. 2株拮抗放线菌复合防治番茄青枯病的研究. 中国生物防治学报, 2021, 37(5): 1035-1040.

doi: 10.16409/j.cnki.2095-039x.2021.04.013
LAI B C, YAO J A, DAI R Q, WU Z Q, WANG J R. Control effect of two antagonistic actinomycete mixed strains against tomato bacterial wilt disease. Chinese Journal of Biological Control, 2021, 37(5): 1035-1040. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2021.04.013
[14]
CAI L, CHEN J N, LIU Z W, WANG H C, YANG H K, DING W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Frontiers in Microbiology, 2018, 9: 790.

doi: 10.3389/fmicb.2018.00790
[15]
李蕊芯. 漠河土壤放线菌的分离鉴定及其酶学特性初步研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
LI R X. Isolation and identification of Mohe soil actinomycetes and preliminary study on their enzymatic characteristics[D]. Harbin: Harbin Institute of Technology, 2022. (in Chinese)
[16]
黄大跃. 烟草黑胫病菌拮抗菌的筛选及生防机制研究[D]. 合肥: 安徽农业大学, 2018.
HUANG D Y. Screening and biocontrol mechanism of antagonistic microorganism against the pathogen of tobacco black shank[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)
[17]
阮继生, 黄英. 放线菌快速鉴定与系统分类. 北京: 科学出版社, 2011: 52-98.
RUAN J S, HUANG Y. Rapid Identification and Systematic Classification of Actinomycetes. Beijing: Science Press, 2011: 52-98. (in Chinese)
[18]
徐丽华, 李文均, 刘志恒, 姜成林. 放线菌系统学-原理、方法及实践. 北京: 科学出版社, 2007: 40-46.
XU L H, LI W J, LIU Z H, JIANG C L. Actinomycetes Systematics - Principles, Methods and Practices. Beijing: Science Press, 2007: 40-46. (in Chinese)
[19]
GUPTA V K, SHIVASHARANAPPA N, KUMAR V, KUMAR A. Diagnostic evaluation of serological assays and different genes based PCR for detection of Brucella melitensis in goat. Small Ruminant Research, 2014, 117(1): 94-102.

doi: 10.1016/j.smallrumres.2013.11.022
[20]
郭银平, 黄英. 链霉菌看家基因引物的设计与验证. 微生物学报, 2007, 47(6): 1080-1083.
GUO Y P, HUANG Y. Design and validation of primers for housekeeper genes of Streptomyces. Acta Microbiologica Sinica, 2007, 47(6): 1080-1083. (in Chinese)
[21]
刘诗琪, 张金峰, 孟泽洪, 李帅, 周玉锋. 一株拮抗茶炭疽病菌(Colletotrichum camelliae)的放线菌的分离及初步鉴定. 分子植物育种, http://kns.cnki.net/kcms/detail/46.1068.S.20230822.1406.004.html.
LIU S Q, ZHANG J F, MENG Z H, LI S, ZHOU Y F. Isolation and preliminary identification of an antagonistic actinomycetes against Colletotrichum camelliae. Molecular Plant Breeding, http://kns.cnki.net/kcms/detail/46.1068.S.20230822.1406.004.html. in Chinese)
[22]
CAI X T, WANG X, CHEN Y C, WANG Y D, SONG D F, GU Q. A natural biopreservative: Antibacterial action and mechanisms of Chinese Litsea mollis Hemsl. extract against Escherichia coli DH5α and Salmonella spp. Journal of Dairy Science, 2019, 102(11): 9663-9673.

doi: 10.3168/jds.2019-16292
[23]
VOJNOV A A, ZORREGUIETA A, DOW J M, DANIELS M J, DANKERT M A. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology, 1998, 144(6): 1487-1493.

doi: 10.1099/00221287-144-6-1487
[24]
曾缘欢. 烟草青枯病抗性相关NBS-LRR基因的克隆与功能鉴定[D]. 福州: 福建农林大学, 2016.
ZENG Y H. Cloning and functional analysis of bacterial wilt resistant NBS-LRR genes in tobacco[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
[25]
ABDALLAH Y, YANG M, ZHANG M, MASUM M M I, OGUNYEMI S O, HOSSAIN A, AN Q, YAN C, LI B. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Letters in Applied Microbiology, 2019, 68(5): 423-429.

