Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4506-4522.doi: 10.3864/j.issn.0578-1752.2023.22.012

• HORTICULTURE • Previous Articles     Next Articles

Screening Regulatory Genes Related to Luffa Fruit Length and Diameter Development Based on Transcriptome and WGCNA

CHEN MinDong(), WANG Bin, LIU JianTing, LI YongPing, BAI ChangHui, YE XinRu, QIU BoYin, WEN QingFang(), ZHU HaiSheng()   

  1. Fujian Key Laboratory of Vegetable Genetics and Breeding/Fujian Engineering Research Center for Vegetables/Crops Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013
  • Received:2023-04-10 Accepted:2023-09-05 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】 The aim of this study was to identify the co expression modules of luffa fruit length and diameter development and to screen key regulatory genes, so as to provide the theoretical basis for subsequent research on the molecular mechanism of fruit shape control in luffa. 【Method】 The luffa fruits in 9 fruit development stages (2 days before anthesis, and 0, 2, 4, 6, 8, 10, 15, and 20 days after anthesis) were applied as research materials. The fruit length and diameter of each stage were measured. The WGCNA method was used to jointly analyze transcriptome and fruit length and diameter data, to identify co-expressed gene modules of fruit length and diameter development, and to screen out key regulatory genes.【Result】A total of 14 co expression modules were identified by WGCNA, among which two modules (Turquoise and Lightpink4) were significantly correlated with fruit length and diameter (absolute value of correlation coefficient=0.9); Turquoise module was significantly positively correlated, while Lightpink4 module was significantly negatively correlated. KEGG enrichment analysis found that the Turquoise module was significantly enriched in endocytosis and phenylpropanoid biosynthesis pathways, which were closely related to fruit enlargement and growth regulation, and could be used as a key gene module for studying fruit length and diameter in luffa. According to the connectivity and functional annotation of genes in Turquoise module, ten key regulatory genes were screened, including xyloglucan endotransglucosylase/hydrolase gene XTH23, actin-depolymerizing factor gene ADF2, chaperone protein gene DnaJ10, expansin gene (EXPA1, EXPA4 and EXLA5), kinesin gene kinesin-13A, auxin response genes SAUR21, and Aux/IAA11. The RT-qPCR results showed that the expression levels of ten regulatory genes significantly increased after the fruit entered the rapid growth period (8 day after anthesis), with an increase of 2-50 times approximately. Through constructing a gene interaction network, it was found that some candidate genes interacted with the WRKY, bHLH, and HSF transcription factor families.【Conclusion】The Turquoise module, an important co expression module of luffa fruit length and diameter was obtained, and ten potential candidate genes for luffa fruit shape control were screened. It was found that luffa fruit length and diameter development regulation mainly involved the processes of cell wall reconstruction, cell development and differentiation, and auxin regulation.

Key words: transcriptome, WGCNA, Luffa cylindrica L., fruit length, fruit diameter, regulatory genes

Table 1

RT-qPCR Primers used in this study"

基因ID Gene ID 上游引物 Upstream primer(5'-3') 下游引物 Downstream primer(5'-3')
Maker00007620 GAACCAGCCGATGAGGAT TAGGACGCAGTGAAGGGA
Maker00033581 TGATTTCGACTTTGTTACTG TGAATCTGTCTTTGGAGC
Maker00000726 CAGATGGACGAGTTTGTG TCCCGAGTTCCTTAGCAG
Maker00000768 ATGCTCTTCCCAACGACA CCTGATTCCTCCCTGCTT
Maker00039481 TCGCAGCCAATCTTTCAG ACCGCCCACGTTTGTTAT
Maker00026031 GCCTTGGTTTCCTCTGTT TGTTCCATAGCCTTGACTG
Maker00009740 GCCCTCCGAACTACGCTCTT TGAACCTGATTCCTCCCTGT
Maker00024997 TTTCTTCAGTTCCGTCTATT TCTGCAACCCTTCTACCC
Maker00001372 TTTCAAGGACCTGCTAAG ATAGTCAAGCCTCCCATA
Maker00038241 GCGATTCCGCACGCAAGA TCCACGAAGCGACGACGAG
18sRNA GCTTGGGTGCTCGACAAACT TCCACAGAGCAATGTCAATGG

Fig. 1

Changes in fruit morphology during the development of luffa -2DAA: 2th day before anthesis; 0, 2, 4, 6, 8, 10, 15, 20 DAA: 0, 2th, 4th, 6th, 8th, 10th, 15th, 20th day after anthesis. The same as below"

