Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (17): 3380-3394.doi: 10.3864/j.issn.0578-1752.2022.17.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Thought of Pollution Comprehensive Prevention and Control System of Non-Point Sources Based on National Food Security

YANG ShiQi()   

  1. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2021-07-21 Accepted:2021-11-02 Online:2022-09-01 Published:2022-09-07

Abstract:

【Objective】 In this study, in view of food security (FS) in China, the situation of non-point source pollution (NPS) was clearly showed, and NPS technical system and NPS comprehensive prevention and control system were proposed. 【Method】 The grain production and fertilizer application among main nations were compared, including total grain output and fertilizer application, per capita grain and per hectare fertilizer application, ration of fertilizer application and grain productive capacity. Meanwhile, the ration of nitrogen fertilizer and it’s judgment and ration of nitrogen fertilizer based on provincial scale were analyzed, and NPS reduction effects according to two national pollution censuses, trends of NPS reduction in China were deeply investigated, including total amounts and it’s proportion, NPS reduction potential (stockbreeding, plantation, nitrogen reduction and food saving). Based on FS the NPS technical system was constructed, and NPS comprehensive prevention and control system was proposed. 【Result】 (1) The per capita grain was more than 400 kg in 2008, more than 450.0 kg in 2012 and 475.0 kg in 2019 in China, indicating a higher FS created a key safeguard for NPS. (2) The ration of nitrogen application was not high and decreased on national scale, which was 161.1 kg·hm-2 in 2019 and lay low side of reasonable range. The excessive and inadequate application should be paid attention. (3) At the national scale, the ration of nitrogen fertilizer application 160.0-170.0 kg·hm-2 could safeguard per capita grain 450.0-500.0 kg in the future. (4) NPS reduction scheme: firstly, the dung should be all returned to field, and the pollutant emission should be close to zero, and the Ⅴ class water from NPS should be basically eliminated. Secondly, TN and TP emission from plantation should be reduced to 4.0×105-4.5×105 t and 4.0×104-5.0×104 t, respectively. Thirdly, the saving food and decreasing food waste could create the favorable condition for field fertilizer, emission and stress reduction, rehabilitation and FS. The key elements of NPS technical system based on FS were suitable fertilizer application, soil conservation and crop production, and a good and harmonious system should set up by agricultural machinery, farmland irrigation and water conservancy, clean stockbreeding, intelligence techniques, standards, laws and regulations to form farming system with local and watershed characters, then which had an extensive application. 【Conclusion】 NPS comprehensive prevention and control system was composed of scientists, agricultural producers and government to form the trinity, which should motivate scientist initiative, agricultural producer enthusiasm and government functions to carry out the double security of national food and environment in China in the future.

Key words: food security, non-point source pollution, comprehensive prevention and control system, technical system, national scale

Fig. 1

Grain output and fertilizer application rate in China (1978-2019) Data resource: References[10⇓⇓-13]"

Fig. 2

Chemical fertilizer, nitrogen, phosphorus and potassium fertilizer application rate and grain per capita(1978-2019) Data resource: References[10⇓⇓-13]"

Fig. 3

Comparision of fertilizer productive efficiency of some main countries (2016) Data resource: References[14]"

Table 1

Grades and its meaning for nitrogen and phosphorus fertilizer application rate based on food security and environment security"

Ⅰ区 Grade Ⅰ Ⅱ区 Grade Ⅱ Ⅲ区 Grade Ⅲ Ⅳ区 Grade Ⅳ
氮肥施用量 (N)
Nitrogen fertilizer application rate
<150.0 kg·hm-2 150.0—180.0 kg·hm-2 180.0—250.0 kg·hm-2 >250.0 kg·hm-2
环境风险
Environment risk

Risk free
可接受、可忽略
Acceptable and ignorable
可接受、轻微影响
Acceptable and slight effects
接受度低,需防治
Low acceptable and need control
产量风险
Output risk