doi: 10.1111/lam.2019.68.issue-5
[26]
WATSON A L, CHIU N H L. Fluorometric cell-based assay for β-galactosidase activity in probiotic gram-positive bacterial cells - Lactobacillus helveticus. Journal of Microbiological Methods, 2016, 128: 58-60.

doi: 10.1016/j.mimet.2016.06.030
[27]
SAMANTA A, PAUL B K, GUCHHAIT N. Photophysics of DNA staining dye propidium iodide encapsulated in bio-mimetic micelle and genomic fish sperm DNA. Journal of Photochemistry and Photobiology B: Biology, 2012, 109: 58-67.

doi: 10.1016/j.jphotobiol.2012.02.001
[28]
DIEM M, CHIRIBOGA L, LASCH P, PACIFICO A. IR spectra and IR spectral maps of individual normal and cancerous cells. Biopolymers, 2002, 67(4/5): 349-353.

doi: 10.1002/bip.v67:4/5
[29]
GIAMBATTISTA L D, POZZI D, GRIMALDI P, GAUDENZI S, MORRONE S, CASTELLANO A C. New marker of tumor cell death revealed by ATR-FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 2011, 399(8): 2771-2778.

doi: 10.1007/s00216-011-4654-7 pmid: 21249341
[30]
MOMTAHAN N, CROSBY C O, ZOLDAN J. The role of reactive oxygen species in in vitro cardiac maturation. Trends in Molecular Medicine, 2019, 25(6): 482-493.

doi: 10.1016/j.molmed.2019.04.005
[31]
ZHENG X F, WANG J P, CHEN Z, ZHANG H F, WANG Z R, ZHU Y J, LIU B. A Streptomyces sp. strain: Isolation, identification, and potential as a biocontrol agent against soilborne diseases of tomato plants. Biological Control, 2019, 136: 104004.

doi: 10.1016/j.biocontrol.2019.104004
[32]
LING L, HAN X, LI X, ZHANG X, WANG H, ZHANG L D, CAO P, WU Y T, WANG X J, ZHAO J W, XIANG W S. A Streptomyces sp. NEAU-HV9: Isolation, identification, and potential as a biocontrol agent against Ralstonia solanacearum of tomato plants. Microorganisms, 2020, 8(3): 351.
[33]
JIANG Y J, HUANG Y, CHEN S, JI Y Y, DING W J, MA Z J. Strepolyketides A-C, three novel SEK15-derived polyketides from Streptomyces sp. HN2A53. Tetrahedron Letters, 2020, 61(25): 151996.
[34]
SER H L, TAN L T, PALANISAMY U D, ABD MALEK S N, YIN W F, CHAN K G, GOH B H, LEE L H. Streptomyces antioxidans sp. nov., a novel mangrove soil actinobacterium with antioxidative and neuroprotective potentials. Frontiers in Microbiology, 2016, 7: 899.
[35]
PROMNUAN Y, PROMSAI S, MEELAI S. Antimicrobial activity of Streptomyces spp. isolated from Apis dorsata combs against some phytopathogenic bacteria. PeerJ, 2020, 8: e10512.

doi: 10.7717/peerj.10512
[36]
PUPIN M, FLISSI A, JACQUES P, LECLERE V. Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications. European Journal of Plant Pathology, 2018, 152(4): 993-1001.

doi: 10.1007/s10658-018-1544-2
[37]
CHEN M C, WANG J P, ZHU Y J, LIU B, YANG W J, RUAN C Q. Antibacterial activity against Ralstonia solanacearum of the lipopeptides secreted from the Bacillus amyloliquefaciens strain FJAT-2349. Journal of Applied Microbiology, 2019, 126(5): 1519-1529.

doi: 10.1111/jam.2019.126.issue-5
[38]
SHIVA N, PARANIDHARAN V. Enhancement of defense gene expression in tomato plants during tripartite interaction with Ralstonia solanacearum and Pseudomonas fluorescens. Plant Disease Research, 2019, 34(2): 184.
[39]
ACHARI G A, RAMESH R. Colonization of eggplant by endophytic bacteria antagonistic to Ralstonia solanacearum, the bacterial wilt pathogen. Proceedings of the National Academy of Sciences,India Section B: Biological Sciences, 2019, 89(2): 585-593.
[40]
ELSAYED T R, JACQUIOD S, NOUR E H, SORENSEN S J, SMALLA K. Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Frontiers in Microbiology, 2019, 10: 2835.