Fig. 2

Dynamic changes in fruit length and diameter during the development of luffa ***indicate extremely significant correlation (P<0.001)"

Fig. 3

Gene number of each module"

Fig. 4

Correlation analysis between modules and traits The abscissa represents different trait, and the ordinate represents different modules. Each group of data represents the R value of the correlation coefficient between the module and the phenotype and the significance P value (in parentheses). Red means the positive correlation between module and trait, red means the negative correlation between module and trait"

Fig. 5

KEGG enrichment analysis of Lightpink4 (A) and Turquoise (B) gene co expression modules"

Fig. 6

Analysis of gene expression trends in Turquoise module The number in the box denoting the P-value"

Table 2

Candidate genes for regulating the development of fruit length and diameter in luffa"

基因名
Gene ID
染色体
Chromosome
基因功能描述
Gene description
基因连通性在Turquoise模块的排名
Gene connectivity in turquoise
module ranking
Maker00007620 2 木葡聚糖内转葡糖基酶/水解酶23
Xyloglucan endotransglucosylase/hydrolase protein 23 (XTH23)
1
Maker00033581 5 肌动蛋白解聚因子2 Actin-depolymerizing factor 2 (ADF2) 4
Maker00000726 8 伴侣蛋白DnaJ10 Chaperone protein DnaJ10 (DnaJ10) 7
Maker00026031 7 扩展蛋白A1 Expansin-A1 (EXPA1) 50
Maker00009740 7 扩展蛋白A4 Expansin-A4 (EXPA4) 155
Maker00024997 12 驱动蛋白13A Kinesin-13A (Kinesin-13A) 266
Maker00000768 8 扩展蛋白A4 Expansin-A4 (EXPA4) 351
Maker00039481 10 类扩展蛋白A5 Expansin-like-A5 (EXLA5) 373
Maker00001372 8 生长素反应蛋白SAUR21 Auxin-responsive protein SAUR21 (SAUR21) 416
Maker00038241 12 生长素反应蛋白IAA11 Auxin-responsive protein IAA11 (AUX/IAA11) 453

Fig. 7

RT-qPCR and RNA seq results of 10 regulatory genes"

Fig. 8

Interaction network of 10 regulatory genes The color of the line in the figure represents the type of correlation between regulatory genes and associated genes.Red represents positive correlation and blue represents negative correlation; The thickness of the line represents the magnitude of the correlation value. The regulatory genes and their associated transcription factors are highlighted in yellow"

