Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4490-4505.doi: 10.3864/j.issn.0578-1752.2023.22.011

• HORTICULTURE • Previous Articles     Next Articles

Development and Transferability of EST-SSR Markers Based on Transcriptome Data from Asparagus officinalis

YI ZeHui(), ZHAO Jing, MAO LiPing   

  1. College of Agriculture, Shanxi Agricultural University/Shanxi Provincial Key Laboratory of Innovation and Utilization of Vegetable and Flower Germplasm Resources, Taiyuan 030031
  • Received:2023-04-10 Accepted:2023-08-04 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】The aim of this study was to clarify the distribution law of SSR loci across the transcriptome of Asparagus officinalis, to develop highly informative EST-SSR markers and to analyze their transferability, so as to provide the tools for phylogenetic analysis, functional gene mining and molecular marker-assisted breeding of asparagus plants.【Method】Based on the RNA-seq data of 15 asparagus roots obtained from the previous stage by our research group, MISA software was used to retrieve SSR loci, and Primer 3.0 software was employed to design primers in batches. Then, the ineffective primers were eliminated by performing batch e-PCR with TB-tools software and one-to-one e-PCR with the Primer-blast programme. The information of EST-SSR markers (such as gene id, physical location, and potential function) was obtained by comparison with the genome of asparagus officinalis. The DNA of 9 A. officinalis varieties, 7 A. setaceus varieties, 5 A. cochinchinensis varieties, and 3 A. umbellatus varieties were used as templates, and 50 pairs of randomly synthesized primers were used as primers to detect the effectiveness, polymorphism and transferability of the primers developed.【Result】A total of 36 590 simple sequence repeats (SSRs) loci distributed in 30 229 unigenes with a frequency of 4.78% and an average distance of 9.17 kb were identified based on data from 15 root transcriptomes of A. officinalis. The SSRs were unevenly distributed in the 10 chromosomes, with the highest number in chromosome 7 (4 642) and the highest density in chromosome 3 (37.86 SSRs/Mb). The SRRs were distributed from di- to hexa-, with tri- (46.92%) and AG/CT (16.58%) as the most abundant repeat type and predominant repeat motif, respectively. A total of 19 695 pairs of EST-SSR primers were successfully designed, and 15 147 pairs ineffective primers were eliminated by e-PCR. Among them, 3 085 pairs ineffective primers didn’t produce any amplification products, 10 102 pairs produced severely inconsistent amplification products in terms of fragment size, 1 289 pairs had unknown physical positions in the genome, 402 pairs gave other amplification products of similar size to the target fragments, and 269 pairs generated amplification products without SSRs. Based on 2 517 EST-SSR markers located in the gene region developed in this study, the chromosome density distribution map was constructed, with a total coverage length of 1 125.51 Mb and an average distance of 447.16 kb. The potential functions of these markers were involved in many aspects, such as yield, quality, stress resistance, and so on. All 50 pairs of randomly synthesized primers could amplify target bands clearly, of which 36 pairs were polymorphic, and the average polymorphic information content was 0.330. These markers could be used in three other species of Asparagus: the transferability to A. cochinchinensis, A. setaceus, and A. umbellatus were 100%, 92%, and 88%, respectively. Cluster analysis based on the EST-SSR alleles grouped the 24 accessions into four clusters that corresponded to the species of A. officinalis, A. setaceus, A. cochinchinensis, and A. umbellatus.【Conclusion】In this study, 2 517 highly informative EST-SSR markers of asparagus were successfully developed, and the effective amplification rate was 100%. The total coverage length of the physical map was 1 125.51 Mb, and the average distance was 447.16 kb, which could be used for phylogenetic analysis of asparagus and related species. Moreover, it provided a reference for the development of EST-SSR markers in other species.

Key words: transcriptome, asparagus, EST-SSR, chromosome density distribution map, functional annotation

Table 1

Germplasm information of the 24 Asparagus species used in this study"