At risk

Risk free

Risk free

Risk free
人均粮食占有量
Grain per capita
<400.0 kg 450.0—500.0 kg 500.0—550.0 kg 550.0—600.0 kg
磷肥施用量(P2O5) Phosphorus fertilizer application rate <80.0 kg·hm-2 80.0—100.0 kg·hm-2 100.0—150.0 kg·hm-2 >150.0 kg·hm-2
环境风险
Environment risk

Risk free
可接受、可忽略
Acceptable and ignorable
可接受、轻微影响
Acceptable and slight effects
接受度低,需防治
Low acceptable and need control
产量风险
Output risk

At risk

Risk free

Risk free

Risk free
人均粮食占有量
Grain per capita
<400.0 kg 450.0—500.0 kg 500.0—550.0 kg 550.0—600.0 kg
含义
Meaning
环境安全但粮食风险
Environment security and
food risk
粮食安全与环境安全
Food and environment
security
粮食安全与环境安全
Food and environment
security
粮食安全但环境风险
Food security and environment risk

Table 2

Nitrogen and phosphorus fertilizer application rate, nitrogen, phosphorus fertilizer productive efficiency and risk of NPS on provincial scale"

区域
Region
省(市、区)
Province
氮肥施用量
Nitrogen fertilizer application rate (kg·hm-2)
磷肥施用量
Phosphorus fertilizer application rate (kg·hm-2)
氮肥生产效率
Nitrogen fertilizer productive efficiency
磷肥生产效率
Phosphorus fertilizer productive efficiency
肥料生产效率
Fertilizer productive efficiency
面源污染风险
Risk of NPS
全国 China 161.1 85.9 24.8 46.6 12.3 总体安全,局部风险
Security in general and risk in local
华北地区
North
China
北京Beijing 372.5 158.0 8.7 20.6 4.6 ++
天津Tianjin 192.5 109.7 28.3 49.6 13.8 ++OOO
河北Hebei 190.5 88.3 24.1 52.1 12.6 OO
山西Shanxi 127.6 92.4 30.3 41.8 12.6 O+OOO
内蒙古Neimenggu 123.3 72.6 33.3 56.6 16.7 OOOOO
东北地区
Northeast China
辽宁Liaoning 175.2 76.3 32.9 75.5 17.4 +OOOO
吉林Jilin 171.4 93.9 37.0 67.5 17.1 ++OOO
黑龙江Heilongjiang 66.5 46.9 76.4 108.3 33.6 OOOOO
华东地区
East
China
上海Shanghai 165.8 62.5 22.1 58.7 12.8 +OO+O
江苏Jiangsu 232.5 86.3 21.4 57.7 12.9 OO
浙江Zhejiang 216.0 78.0 13.7 38.0 8.2 +O
安徽Anhui 159.8 89.4 28.9 51.6 13.6 OOOOO
福建Fujian 313.5 157.2 9.9 19.7 4.6 ++
江西Jiangxi 87.3 60.9 44.8 64.2 18.7 OOOOO
山东Shandong 171.6 97.3 28.6 50.4 13.6 ++OOO
华中地区
Middle
China
河南Henan 204.3 136.1 22.3 33.4 10.0 ++
湖北Hubei 176.4 97.4 19.8 35.8 9.9 ++
湖南Hunan 137.8 63.0 26.6 58.1 13.0 OOOOO
华南地区
South
China
广东Guangdong 251.4 114.0 11.3 25.0 5.5 ++
广西Guangxi 174.2 101.9 12.8 21.8 5.3 ++
海南Hainan 310.1 148.9 6.9 14.4 3.1 ++
西南地区Southwest China 重庆Chongqing 157.4 73.4 20.4 43.8 11.7 OO
四川Sichuan 128.1 64.1 28.2 56.3 15.7 OOOOO
贵州Guizhou 83.6 35.8 23.0 53.6 12.6 OO+OO
云南Yunnan 167.8 66.5 16.1 40.5 9.2 +O
西藏Xizang 83.5 54.0 45.8 70.8 21.6 OOOOO
西北地区Northwest China 陕西Shaanxi 260.4 107.9 11.4 27.6 6.1 ++
甘肃Gansu 105.7 62.1 28.7 48.8 14.4 OOOOO
青海Qinghai 61.4 32.5 31.0 58.6 17.0 OOOOO
宁夏Ningxia 185.3 79.5 17.5 40.7 9.7 +O
新疆Xinjiang 210.5 137.5 11.8 18.0 5.9 ++