[1]
李佳欣, 冯玉. 丝瓜不同部位药理作用研究进展. 食品工业科技, 2021, 42(10): 355-361.
LI J X, FENG Y. Research progress on pharmacological action of different parts of Luffa cylindrica (L.) Roem. Science and Technology of Food Industry, 2021, 42(10): 355-361. (in Chinese)
[2]
OBOH I O, ALUYOR E O. Luffa cylindrica-an emerging cash crop. African Journal of Agricultural Research, 2009, 4(8): 684-688.
[3]
王青青, 王天文, 高安辉. 丝瓜种质资源与育种研究进展. 现代园艺, 2019(21): 33-35.
WANG Q Q, WANG T W, GAO A H. Research progress on germplasm resources and breeding of luffa. Xiandai Horticulture, 2019(21): 33-35. (in Chinese)
[4]
李大忠, 朱海生, 康玉妹, 温庆放, 李永平, 康建坂. 普通丝瓜新品种‘福研1号’选育. 亚热带植物科学, 2016, 45(1): 87-89.
LI D Z, ZHU H S, KANG Y M, WEN Q F, LI Y P, KANG J B. Breeding of a new sponge gourd cultivar ‘Fuyan 1’. Subtropical Plant Science, 2016, 45(1): 87-89. (in Chinese)
[5]
林奕韩, 陈捷凯, 林爱惜. 丝瓜新品种双丰1号肉丝瓜的选育. 广东农业科学, 2010, 37(7): 46-47.
LIN Y H, CHEN J K, LIN A X. Breeding of a new luffa variety Shuangfeng No.1 meat luffa. Guangdong Agricultural Sciences, 2010, 37(7): 46-47. (in Chinese)
[6]
王安乐, 朱海泉, 邓稳桥, 张望隆. 丝瓜新品种早优3号的选育. 中国蔬菜, 2007(11): 27-28.
WANG A L, ZHU H Q, DENG W Q, ZHANG W L. A new sponge gourd F1 hybrid - ‘Zaoyou No. 3’. China Vegetables, 2007(11): 27-28. (in Chinese)
[7]
高军, 徐海, 苏小俊, 袁希汉. 普通丝瓜果长遗传规律分析. 江苏农业科学, 2007, 35(5): 123-125.
GAO J, XU H, SU X J, YUAN X H. Analysis on genetic rule of fruit length in luffa. Jiangsu Agricultural Sciences, 2007, 35(5): 123-125. (in Chinese)
[8]
林明宝, 林师森. 有棱丝瓜果长遗传效应的初步研究. 华南农业大学学报, 2000, 21(2): 8-9, 24.
LIN M B, LIN S S. Prelimary study on the heredity of fruit length of angular sponge gourd. Journal of South China Agricultural University, 2000, 21(2): 8-9, 24. (in Chinese)
[9]
苏小俊, 徐海, 高军, 郑子松, 宋波, 陈龙正, 袁希汉, 陈劲枫. 普通丝瓜果实性状的遗传分析. 江苏农业学报, 2009, 25(5)1112-1118.
SU X J, XU H, GAO J, ZHENG Z S, SONG B, CHEN L Z, YUAN X H, CHEN J F. Genetic analysis on fruit characters of luffa. Jiangsu Journal of Agricultural Sciences, 2009, 25(5)1112-1118. (in Chinese)
[10]
崔竣杰, 程蛟文, 谭澍, 李卫鹏, 汪国平, 胡开林. 丝瓜果长及果柄长的遗传规律分析. 广东农业科学, 2014, 41(8): 52-56.
CUI J J, CHENG J W, TAN S, LI W P, WANG G P, HU K L. Genetic analysis of fruit length and fruit stalk length in luffa. Guangdong Agricultural Sciences, 2014, 41(8): 52-56. (in Chinese)
[11]
崔竣杰, 吕振, 杨天文, 王静, 洪宇, 曹毅. 丝瓜高密度bin标记遗传图谱构建与果长QTL定位. 浙江农业学报, 2023, 35(3): 590-597.

doi: 10.3969/j.issn.1004-1524.2023.03.12
CUI J J, Z, YANG T W, WANG J, HONG Y, CAO Y. Construction of high-density bin marker genetic map and QTL mapping for fruit length in Luffa spp. Acta Agriculturae Zhejiangensis, 2023, 35(3): 590-597. (in Chinese)
[12]
曾美娟, 刘建汀, 李祖亮, 陈敏氡, 叶新如, 王彬, 朱海生, 温庆放. 普通丝瓜GH3基因家族全基因组鉴定及表达分析. 江苏农业科学, 2022, 50(18): 82-87.
ZENG M J, LIU J T, LI Z L, CHEN M D, YE X R, WANG B, ZHU H S, WEN Q F. Genome-wide identification and expression analysis of GH3 gene family in Luffa cylindrica. Jiangsu Agricultural Sciences, 2022, 50(18): 82-87. (in Chinese)
[13]
曾美娟, 陈敏氡, 刘建汀, 叶新如, 王彬, 林锦辉, 朱海生, 温庆放. 普通丝瓜LcSUN1基因的克隆及表达分析. 中国细胞生物学学报, 2022, 44(6): 1031-1038.
ZENG M J, CHEN M D, LIU J T, YE X R, WANG B, LIN J H, ZHU H S, WEN Q F. Cloning and expression analysis of LcSUN1 gene from Luffa cylindrica. Chinese Journal of Cell Biology, 2022, 44(6): 1031-1038. (in Chinese)
[14]
ZHANG B, HORVATH S. A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 2005, 4: 17.

pmid: 16646834
[15]
冯贵芝. 基于时空转录组的脐橙果实发育和成熟调控机理的研究[D]. 武汉: 华中农业大学, 2021.
FENG G Z. Study on the regulation mechanism of navel orange fruit development and ripening based on spatio-temporal transcriptome[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese)
[16]
李情. 黄瓜果实早期发育中基因的时空表达与调控[D]. 北京: 中国农业科学院, 2019.
LI Q. Temporal and spatial expression and regulation of genes in early development of cucumber fruit[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[17]
孙蕾. 西瓜中心果肉硬度主效QTL及候选基因分析[D]. 哈尔滨: 东北农业大学, 2021.
SUN L. Analysis of major QTL and candidate genes for firmness of watermelon central pulp[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
[18]
TRAPNELL C, ROBERTS A, GOFF L, PERTEA G, KIM D, KELLEY D R, PIMENTEL H, SALZBERG S L, RINN J L, PACHTER L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 2012, 7(3): 562-578.