编号
No.
名称
Name
物种
Species
来源
Origin
编号
No.
名称
Name
物种
Species
来源
Origin
1 冠军
Guanjun
芦笋
Asparagus officinalis
中国潍坊
Weifang, China
13 广东天门冬3
GD-tmd3
天门冬
Asparagus setaceus
中国广东
Guangdong, China
2 翡翠明珠
Feicuimingzhu
中国潍坊
Weifang, China
14 江苏天门冬1
JS-tmd1
中国江苏
Jiangsu, China
3 京紫芦2号
Jiangzilunsun No.2
中国北京
Beijing, China
15 江苏天门冬2
JS-tmd2
中国江苏
Jiangsu, China
4 井岗111
Jinggang111
中国江西
Jiangxi, China
16 浙江天门冬1
ZJ-tmd1
中国浙江
Zhejiang, China
5 紫色激情
Purple passion
美国
USA
17 福建文竹1
FJ-wz1
文竹
Asparagus cochinchinensis
中国福建
Fujian, China
6 格兰德
Grande
美国
USA
18 河南文竹1
HN-wz1
中国河南
Henan, China
7 阿特拉斯
Atlas
美国
USA
19 山东文竹1
SD-wz1
中国山东
Shandong, China
8 王子
Prince
日本
Japan
20 山东文竹2
SD-wz2
中国山东
Shandong, China
9 荷兰1号
Holland tongfu No.1
荷兰
Holland
21 浙江文竹1
ZJ-wz1
中国浙江
Zhejiang, China
10 福建天门冬1
FJ-tmd1
天门冬
Asparagus setaceus
中国福建
Fujian, China
22 福建蓬莱松1
FJ-pls1
蓬莱松
Asparagus umbellatus
中国福建
Fujian, China
11 广东天门冬1
GD-tmd1
中国广东
Guangdong, China
23 广东蓬莱松1
GD-pls1
中国广东
Guangdong, China
12 广东天门冬2
GD-tmd2
中国广东
Guangdong, China
24 上海蓬莱松1
SH-pls1
中国上海
Shanghai, China

Fig. 1

Distribution characteristics of SSR locus of Asparagus transcriptome in chromosome"

Table 2

Distribution characteristics of SSR locus in transcriptome of Asparagus"

重复基序类型
Repeat motif type
重复次数 Repeat times 总计
Total
平均距离
Average distance (kb)
百分率
Percentage (%)
4 5 6 7 8 9 10 10-20 >20
单核苷酸 Mono- 0 0 0 0 0 0 0 6220 739 6959 48.20 19.02
二核苷酸 Di- 0 0 3291 1834 1260 856 572 1762 370 9945 33.73 27.18
三核苷酸 Tri- 0 9086 3854 2050 1288 201 218 443 28 17168 19.54 46.92
四核苷酸 Tetra- 0 548 216 32 25 7 10 18 0 856 391.86 2.34
五核苷酸 Penta- 597 134 15 8 4 4 0 6 0 768 436.76 2.10
六核苷酸 Hexa- 765 69 25 16 7 7 0 5 0 894 375.20 2.44
总计 Total 1362 9837 7401 3940 2584 1075 800 8454 1137 36590 9.17 100
平均距离
Average distance (kb)
246.28 34.10 45.32 85.13 129.81 312.03 419.29 39.68 295.01 9.17
百分率 Percentage (%) 3.72 26.88 20.23 10.77 7.06 2.94 2.19 23.10 3.11 100

Fig. 2

The SSR motifs and their distributions in transcriptome of Asparagus"

Fig. 3

Distributions of the SSR motifs length in transcriptome of Asparagus"

Fig. 4

The distribution of 2517 EST-SSR markers on asparagus chromosome"

Fig. 5

GO functional annotation of genes containing EST-SSR markers"

Fig. 6

KEGG analysis of genes containing EST-SSR markers"

Fig. 7

Amplification of random SSR primers in 24 asparagus varieties (part)"

Table 3

Information of 50 pairs of randomly synthesized EST-SSR primers developed from Asparagus officinalis"