Table 3

Comparison of agricultural pollutant discharge between 2007 and 2017"

污染源类型
Pollutant source
排放 Discharge
2007
(×104t)
2007年分项占比
Ratio of subitem in 2007 (%)
2017
(×104t)
2017年分项占比
Ratio of subitem in 2017(%)
2017年与2007年增减
Compare to 2007, increase or decrease ration in 2017(%)
COD排放量 COD discharge 3028.96 2143.98 -29.2
农业源Agriculture source 1324.09 43.7 1067.13 49.3 -19.4
养殖业Livestock 1268.26 95.8 1000.53 93.8 -21.1
水产养殖业Aquaculture 55.83 4.2 66.6 6.2 19.3
TN排放量 TN discharge 472.89 304.13 -35.7
农业源Agriculture source 270.46 57.2 141.49 46.5 -47.7
种植业Farming 159.78 59.1 71.95 50.9 -55.5
养殖业Livestock 102.48 37.9 59.63 42.149 -41.8
水产养殖业Aquaculture 8.21 3.0 9.91 7.009 20.7
TP排放量 TP discharge 42.32 31.54 -25.5
农业源Agriculture source 28.47 67.3 21.2 67.229 -25.5
种植业Farming 10.87 38.2 7.62 35.949 -29.9
养殖业Livestock 16.04 56.3 11.97 56.5 -25.4
水产养殖业Aquaculture 1.56 5.48 1.61 7.59 3.21

Fig. 4

NPS control technique system based on national grain security"

Fig. 5

NPS comprehensive prevention and control system in China"