doi: 10.1038/nprot.2012.016 pmid: 22383036
[19]
LANGFELDER P, HORVATH S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9: 559.

doi: 10.1186/1471-2105-9-559 pmid: 19114008
[20]
马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块. 作物学报, 2020, 46(3): 385-394.

doi: 10.3724/SP.J.1006.2020.93021
MA J, CAO Y Y, WANG L F, LI J J, WANG H, FAN Y P, LI H Y. Identification of gene co-expression modules of maize plant height and ear height by WGCNA. Acta Agronomica Sinica, 2020, 46(3): 385-394. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93021
[21]
周雨青, 杨永飞, 葛常伟, 沈倩, 张思平, 刘绍东, 马慧娟, 陈静, 刘瑞华, 李士丛, 赵新华, 李存东, 庞朝友. 基于WGCNA的棉花子叶抗冷相关共表达模块鉴定. 中国农业科技导报, 2022, 24(4): 52-62.

doi: 10.13304/j.nykjdb.2020.0783
ZHOU Y Q, YANG Y F, GE C W, SHEN Q, ZHANG S P, LIU S D, MA H J, CHEN J, LIU R H, LI S C, ZHAO X H, LI C D, PANG C Y. Identification of cold-related co-expression modules in cotton cotyledon by WGCNA. Journal of Agricultural Science and Technology, 2022, 24(4): 52-62. (in Chinese)

doi: 10.13304/j.nykjdb.2020.0783
[22]
王泽涵, 于文涛, 王鹏杰, 刘财国, 樊晓静, 谷梦雅, 蔡春平, 王攀, 叶乃兴. 茶树秃房与茸房种质花器官差异表达基因的WGCNA分析. 园艺学报, 2023, 50(3): 620-634.

doi: 10.16420/j.issn.0513-353x.2021-1189
WANG Z H, YU W T, WANG P J, LIU C G, FAN X J, GU M Y, CAI C P, WANG P, YE N X. WGCNA analysis of differentially expressed genes in floral organs of tea germplasms with ovary-glabrous and ovary-trichome. Acta Horticulturae Sinica, 2023, 50(3): 620-634. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2021-1189
[23]
郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块. 中国农业科学, 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022.01.013.
GUO Y C, WANG P J, JIN S, HOU B H, WANG S Y, ZHAO F, YE N X. Identification of co-expression gene related to tea plant response to glyphosate based on WGCNA. Scientia Agricultura Sinica, 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022.01.013. (in Chinese)
[24]
ERNST J, BAR-JOSEPH Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7(1): 191.

doi: 10.1186/1471-2105-7-191
[25]
荐红举, 张梅花, 尚丽娜, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 利用WGCNA筛选马铃薯块茎发育候选基因. 作物学报, 2022, 48(7): 1658-1668.

doi: 10.3724/SP.J.1006.2022.14115
JIAN H J, ZHANG M H, SHANG L N, WANG J C, HU B G, KHASSANOV V, D Q. Screening candidate genes involved in potato tuber development using WGCNA. Acta Agronomica Sinica, 2022, 48(7): 1658-1668. (in Chinese)
[26]
朱海生, 陈敏氡, 温庆放, 蓝新隆, 李永平, 王彬, 张前荣, 吴卫东. 丝瓜18S rRNA基因克隆及其作为内参基因的应用. 核农学报, 2016, 30(1): 35-41.

doi: 10.11869/j.issn.100-8551.2016.01.0035
ZHU H S, CHEN M D, WEN Q F, LAN X L, LI Y P, WANG B, ZHANG Q R, WU W D. Cloning of 18S rRNA gene from Luffa cylindrical and its application as an internal standard. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 35-41. (in Chinese)
[27]
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.

doi: 10.1006/meth.2001.1262
[28]
施一公. 剪接体的结构与分子机理研究. 科学通报, 2020, 65(27): 2952-2953.
SHI Y G. Structural and mechanistic investigations of the spliceosome. Chinese Science Bulletin, 2020, 65(27): 2952-2953. (in Chinese)
[29]
HEINTZ C, DOKTOR T K, LANJUIN A, ESCOUBAS C, ZHANG Y, WEIR H J, DUTTA S, SILVA-GARCÍA C G, BRUUN G H, MORANTTE I, HOXHAJ G, MANNING B D, ANDRESEN B S, MAIR W B. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans. Nature, 2017, 541(7635): 102-106.