名称
Name
重复基序
Repeat motif
开放
阅读框
ORF
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
退火温度
Tm
(℃)
产物大小
Product
size (bp)
染色
体Chr
起始位置
Start position (bp)
预测功能
Putative function
基因<BOLD>ID</BOLD>
Gene<BOLD> ID</BOLD>
等位基因数Na 多态性信息含量PIC
SSR20 (CCG)5 CDS TTATCGAGGAACAGCAGCCT TTCGTCCTCCTCTACTCCGA 59.9 143 1 2228458 未知蛋白 LOC109845910
Uncharacterized protein LOC109845910
109845910 1 0.210
SSR44 (TC)12 5'-UTR GCGAGTAAGACTACCGCGAG GATTTTGGGGAGAATTCGGT 60.1 156 1 6946254 未知蛋白 DDB_G0294196
Putative uncharacterized protein DDB_G0294196
109829946 2 0.494
SSR170 (AGA)5 CDS TATGATGAGAACCGAAGGGC CATCCGTGCCAAACTATCCT 60.0 204 1 58943187 SCL蛋白28
Scarecrow-like protein 28
109834799 1 0.000
SSR189 (CAG)7 CDS CCCCAGAACCCTAAACCCTA GAAGTAGTAGTCGGCGCTGG 60.0 238 1 79487997 可能的蛋白质精氨酸N-甲基转移酶1
Probable protein arginine N-methyltransferase 1
109826536 1 0.000
SSR249 (TGG)5 CDS CCTCTGGTCGTGGTGAGATT TCAGGTTTTCCTGCACACAG 59.9 264 1 112933201 锌指蛋白8
Zinc finger CCHC domain-containing protein 8-like
109829023 2 0.444
SSR354 (CTC)5 5'-UTR TGACTGGTTGTTAGGGCCTC CCTCCGGATAGATAGCACCA 60.1 224 2 2364488 未知蛋白 LOC109829884
Uncharacterized protein LOC109829884
109829884 3 0.593
SSR414 (ATA)6 CDS TCAAGCCTATTGTTGAATCTGC GCTTAAGCAAGGGGGTCTTC 60.0 258 2 15586523 自噬相关蛋白13B
Autophagy-related protein 13b-like
109830378 2 0.198
SSR486 (TTG)5 3'-UTR CATGCACGCACACAAATGTA TGAAACCAATGGTAAAGGCA 59.0 136 2 76807149 胆碱/乙醇胺磷酸转移酶2
Choline/ethanolamine-phospho- transferase 2-like
109831674 2 0.494
SSR491 (ATC)5 5'-UTR GGGAAAATGAGAACTCGCAA CCAGTTTTCTGCGGATCATT 60.1 250 2 77458426 DNA介导的RNA聚合酶II和IV亚基5A
DNA-directed RNA polymerases II and IV subunit 5A
109831692 2 0.494
SSR518 (GAA)5 CDS GCCCTCACTCTCTCCATCAG GGGGTGATGTCGTAGACGTT 59.9 214 2 83538318 核出口调节因子NEMF
Nuclear export mediator factor NEMF
109831911 2 0.198
SSR572 (AAG)7 Intron GCACGCATTCGTTAAAGTTG TTTGATTCAATTGTCCTTCGG 59.9 157 3 9251743 核孔复合蛋白NUP1
Nuclear pore complex protein NUP1-like
109832884 2 0.543
SSR595 (AAG)5 CDS TGGTTCTATTTTTCGGCTGG CTTGCGACAAAACTCGATGA 60.0 171 3 14367170 八氢番茄红素合成酶2,叶绿体
Phytoene synthase 2, chloroplastic-like
109833104 2 0.198
SSR725 (GA)8 5'-UTR ATCGCTCCTTTCCCCTTTT CTCCTCTGTCGCATCAATCA 59.9 138 3 41477413 MARD1蛋白
Protein MARD1-like
109835001 2 0.345
SSR782 (ATA)5 CDS TGCCCATGTCTGTTAAAGGAA AGACCGCTAAGGTGGTGATG 60.0 188 3 73982482 未知蛋白 LOC109834334
Uncharacterized protein LOC109834334
109834334 2 0.198
SSR806 (TCT)12 CDS TTTGACCTTGGCAGACACAC TGGCTTTGGAGGTCTCAAGT 59.8 141 3 102124175 叶绿素酶2,叶绿体
Chlorophyllase-2, chloroplastic
109835385 3 0.643
SSR857 (TC)29 Intron TGCCAATGCCTTTAAGGTTC ACACGGGAGATGGAACAGAG 60.1 185 4 5629132 未知蛋白 LOC109836451