[1] 韩长赋. 坚决扛稳国家粮食安全重任. 人民日报,2020-08-07.
HAN C F. Esolutely shoulder the responsibility of ensuring national food security. People’s Daily, 人民日报,2020-08-07. (in Chinese)
[2] 黄季焜. 中国粮食安全与农业发展:过去和未来. 中国农业综合开发, 2020(11): 8-10.
HUANG J K. China food security and agriculture development: The past and future. Agricultural Comprehensive Development in China, 2020(11): 8-10. (in Chinese)
[3] 杜鹰. 中国的粮食安全战略(上). 农村工作通讯, 2020(21): 35-38.
DU Y. China food security strategies (1). China Rural News, 2020(21): 35-38. (in Chinese)
[4] ONGLEY E D, ZHANG X L, YU T. Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution, 2010, 158(5): 1159-1168. doi: 10.1016/j.envpol.2009.10.047.
doi: 10.1016/j.envpol.2009.10.047
[5] 杨林章, 吴永红. 农业面源污染防控与水环境保护. 中国科学院院刊, 2018, 33(2): 168-176. doi: 10.16418/j.issn.1000-3045.2018.02.006.
doi: 10.16418/j.issn.1000-3045.2018.02.006
YANG L Z, WU Y H. Prevention and control of agricultural non-point source pollution and aquatic environmental protection. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 168-176. doi: 10.16418/j.issn.1000-3045.2018.02.006. (in Chinese)
doi: 10.16418/j.issn.1000-3045.2018.02.006
[6] BOUWMAN L, GOLDEWIJK K K, VAN DER HOEK K W, BEUSEN A H, VAN VUUREN D P, WILLEMS J, RUFINO M C, STEHFEST E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900-2050 period//Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(52): 20882-20887. doi: 10.1073/pnas.1012878108.
doi: 10.1073/pnas.1012878108
[7] 朱兆良, 孙波, 杨林章, 张林秀. 我国农业面源污染的控制政策和措施. 科技导报, 2005, 23(4): 47-51. doi: 10.3321/j.issn:1000-7857.2005.04.015.
doi: 10.3321/j.issn:1000-7857.2005.04.015
ZHU Z L, SUN B, YANG L Z, ZHANG L X. Policy and countermeasures to control non-point pollution of agriculture in China. Science & Technology Review, 2005, 23(4): 47-51. doi: 10.3321/j.issn:1000-7857.2005.04.015. (in Chinese)
doi: 10.3321/j.issn:1000-7857.2005.04.015
[8] 中华人民共和国环境保护部, 中华人民共和国国家统计局, 中华人民共和国农业农村部. 第一次全国污染源普查公报, 2010.
Ministry of Ecology and Environment of the People’s Republic of China, National Bureau of Statistics of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The 1st National Pollution Source Census Bulletin, 2010. (in Chinese)
[9] 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报, 2020.
Ministry of Ecology and Environment of the People’s Republic of China, National Bureau of Statistics of China, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. The 2nd National Pollution Source Census Bulletin, 2020. (in Chinese)
[10] 国家统计局. 中国统计年鉴1990. 北京: 中国统计出版社, 1990.
National Bureau of Statistics of China. China Statistical Yearbook 1990. Beijing: China Statistics Press, 1990. (in Chinese)
[11] 国家统计局. 中国统计年鉴2000. 北京: 中国统计出版社, 2000.
National Bureau of Statistics of China. China Statistical Yearbook 2000. Beijing: China Statistics Press, 2000. (in Chinese)
[12] 国家统计局. 中国统计年鉴2010. 北京: 中国统计出版社, 2010.
National Bureau of Statistics of China. China Statistical Yearbook 2010. Beijing: China Statistics Press, 2010. (in Chinese)
[13] 国家统计局. 中国统计年鉴2020. 北京: 中国统计出版社, 2020.
National Bureau of Statistics of China. China Statistical Yearbook 2020. Beijing: China Statistics Press, 2020. (in Chinese)
[14] 世界银行.(2020) .
World Bank.(2020) . (in Chinese)
[15] 朱兆良. 农田中氮肥的损失与对策. 土壤与环境, 2000, 9(1): 1-6. doi: 10.16258/j.cnki.1674-5906.2000.01.001.
doi: 10.16258/j.cnki.1674-5906.2000.01.001
ZHU Z L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil and Environmental Sciences, 2000, 9(1): 1-6. doi: 10.16258/j.cnki.1674-5906.2000.01.001. (in Chinese)
doi: 10.16258/j.cnki.1674-5906.2000.01.001
[16] 巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13. doi: 10.11766/trxb202006220322.
doi: 10.11766/trxb202006220322
JU X T, ZHANG C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. doi: 10.11766/trxb202006220322. (in Chinese)