doi: 10.1038/nature20789
[30]
DÜNSER K, SCHÖLLER M, RÖßLING A K, LÖFKE C, XIAO N N, PAŘÍZKOVÁ B, MELNIK S, RODRIGUEZ-FRANCO M, STÖGER E, NOVÁK O, KLEINE-VEHN J. Endocytic trafficking promotes vacuolar enlargements for fast cell expansion rates in plants. eLife, 2022, 11: e75945.

doi: 10.7554/eLife.75945
[31]
于明革, 杨洪强, 翟衡. 植物木质素及其生理学功能. 山东农业大学学报(自然科学版), 2003, 34(1): 124-128.
YU M G, YANG H Q, ZHAI H. Lignin and physiological function in plant. Journal of Shandong Agricultural University (Natural Science Edition), 2003, 34(1): 124-128. (in Chinese)
[32]
肖玫, 赵旭琴, 许迎科, 李汉兵. 磷脂酰肌醇信号在GLUT4囊泡转运中的调控作用. 中国细胞生物学学报, 2018, 40(1): 139-145.
XIAO M, ZHAO X Q, XU Y K, LI H B. The regulatory role of phosphatidylinositol signaling in GLUT4 vesicle trafficking. Chinese Journal of Cell Biology, 2018, 40(1): 139-145. (in Chinese)
[33]
张载励, 丁晨, 王爽, 梁明朗, 李涛, 苏来曼·买买提, 胡康棣. 番茄、拟南芥和葡萄中同型半胱氨酸S-甲基转移酶基因家族功能研究. 现代农业科技, 2023(3): 66-71.
ZHANG Z L, DING C, WANG S, LIANG M L, LI T, SULAIMAN MAIAITI, HU K D. Study on function of homocysteine S-methyltransferase gene family in tomato, Arabidopsis thaliana and grape. Modern Agricultural Science and Technology, 2023(3): 66-71. (in Chinese)
[34]
何乐平, 张蕾. 植物钙依赖性蛋白激酶及其相关蛋白激酶(CDPKs/CRKs)的研究进展. 安徽农业科学, 2020, 48(18): 26-30, 51.
HE L P, ZHANG L. Research progress of plant calcium-dependent protein kinases(CDPKs) and CDPK-related kinases(CRKs). Journal of Anhui Agricultural Sciences, 2020, 48(18): 26-30, 51. (in Chinese)
[35]
贾鑫磊, 何贝轩, 郭丹丹, 郭美丽. 膨胀素和木葡聚糖内转葡糖基酶/水解酶基因的功能研究进展. 植物生理学报, 2018, 54(11): 1659-1668.
JIA X L, HE B X, GUO D D, GUO M L. Research progress in the function of expansins and xyloglucan endotransglucosylase/hydrolase. China Industrial Economics, 2018, 54(11): 1659-1668. (in Chinese)
[36]
王楠, 吕香玲, 李亮, 吴金凤, 尚佳微, 郝转芳, 李凤海. 植物肌动蛋白解聚因子ADF的研究进展. 西北植物学报, 2015, 35(11): 2349-2354.
WANG N, X L, LI L, WU J F, SHANG J W, HAO Z F, LI F H. Research progress of ADF/cofilin in plant. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(11): 2349-2354. (in Chinese)
[37]
樊芳菲, 杨暹, 康云艳, 柴喜荣, 蒙林平. 植物DnaJ蛋白的研究进展. 分子植物育种, 2018, 16(6): 2028-2034.
FAN F F, YANG X, KANG Y Y, CHAI X R, MENG L P. Research progress on DnaJ proteins in plants. Molecular Plant Breeding, 2018, 16(6): 2028-2034. (in Chinese)
[38]
YAN L, XU C H, KANG Y L, GU T W, WANG D X, ZHAO S Y, XIA G M. The heterologous expression in Arabidopsis thaliana of sorghum transcription factor SbbHLH1 downregulates lignin synthesis. Journal of Experimental Botany, 2013, 64(10): 3021-3032.