Uncharacterized protein LOC109836451
109836451 3 0.185
SSR883 (AAT)5 Intron CGAGTACTTCTCTTGCGCCT TCTCCAACTACAACCCCTGG 60.0 156 4 15373511 脯氨酸转运蛋白2
Proline transporter 2-like
109836720 2 0.346
SSR952 (TC)8 CDS CCTAGTGAGGCAGGATGTCA AGGGGATCGAGATGAATGTG 60.0 192 4 44331895 双向糖转运蛋白SWEET13
Bidirectional sugar transporter SWEET13-like
109837341 2 0.444
SSR991 (AGA)7 3'-UTR TGTGGCGTGCACTGTTAGAT TTGGGGCTCCATAACATAGC 59.9 235 4 65334575 未知蛋白 LOC109837601
Uncharacterized protein LOC109837601
109837601 3 0.593
SSR1087 (T)16 Intron ACCTTCAACGGAAGGGTCTT ACTGAGGAAGTGTGACCGCT 59.9 121 4 137703636 原叶绿素还原酶
Protochlorophyllide reductase-like
109839366 1 0.000
SSR1131 (ATG)5 Intron TCTACGCAAACCATCCAATG GCAGTCTGATAGGGGCAAAG 59.8 150 5 1864366 T复合体蛋白1亚基β
T-complex protein 1 subunit beta
109841430 3 0.568
SSR1177 (TG)10 Intron TACAGACCCCTGTTTTTCGC CCCTCAGCTTAACGTGCATT 60.3 234 5 14904240 ABC转运蛋白家族I成员6
ABC transporter I family member 6
109843163 1 0.000
SSR1224 (AAT)8 Intron ATAGCCTCGTCGCTTGAGAA TCCAAGGGGAATATACGCAA 60.3 208 5 69242913 四肽α-吡喃酮还原酶1
Tetraketide alpha-pyrone reductase 1
109843750 4 0.691
SSR1324 (GCT)5 CDS ATTAGACACAAACCCCTGCG AGAAGAGGGGAAGCAAAAGC 60.0 162 5 114882457 葡糖苷酶2亚基位β
Glucosidase 2 subunit beta
109840787 1 0.000
SSR1386 (TTC)10 CDS CCTATCGCGTCCTATCCAAA CGTGTAACGCGATTATGGTG 60.0 198 5 129216684 可能的丝氨酸/苏氨酸受体蛋白激酶At5g57670
Probable receptor-like serine/threonine-protein kinase At5g57670
109841319 3 0.185
SSR1412 (AACCCC)4 CDS CAACACCAAGCCCGTTATCT TGGTGGAGAGAAGAGGAGGA 59.9 207 6 1910664 肽基-脯氨酰顺反异构酶FKBP17-1
Peptidyl-prolyl cis-trans isomerase FKBP17-1
109845585 1 0.000
SSR1463 (TCT)5 CDS TCATGGGCAATCCTCTTGTT AGACTCCATGTCGGATGAGG 60.1 204 6 8996684 细胞分裂素羟化酶
Cytokinin hydroxylase-like
109845014 2 0.346
SSR1494 (TAA)8 Intron GGAAAGGAGGGGTAAAATGG TTGTCCAAAATGTCATGCGT 60.0 270 6 18667772 丝氨酸/苏氨酸蛋白磷酸酶PP2A-1催化亚基
Serine/threonine-protein phosphatase PP2A-1 catalytic subunit-like
109845040 1 0.000
SSR1519 (GA)12 5'-UTR TGTTTCCTCTCCTTCTTTCACA TTTTTCCTCGCCATCTTCAC 60.2 170 6 34974597 双元件响应调节器ORR24
Two-component response regulator ORR24-like
109845367 2 0.198
SSR1555 (CCT)5 CDS ACTCTTACGATGACACCGGC ATCGGAGCTGAGGTTGTTGT 59.7 134 6 76122250 含NAC结构域的蛋白21/22
NAC domain-containing protein 21/22-like
109845418 3 0.494
SSR1715 (GAA)6 CDS AGCCGCAAGTTTCTAGGGTT TGTATGTTCTTGAGGCTGCG 60.0 145 7 58010025 富含谷氨酸WD重复序列的蛋白1
Glutamate-rich WD repeat-containing protein 1
109849288 3 0.642
SSR1779 (TCT)5 CDS GACGTGCTTGGTGCTCTCTT AACTGCTGCAATGATGCAAG 60.0 207 7 88705397 NEP1相互作用蛋白1
NEP1-interacting protein 1-like
109850734 3 0.593
SSR1802 (TG)8 Intron TGTCTGCTAAGACCTCTGCG CAAAGTGGGGGCTTGAATAA 59.9 218 7 117477415 未知蛋白LOC109848868