doi: 10.3389/fmicb.2019.02835
[41]
XUE Y B, YANG M G, LI S H, LI Z J, LIU H H, GUO Q B, WANG C L. The antibiotic activity and mechanisms of active metabolites (Streptomyces alboflavus TD-1) against Ralstonia solanacearum. Biotechnology Letters, 2019, 41(10): 1213-1222.

doi: 10.1007/s10529-019-02726-x
[42]
CALDWELL D, KIM B S, IYER-PASCUZZI A S. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 2017, 107(5): 528-536.

doi: 10.1094/PHYTO-09-16-0353-R
[43]
WALLIS C M, WALLINGFORD A K, CHEN J C. Effects of cultivar, phenology, and Xylella fastidiosa infection on grapevine xylem sap and tissue phenolic content. Physiological and Molecular Plant Pathology, 2013, 84: 28-35.

doi: 10.1016/j.pmpp.2013.06.005
[1] SHI Na, LU Yang, SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun, ZHANG ZhengKun. Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids [J]. Scientia Agricultura Sinica, 2024, 57(17): 3398-3407.
[2] GUO Ning, SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie, ZHENG XiaoJuan, DONG YueGuang. Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot [J]. Scientia Agricultura Sinica, 2023, 56(22): 4453-4466.
[3] WANG XuanDong, SONG Zhen, LAN HeTing, JIANG YingZi, QI WenJie, LIU XiaoYang, JIANG DongHua. Isolation of Dominant Actinomycetes from Soil of Waxberry Orchards and Its Disease Prevention and Growth-Promotion Function [J]. Scientia Agricultura Sinica, 2023, 56(2): 275-286.
[4] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[5] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[6] CAO YuHan,LI ZiTeng,ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan,CAO KeQiang. Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus [J]. Scientia Agricultura Sinica, 2021, 54(22): 4787-4799.
[7] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[8] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[9] LI Shu,WANG Jie,HUANG NingXing,JIN ZhenYu,WANG Su,ZHANG Fan. Research Progress and Prospect on Banker Plant Systems of Predators for Biological Control [J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987.
[10] ZHANG Lei,JIA Qi,WU Wei,ZHAO LuPing,XUE Bing,LIU HuanHuan,SHANG Jing,YONG TaiWen,LI Qing,YANG WenYu. Species Identification and Virulence Determination of Beauveria bassiana Strain BEdy1 from Ergania doriae yunnanus [J]. Scientia Agricultura Sinica, 2020, 53(14): 2974-2982.
[11] WANG XiaoNing,LIANG Huan,WANG Shuai,FANG WenSheng,XU JingSheng,FENG Jie,XU Jin,CAO AoCheng. Function of Copper-Resistant Gene copA of Ralstonia solanacearum [J]. Scientia Agricultura Sinica, 2019, 52(5): 837-848.
[12] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[13] LI YuJia, LI Qian, ZHANG ZhiXiang, LI ShiFang. Screening and identification of peach endophytic bacteria with antagonism against Agrobacterium tumefaciens [J]. Scientia Agricultura Sinica, 2017, 50(20): 3918-3929.
[14] ZHANG Bing-huo, LI Han-quan, LUO Juan-yan, YANG Jian-yuan, SHI Hong-qiu, SUN Feng-zhen. Influences of Actinomycete Strain JXJ-0136 on the Growth of Brassica chinensis and Vigna unguiculata and Its Phosphate Solubilization [J]. Scientia Agricultura Sinica, 2016, 49(16): 3152-3161.
[15] LU Hui-hui, LIN Zhi-qiang, TAN Wan-zhong, LUO Hua-dong, XIAN Fei, BI Chao-wei, YU Yang, YANG Yu-heng. Insecticidal Protein Genes of Bacillus thuringiensis Strain CPB012 and Its Effects in Controlling Different Insect Pests [J]. Scientia Agricultura Sinica, 2015, 48(6): 1112-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!