doi: 10.1093/jxb/ert150
[39]
WANG H Z, AVCI U, NAKASHIMA J, HAHN M G, CHEN F, DIXON R A. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22338-22343.
[40]
王依依. 杨树、葡萄、拟南芥和水稻WRKY Ⅲ基因家族比较及表达分析[D]. 合肥: 安徽农业大学, 2016.
WANG Y Y. Comparison and expression analysis of WRKY Ⅲ gene family in poplar, grape, Arabidopsis and rice[D]. Hefei: Anhui Agricultural University, 2016. (in Chinese)
[41]
HAMEED SABA. 西瓜热激转录因子家族基因的鉴定及其在果实发育过程中的表达分析[D]. 武汉: 华中农业大学, 2019.
HAMEED S. Identification of heat shock transcription factor family genes in watermelon and their expression analysis during fruit development[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[42]
王华容. 番茄热激转录因子SlHSFC1过表达导致转基因植株矮化的机理研究[D]. 重庆: 西南大学, 2023.
WANG H R. Study on the mechanism of dwarfing transgenic plants caused by overexpression of tomato heat shock transcription factor SlHSFC1[D]. Chongqing: Southwest University, 2023. (in Chinese)
[43]
WANG R C, SHU P, ZHANG C, ZHANG J L, CHEN Y, ZHANG Y X, DU K, XIE Y, LI M Z, MA T, ZHANG Y, LI Z G, GRIERSON D, PIRRELLO J, CHEN K S, BOUZAYEN M, ZHANG B, LIU M C. Integrative analyses of metabolome and genome-wide transcriptome reveal the regulatory network governing flavor formation in kiwifruit (Actinidia chinensis). The New Phytologist, 2022, 233(1): 373-389.

doi: 10.1111/nph.v233.1
[44]
CHEN L, TIAN N, HU M Q, SANDHU D, JIN Q F, GU M Y, ZHANG X Q, PENG Y, ZHANG J L, CHEN Z Y, LIU G Z, HUANG M D, HUANG J N, LIU Z H, LIU S Q. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant (Camellia sinensis). Frontiers in Plant Science, 2022, 13: 997778.

doi: 10.3389/fpls.2022.997778
[45]
CHEN Z Y, LIAO M L, YANG Z J, CHEN W Y, WEI S H, ZOU J, PENG Z S. Co-expression network analysis of genes and networks associated with wheat pistillody. PeerJ, 2022, 10: e13902.

doi: 10.7717/peerj.13902
[46]
晏巢, 姚小华, 殷恒福, 王开良, 尹润富, 滕建华. 油茶果实生长发育动态和木质素积累规律. 江西农业大学学报, 2020, 42(4): 788-801.
YAN C, YAO X H, YIN H F, WANG K L, YIN R F, TENG J H. Fruit development dynamics and lignin accumulation law of oil tea. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2020, 42(4): 788-801. (in Chinese)
[47]
朱海英, 李人圭, 王隆华, 黄祥辉, 颜季琼. 丝瓜果实发育中木质素代谢及有关导管分化的生理生化研究. 华东师范大学学报(自然科学版), 1997(1): 87-94.
ZHU H Y, LI R G, WANG L H, HUANG X H, YAN J Q. Physiological and biochcmical studies on lignin mctabolism and its treachary element differentiation of fruit of Luffa cylindrica. Journal of East China Normal University (Natural Science), 1997(1): 87-94. (in Chinese)
[48]
陈敏氡, 王彬, 朱海生, 李永平, 刘建汀, 温庆放. 丝瓜果实发育过程的蛋白质差异表达分析. 中国细胞生物学学报, 2018, 40(11): 1806-1818.
CHEN M D, WANG B, ZHU H S, LI Y P, LIU J T, WEN Q F. Proteomic analysis of differentially expressed proteins in Luffa cylindrica during fruit development. China Industrial Economics, 2018, 40(11): 1806-1818. (in Chinese)
[49]
彭佳伟, 张叶, 寇单单, 杨丽, 刘晓飞, 张学英, 陈海江, 田义. ‘仓方早生’桃及其早熟芽变不同发育时期果实的转录组分析. 中国农业科学, 2023, 56(5): 964-980. doi:10.3864/j.issn.0578-1752.2023.05.012.
PENG J W, ZHANG Y, KOU D D, YANG L, LIU X F, ZHANG X Y, CHEN H J, TIAN Y. Transcriptome analysis of peach fruits at different developmental stages in peach kurakato wase and early-ripening mutant. Scientia Agricultura Sinica, 2023, 56(5): 964-980. doi:10.3864/j.issn.0578-1752.2023.05.012. (in Chinese)
[50]
杜丽萍, 沈昕, 陈少良, 胡赞民. 细胞壁重构关键酶木葡聚糖内转糖苷酶/水解酶(XTH)的研究进展. 农业生物技术学报, 2010, 18(3): 604-609.
DU L P, SHEN X, CHEN S L, HU Z M. Research advances on a key cell wall remodeling enzyme xyloglucan endotransglucosylase/ hydrolase(XTH). Journal of Agricultural Biotechnology, 2010, 18(3): 604-609. (in Chinese)
[51]
傅丰庆. 黄瓜果实发育调控的分子机理研究[D]. 杭州: 浙江大学, 2008.
FU F Q. Study on molecular mechanism of cucumber fruit development regulation[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
[52]
TSUCHIYA M, SATOH S, IWAI H. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum). Frontiers in Plant Science, 2015, 6: 323.