Uncharacterized protein LOC109848868
109848868 2 0.198
SSR1819 (AAT)5 Intron TGTTTGAGCTTCGGGTTCTT CGTTCCTGATGATTTTCGCT 60.2 224 7 129709783 非共生血红蛋白1
Non-symbiotic hemoglobin 1-like
109849734 2 0.444
SSR1902 (GAAAA)4 Intron TGTGTGACCAGAATGATACCAA CAGCAAGATGTAATCGGGGT 60.0 170 7 149292304 角蛋白,II型细胞骨架1
Keratin, type II cytoskeletal 1-like
109847973 3 0.630
SSR1952 (GAT)8 CDS ACTCTTCAGATCAGGCCGAA TCTCTCTGTCACCTCTGCGA 59.9 173 8 3856499 预测的未知蛋白YGR160
Putative uncharacterized protein YGR160
109819557 1 0.000
SSR2056 (CTT)5 CDS ACTTGACTTCCACATTGGGC GATTCTGAGGCTGAGGCAAG 60.1 169 8 35842857 未知蛋白 LOC109819575
Uncharacterized protein LOC109819575
109819575 2 0.580
SSR2105 (CTC)6 CDS AGAGAACCCTCAGACGCAAA CCACTCCATGTCCTCGATCT 60.1 174 8 88072165 双苯甲酰胺生物合成蛋白3
Diphthamide biosynthesis protein 3-like
109822197 1 0.000
SSR2113 (CT)8 CDS CTCAAATGGCCGTCTACCTC GATGGATGGTGAATGGAACC 60.0 162 8 97036927 核转录因子Y亚基C-4-like
Nuclear transcription factor Y subunit C-4-like
109822868 2 0.198
SSR2158 (AATA)7 Intron CCTGCTTGCTCACCTGAGAT TCGCGACTGACAGAGATCAG 60.3 272 8 122287668 β-D-木糖苷酶1
Beta-D-xylosidase 1-like
109819692 2 0.198
SSR2219 (TA)10 CDS GTTAGCCTCCGGTCAATCAA CGTAGCGCTCACCTGACATA 60.0 158 9 613886 SP蛋白
Protein SELF-PRUNING-like
109824684 1 0.000
SSR2259 (CAA)5 CDS CGATTTCTCATCACAGGGGT ACACTCCACGCTTTCTCGTT 59.9 194 9 7569754 B-box锌指蛋白22
B-box zinc finger protein 22-like
109823141 2 0.198
SSR2297 (GAG)7 CDS AAAGCCAACACCACCAAGAG AGATGGCTCCCAGTCAGTGT 59.7 150 9 40584132 氯通道蛋白CLC-a
Chloride channel protein CLC-a-like
109823966 2 0.346
SSR2322 (CCG)5 CDS TTGGAGCTCACATCCACAGA CTCTTCTCCCCCAGATGCTA 59.4 176 9 65579962 预测的酪蛋白激酶II亚基β-4
Putative casein kinase II subunit beta-4
109823813 3 0.494
SSR2325 (CCT)5 CDS CAAAGCTACCCTTCCCCTCT TGGGGGAGACGGTGTAGTAG 60.0 194 9 66180515 lysM结构域受体样激酶3
LysM domain receptor-like kinase 3
109823957 1 0.000
SSR2365 (ATT)6 5'-UTR AATGCAGCCAAAGTTCATCC CCGGGTCGGGTAACTCTATT 60.2 208 10 2729728 磷酸甘露糖长醇利用缺陷型基因1的同源物2
Mannose-P-dolichol utilization defect 1 protein homolog 2-like
109825639 1 0.000
SSR2398 (GAT)5 CDS TTGGGGTCTCAACAGAATCC GGAAGGGCCTAATCTCCAAG 60.0 276 10 6915115 未知蛋白LOC109825889
Uncharacterized protein LOC109825889
109825889 2 0.444
SSR2463 (TTA)5 CDS AGTGAACGAAAGATGGCTGC GAGCAGAGAGCGAGACCTGT 60.0 146 10 58522448 硒蛋白F
Selenoprotein F
109826215 1 0.000
SSR2492 (GA)11 Intron CCCTGGAGACAAAAAGCAGA CTTGGCTTTATCCTGCAAGC 59.8 140 10 70357333 细胞分裂素脱氢酶3
Cytokinin dehydrogenase 3-like
109826192 2 0.346
SSR2517 (A)23 5'-UTR GGAGTTAAAATTAGGCTCTGCG TTTCCCCGCCTAAATTACCT 59.8 165 10 73126476 mRNA前体剪接因子SLU7
Pre-mRNA-splicing factor SLU7
109825241 3 0.494

Fig. 8

Cluster analysis of 24 Asparagus plant samples based on ESR-SSR data"

[1]
厉广辉, 于继庆, 李书华, 李保华, 李霞, 李芳. 包艳存, 牟萌. 我国芦笋育种研究进展及展望. 核农学报, 2016, 30(10): 1934-1940.

doi: 10.11869/j.issn.100-8551.2016.10.1934
LI G H, YU J Q, LI S H, LI B H, LI X, LI F, BAO Y C, MU M. Research progress and perspective in asparagus breeding in China. Journal of Nuclear Agricultural Sciences, 2016, 30(10): 1934-1940. (in Chinese)

doi: 10.11869/j.issn.100-8551.2016.10.1934
[2]
GUO Q B, WANG N F, LIU H H, LI Z J, LU L F, WANG C L. The bioactive compounds and biological functions of Asparagus officinalis L.-A review. Journal of Functional Foods, 2020, 65: 103727.

doi: 10.1016/j.jff.2019.103727
[3]
ABOUZARI A, SOLOUKI M, GOLEIN B, FAKHERI B A, SABOURI A, DADRAS A R. Screening of molecular markers associated to cold tolerance-related traits in Citrus. Scientia Horticulturae, 2020, 263: 109145.

doi: 10.1016/j.scienta.2019.109145
[4]
SAEED A F, WANG R Z, WANG S H. Microsatellites in pursuit of microbial genome evolution. Frontiers in Microbiology, 2016, 6: 1462.
[5]
TAHERI S, ABDULLAH T L, YUSOP M R, HANAFI M M, SAHEBI M, AZIZI P, SHAMSHIRI R R. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules, 2018, 23(2): 399.

doi: 10.3390/molecules23020399
[6]
LUO L M, YANG Y Y, ZHAO H W, LENG P S, HU Z H, WU J, ZHANG K Z. Development of EST-SSR markers and association analysis of floral scent in tree peony. Scientia Horticulturae, 2021, 289: 110409.

doi: 10.1016/j.scienta.2021.110409
[7]
KARCΙ H, PAIZILA A, TOPÇU H, ILIKÇIOĞLU E, KAFKAS S. Transcriptome sequencing and development of novel genic SSR markers from Pistacia vera L. Frontiers in Genetics, 2020, 11: 1021.

doi: 10.3389/fgene.2020.01021
[8]
JIA X P, DENG Y M, SUN X B, LIANG L J, SU J L. De novo assembly of the transcriptome of Neottopteris nidus using Illumina paired-end sequencing and development of EST-SSR markers. Molecular Breeding, 2016, 36(7): 1-12.

doi: 10.1007/s11032-015-0425-z
[9]
ZHOU S F, WANG C R, FRAZIER T P, YAN H D, CHEN P L, CHEN Z H, HUANG L K, ZHANG X Q, PENG Y, MA X, YAN Y H. The first Illumina-based de novo transcriptome analysis and molecular marker development in Napier grass (Pennisetum purpureum). Molecular Breeding, 2018, 38(7): 1-14.

doi: 10.1007/s11032-017-0759-9
[10]
WONG Q, TANZI A, HO W, MALLA S, BLYTHE M, KARUNARATNE A, MASSAWE F, MAYES S. WONG Q N, TANZI A S, HO W K, MALLA S, BLYTHE M, KARUNARATNE A, MASSAWE F, MAYES S. Development of gene-based SSR markers in winged bean (Psophocarpus tetragonolobus (L.) DC.) for diversity assessment. Genes, 2017, 8(3): 100.

doi: 10.3390/genes8030100
[11]
XIANG C G, DUAN Y, LI H B, MA W, HUANG S W, SUI X L, ZHANG Z H, WANG C L. A high-density EST-SSR-based genetic map and QTL analysis of dwarf trait in Cucurbita pepo L. International Journal of Molecular Sciences, 2018, 19(10): 3140.

doi: 10.3390/ijms19103140
[12]
WU M, LIU Y N, ZHANG C, LIU X T, LIU C C, GUO R, NIU K X, ZHU A Q, YANG J Y, CHEN J Q, WANG B. Molecular mapping of the gene(s) conferring resistance to Soybean mosaic virus and Bean common mosaic virus in the soybean cultivar Raiden. Theoretical and Applied Genetics, 2019, 132(11): 3101-3114.

doi: 10.1007/s00122-019-03409-x pmid: 31432199
[13]
RONG F X, CHEN F F, HUANG L, ZHANG J Y, ZHANG C W, HOU D, CHENG Z H, WENG Y Q, CHEN P, LI Y H. A mutation in class III homeodomain-leucine zipper (HD-ZIP III) transcription factor results in curly leaf (cul) in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2019, 132(1): 113-123.

doi: 10.1007/s00122-018-3198-z
[14]
GAUTAM T, DHILLON G S, SARIPALLI G, RAKHI, SINGH V P, PRASAD P, KAUR S, CHHUNEJA P, SHARMA P K, BALYAN H S, GUPTA P K. Marker-assisted pyramiding of genes/QTL for grain quality and rust resistance in wheat (Triticum aestivum L.). Molecular Breeding, 2020, 40(5): 49-62.