doi: 10.3389/fpls.2015.00323 pmid: 26029225
[53]
HAN Y, ZHU Q G, ZHANG Z K, MENG K, HOU Y L, BAN Q Y, SUO J T, RAO J P. Analysis of xyloglucan endotransglycosylase/ hydrolase (XTH) genes and diverse roles of isoenzymes during persimmon fruit development and postharvest softening. PLoS ONE, 2015, 10(4): e0123668.

doi: 10.1371/journal.pone.0123668
[54]
ZHAI Z F, FENG C, WANG Y Y, SUN Y T, PENG X, XIAO Y Q, ZHANG X, ZHOU X, JIAO J L, WANG W L, DU B Y, WANG C, LIU Y, LI T H. Genome-wide identification of the xyloglucan endotransglucosylase/hydrolase (XTH) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. International Journal of Molecular Sciences, 2021, 22(22): 12331.

doi: 10.3390/ijms222212331
[55]
LI L, LI Y X, SONG S F, DENG H F, LI N, FU X Q, CHEN G H, YUAN L P. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta, 2015, 241(1): 157-166.

doi: 10.1007/s00425-014-2160-9 pmid: 25236969
[56]
彭世清, 黄冬芬. 拟南芥肌动蛋白解聚因子4基因(AtADF4)在烟草中表达引起植株形态变化. 植物生理与分子生物学学报, 2006, 32(1): 52-56.
PENG S Q, HUANG D F. Expression of an Arabidopsis actin- depolymerizing factor 4 gene (AtADF4) in tobacco causes morphological change of plants. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 52-56. (in Chinese)
[57]
陈义勇. 不同发育时期杨梅果肉差异表达蛋白及其功能研究[D]. 福州: 福建农林大学, 2014.
CHEN Y Y. Study on differentially expressed proteins in Myrica rubra pulp at different developmental stages and their functions[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[58]
QIAO D H, DONG Y B, ZHANG L, ZHOU Q, HU C H, REN Y L, LI Y L. Ectopic expression of the maize ZmADF3 gene in Arabidopsis revealing its functions in kernel development. Plant Cell, Tissue and Organ Culture, 2016, 126(2): 239-253.

doi: 10.1007/s11240-016-0994-5
[59]
郝西, 理向阳, 腊贵晓, 代丹丹, 杨铁钢. 黄瓜扩展蛋白基因家族的鉴定与生物信息学分析. 分子植物育种, 2015, 13(10): 2280-2289.
HAO X, LI X Y, LA G X, DAI D D, YANG T G. Identification and bioinformatic analysis of the expansin gene family in cucumber. Molecular Plant Breeding, 2015, 13(10): 2280-2289. (in Chinese)
[60]
刘昌. 甜瓜扩展蛋白基因家族成员的鉴定及CmEXPA8和CmEXPA12基因在果实发育中功能的初步分析[D]. 呼和浩特: 内蒙古大学, 2018.
LIU C. Identification of members of melon expansin gene family and preliminary analysis of the functions of CmEXPA8 and CmEXPA12 genes in fruit development[D]. Hohhot: Inner Mongolia University, 2018. (in Chinese)
[61]
张安, 曹清河, 周志林, 赵冬兰, 李昂, 李元元, 唐君. 植物细胞壁松弛因子: Expansin研究进展. 江苏农业科学, 2013, 41(6): 11-13.
ZHANG A, CAO Q H, ZHOU Z L, ZHAO D L, LI A, LI Y Y, TANG J. Research progress of plant cell wall relaxation factor-Expansin. Jiangsu Agricultural Sciences, 2013, 41(6): 11-13. (in Chinese)
[62]
YANG X Y, WANG Y, JIANG W J, LIU X L, ZHANG X M, YU H J, HUANG S W, LIU G Q. Characterization and expression profiling of cucumber kinesin genes during early fruit development: Revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. Journal of Experimental Botany, 2013, 64(14): 4541-4557.