doi: 10.1007/s11032-020-01125-9
[15]
ZHU X, ZHAO J F, ABBAS H M K, LIU Y J, CHENG M L, HUANG J, CHENG W J, WANG B B, BAI C Y, WANG G Y, DONG W B. Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. Theoretical and Applied Genetics, 2018, 131(10): 2145-2156.

doi: 10.1007/s00122-018-3143-1 pmid: 30006836
[16]
LI S F, ZHANG G J, LI X, WANG L J, YUAN J H, DENG C L, GAO W J. Genome-wide identification and validation of simple sequence repeats (SSRs) from Asparagus officinalis. Molecular and Cellular Probes, 2016, 30(3): 153-160.

doi: 10.1016/j.mcp.2016.03.003
[17]
盛文涛, 邓建兰, 饶友生, 柴学文, 刘建坤. 基于NCBI数据库芦笋EST-SSR标记的开发. 分子植物育种, 2019, 17(13): 4307-4313.
SHENG W T, DENG J L, RAO Y S, CHAI X W, LIU J K. Development of EST-SSR markers in Asparagus officinalis based on NCBI database. Molecular Plant Breeding, 2019, 17(13): 4307-4313. (in Chinese)
[18]
陆云峰, 杨安娜, 张俊红, 楼炉焕, 黄华宏, 童再康. 紫楠转录组EST-SSR标记开发及通用性分析. 农业生物技术学报, 2018, 26(6): 1014-1024.
LU Y F, YANG A N, ZHANG J H, LOU L H, HUANG H H, TONG Z K. Development and transferability evaluation of EST-SSR markers based on transcriptome data of Phoebe sheareri. Journal of Agricultural Biotechnology, 2018, 26(6): 1014-1024. (in Chinese)
[19]
ZHU Y Q, WANG X, HUANG L K, LIN C W, ZHANG X Q, XU W Z, PENG J H, LI Z, YAN H D, LUO F X, WANG X, YAO L, PENG D D. Transcriptomic identification of drought-related genes and SSR markers in Sudan grass based on RNA-seq. Frontiers in Plant Science, 2017, 8: 687.

doi: 10.3389/fpls.2017.00687 pmid: 28523007
[20]
LI M N, LONG R C, FENG Z R, LIU F Q, SUN Y, ZHANG K, KANG J M, WANG Z, CAO S H. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq. Journal of Integrative Agriculture, 2018, 17(1): 184-196.

doi: 10.1016/S2095-3119(17)61749-0
[21]
NIE G, TANG L, ZHANG Y J, HUANG L K, MA X, CAO X, PAN L, ZHANG X, ZHANG X Q. Development of SSR markers based on transcriptome sequencing and association analysis with drought tolerance in perennial grass Miscanthus from China. Frontiers in Plant Science, 2017, 8: 801.

doi: 10.3389/fpls.2017.00801
[22]
RANATHUNGE C, CHIMAHUSKY M E, WELCH M E. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Molecular Genetics and Genomics, 2022, 297(5): 1329-1342.

doi: 10.1007/s00438-022-01920-3 pmid: 35786764
[23]
HAMWIEH A, IMTIAZ M, HOBSON K, AHMED KEMAL S. Genetic diversity of microsatellite alleles located at quantitative resistance loci for Ascochyta blight resistance in a global collection of chickpea germplasm. Phytopathologia Mediterranea, 2013, 52(1): 183-191.
[24]
HAUSE R J, PRITCHARD C C, SHENDURE J, SALIPANTE S J. Classification and characterization of microsatellite instability across 18 cancer types. Nature Medicine, 2016, 22(11): 1342-1350.

doi: 10.1038/nm.4191 pmid: 27694933
[25]
徐志军, 赵胜, 徐磊, 胡小文, 安东升, 刘洋. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发. 中国农业科学, 2020, 53(4): 695-706. doi: 10.3864/j.issn.0578-1752.2020.04.003.
XU Z J, ZHAO S, XU L, HU X W, AN D S, LIU Y. Discovery of microsatellite markers from RNA-seq data in cultivated peanut (Arachis hypogaea). Scientia Agricultura Sinica, 2020, 53(4): 695-706. doi: 10.3864/j.issn.0578-1752.2020.04.003. (in Chinese)
[26]
BHATTARAI G, SHI A N, KANDEL D R, SOLÍS-GRACIA N, DA SILVA J A, AVILA C A. Genome-wide simple sequence repeats (SSR) markers discovered from whole-genome sequence comparisons of multiple spinach accessions. Scientific Reports, 2021, 11(1): 14381.

doi: 10.1038/s41598-021-93849-7
[27]
易敏, 张露, 雷蕾, 程子珊, 孙世武, 赖猛. 湿地松转录组SSR分析及EST-SSR标记开发. 南京林业大学学报(自然科学版), 2020, 44(2): 75-83.
YI M, ZHANG L, LEI L, CHENG Z S, SUN S W, LAI M. Analysis of SSR information in transcriptome and development of EST-SSR molecular markers in Pinus elliottii Engelm. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(2): 75-83. (in Chinese)
[28]
李新凤, 王建明, 姜晓东, 郝晓娟, 张祖维, 田宏先. 拟轮枝镰孢菌EST-SSR信息分析与标记开发. 植物保护学报, 2018, 45(4): 819-826.
LI X F, WANG J M, JIANG X D, HAO X J, ZHANG Z W, TIAN H X. EST-SSR information analysis and marker development for genetic diversity analysis of Fusarium verticillioides. Journal of Plant Protection, 2018, 45(4): 819-826. (in Chinese)
[29]
XIAO N Y, WANG H B, YAO W, ZHANG M Q, MING R, ZHANG J S. Development and evaluation of SSR markers based on large scale full-length transcriptome sequencing in sugarcane. Tropical Plant Biology, 2020, 13(4): 343-352.

doi: 10.1007/s12042-020-09260-5
[30]
YAMASHITA K, KAWASAKI A, MATSUSHITA T, FURUKAWA H, KONDO Y, OKIYAMA N, NAGAOKA S, SHIMADA K, SUGII S, KATAYAMA M, HIROHATA S, OKAMOTO A, CHIBA N, SUEMATSU E, SETOGUCHI K, MIGITA K, SUMIDA T, TOHMA S, HAMAGUCHI Y, HASEGAWA M, SATO S, KAWAGUCHI Y, TAKEHARA K, TSUCHIYA N. Association of functional (GA)n microsatellite polymorphism in the FLI1 gene with susceptibility to human systemic sclerosis. Rheumatology, 2020, 59: 3553-3562.

doi: 10.1093/rheumatology/keaa306
[31]
PAUL M J, WATSON A, GRIFFITHS C A. Trehalose 6-phosphate signalling and impact on crop yield. Biochemical Society Transactions, 2020, 48(5): 2127-2137.

doi: 10.1042/BST20200286 pmid: 33005918
[32]
DUAN E C, WANG Y H, LIU L L, ZHU J P, ZHONG M S, ZHANG H, LI S F, DING B X, ZHANG X, GUO X P, JIANG L, WAN J M. Pyrophosphate: Fructose-6-phosphate 1-phosphotransferase (PFP) regulates carbon metabolism during grain filling in rice. Plant Cell Reports, 2016, 35(6): 1321-1331.

doi: 10.1007/s00299-016-1964-4 pmid: 26993329
[33]
MALEK J A, MATHEW S, MATHEW L S, YOUNUSKUNJU S, MOHAMOUD Y A, SUHRE K. Deletion of beta-fructofuranosidase (invertase) genes is associated with sucrose content in Date Palm fruit. Plant Direct, 2020, 4(5).
[34]
GROF C P L, ALBERTSON P L, BURSLE J, PERROUX J M, BONNETT G D, MANNERS J M. Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Science, 2007, 47(4): 1530-1539.

doi: 10.2135/cropsci2006.12.0825
[35]
LIU F, HUANG N, WANG L, LING H, SUN T T, AHMAD W, MUHAMMAD K, GUO J X, XU L P, GAO S W, QUE Y X, SU Y C. A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Frontiers in Plant Science, 2018, 8: 2262.

doi: 10.3389/fpls.2017.02262
[36]
YU Z, JIA D Y, LIU T B. Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants, 2019, 8: 184.

doi: 10.3390/plants8060184
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[3] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[4] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[5] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[6] CHEN MinDong, WANG Bin, LIU JianTing, LI YongPing, BAI ChangHui, YE XinRu, QIU BoYin, WEN QingFang, ZHU HaiSheng. Screening Regulatory Genes Related to Luffa Fruit Length and Diameter Development Based on Transcriptome and WGCNA [J]. Scientia Agricultura Sinica, 2023, 56(22): 4506-4522.
[7] LU YanQing, LIN YanJin, WANG XianDa, LU XinKun. A Transcriptome Analysis Identifies Candidate Genes Related to Fruit Cracking in Pomelo Fruits [J]. Scientia Agricultura Sinica, 2023, 56(20): 4087-4101.
[8] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[9] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[10] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[11] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[12] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[13] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[14] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[15] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!