doi: 10.1093/jxb/ert269 pmid: 24023249
[63]
TIAN S J, JIANG J, XU G Q, WANG T, LIU Q Y, CHEN X E, LIU M, YUAN L. Genome wide analysis of kinesin gene family in Citrullus lanatus reveals an essential role in early fruit development. BMC Plant Biology, 2021, 21(1): 210.

doi: 10.1186/s12870-021-02988-6
[64]
李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展. 植物学报, 2022, 57(1): 30-41.

doi: 10.11983/CBB21168
LI Y Y, QI Y H. Advances in biological functions of Aux/IAA gene family in plants. Bulletin of Botany, 2022, 57(1): 30-41. (in Chinese)
[65]
袁静贤. 生长素相关转录因子家族基因在西瓜果实膨大过程中的调控作用分析[D]. 武汉: 华中农业大学, 2015.
YUAN J X. Regulation of auxin-related transcription factor family genes in watermelon fruit expansion[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese)
[66]
于越, 陈海燕, 周龙, 郭冬雪, 宫思宇, 郝宁, 杜亚琳, 武涛. 黄瓜果实发育相关基因CsIAA29的克隆与表达分析. 华北农学报, 2020, 35(S1): 11-17.

doi: 10.7668/hbnxb.20190916
YU Y, CHEN H Y, ZHOU L, GUO D X, GONG S Y, HAO N, DU Y L, WU T. Cloning and expression analysis of CsIAA29 gene related to fruit development in cucumber. Acta Agriculturae Boreali-Sinica, 2020, 35(S1): 11-17. (in Chinese)
[67]
LUO C, YAN J Q, HE C X, LIU W R, XIE D S, JIANG B. Genome-wide identification of the SAUR gene family in wax gourd (Benincasa hispida) and functional characterization of BhSAUR60 during fruit development. International Journal of Molecular Sciences, 2022, 23(22): 14021.

doi: 10.3390/ijms232214021
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] LI Hui, ZHANG YuFeng, LI XiaoGang, WANG ZhongHua, LIN Jing, CHANG YouHong. Identification of Salt-Tolerant Transcription Factors in the Roots of Pyrus betulaefolia by the Association Analysis of Genome-Wide DNA Methylation and Transcriptome [J]. Scientia Agricultura Sinica, 2023, 56(7): 1377-1390.
[3] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[4] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[5] WANG JianFeng, CHENG JiaXin, SHU WeiXue, ZHANG YanRu, WANG XiaoJie, KANG ZhenSheng, TANG ChunLei. Functional Analysis of Effector Hasp83 in the Pathogenicity of Puccinia striiformis f. sp. tritici [J]. Scientia Agricultura Sinica, 2023, 56(5): 866-878.
[6] PENG JiaWei, ZHANG Ye, KOU DanDan, YANG Li, LIU XiaoFei, ZHANG XueYing, CHEN HaiJiang, TIAN Yi. Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant [J]. Scientia Agricultura Sinica, 2023, 56(5): 964-980.
[7] YI ZeHui, ZHAO Jing, MAO LiPing. Development and Transferability of EST-SSR Markers Based on Transcriptome Data from Asparagus officinalis [J]. Scientia Agricultura Sinica, 2023, 56(22): 4490-4505.
[8] LU YanQing, LIN YanJin, WANG XianDa, LU XinKun. A Transcriptome Analysis Identifies Candidate Genes Related to Fruit Cracking in Pomelo Fruits [J]. Scientia Agricultura Sinica, 2023, 56(20): 4087-4101.
[9] ZHANG Xin, YANG XingYu, ZHANG ChaoRan, ZHANG Chong, ZHENG HaiXia, ZHANG XianHong. Identification and Expression Analysis of Heat Shock Protein Superfamily Genes in Callosobruchus chinensis [J]. Scientia Agricultura Sinica, 2023, 56(19): 3814-3828.
[10] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[11] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[12] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[13] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[14] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[15] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!