doi: 10.11766/trxb202006220322
[17] CANTER L W. Nitrates in Groundwater. New York:CRC Press Inc. Lewis Publishers, 1997: 204.
[18] 巨晓棠, 谷保静. 氮素管理的指标. 土壤学报, 2017, 54(2): 281-296. doi: 10.11766/trxb201609150320.
doi: 10.11766/trxb201609150320
JU X T, GU B J. Indexes of nitrogen management. Acta Pedologica Sinica, 2017, 54(2): 281-296. doi: 10.11766/trxb201609150320. (in Chinese)
doi: 10.11766/trxb201609150320
[19] CUI Z L, CHEN X P, ZHANG F S. Development of regional nitrogen rate guidelines for intensive cropping systems in China. Agronomy Journal, 2013, 105(5): 1411-1416. doi: 10.2134/agronj2012.0398.
doi: 10.2134/agronj2012.0398
[20] OENEMA O, BRENTRUP F, LAMMEL J, BASCOU P, WINIWARTER W. Nitrogen Use Efficiency (NUE) - An Indicator for the Utilization of Nitrogen in Agriculture and Food Systems. Prepared by the EU Nitrogen Expert Panel. Wageningen: Wageningen University, 2015.
[21] HOFMAN G. Nutrient management legislation in European countries. Numalec Report, 1999:Concerted action, Fair6-CT98-4215.
[22] OENEMA O, VAN LIERE L, PLETTE S, PRINS T, VAN ZEIJTS H, SCHOUMANS O. Environmental effects of manure policy options in The Netherlands. Water Science and Technology, 2004, 49(3): 101-108. doi: 10.2166/wst.2004.0172.
doi: 10.2166/wst.2004.0172
[23] 刘宏斌, 李志宏, 张云贵, 张维理, 林葆. 北京市农田土壤硝态氮的分布与累积特征. 中国农业科学, 2004, 37(5): 692-698.
LIU H B, LI Z H, ZHANG Y G, ZHANG W L, LIN B. Characteristics of nitrate distribution and accumulation in soil profiles under main agro-land use types in Beijing. Scientia Agricultura Sinica, 2004, 37(5): 692-698. (in Chinese)
[24] 张维理, 武淑霞, 冀宏杰, Kolbe H. 中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计. 中国农业科学, 2004, 37(7): 1008-1017. doi: 10.3321/j.issn:0578-1752.2004.07.012.
doi: 10.3321/j.issn:0578-1752.2004.07.012
ZHANG W L, WU S X, JI H J, KOLBE H. Estimation of agricultural non-point source pollution in China and the alleviating strategies Ⅰ. Estimation of agricultural non-point source pollution in China in early 21 century. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017. doi: 10.3321/j.issn:0578-1752.2004.07.012. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2004.07.012
[25] 石生伟, 刘衎, 郭利娜, 任天婧, 李彤, 刘云, 段碧华, 李玉娥. 天津市设施菜地施肥现状及减施潜力和对策. 植物营养与肥料学报, 2020, 26(6): 1091-1105. doi: 10.11674/zwyf.19375.
doi: 10.11674/zwyf.19375
SHI S W, LIU K, GUO L N, REN T J, LI T, LIU Y, DUAN B H, LI Y E. Fertilization status-quo in greenhouse vegetable production in Tianjin and the potential and countermeasures of fertilizer reduction. Journal of Plant Nutrition and Fertilizers, 2020, 26(6): 1091-1105. doi: 10.11674/zwyf.19375. (in Chinese)
doi: 10.11674/zwyf.19375
[26] 杨世琦, 韩瑞芸, 刘晨峰. 中国畜禽粪便磷的农田消纳量及承载负荷研究. 中国农学通报, 2016, 32(32): 111-116.
YANG S Q, HAN R Y, LIU C F. The given amount and loading capacity of phosphorus from livestock and poultry manure in China. Chinese Agricultural Science Bulletin, 2016, 32(32): 111-116. (in Chinese)
[27] 杨世琦, 刘晨峰. 规模化畜禽养殖的农田消纳能力评估方法与案例研究. 北京: 中国农业科学技术出版社, 2016.
YANG S Q, LIU C F. Evaluation Method and Case Study of Farmland Consumption Capacity of Large-scale Livestock and Poultry Breeding. Beijing: Chinese Agriculture Science and Technology Press, 2016. (in Chinese)
[28] 杨世琦, 韩瑞芸, 王永生, 刘汝亮, 谢晓军, 杨正礼. 基于秸秆还田条件下的黄灌区稻旱轮作土壤硝态氮淋失特征研究. 生态学报, 2017, 37(9): 2926-2934. doi: 10.5846/stxb201602020237.
doi: 10.5846/stxb201602020237
YANG S Q, HAN R Y, WANG Y S, LIU R L, XIE X J, YANG Z L. Effect of straw application to soil nitrate leaching of paddy-upland rotation in the Yellow River irrigation area. Chinese Journal of Plant Ecology, 2017, 37(9): 2926-2934. doi: 10.5846/stxb201602020237. (in Chinese)
doi: 10.5846/stxb201602020237
[29] 杨世琦, 邢磊, 刘宏元, 韩瑞芸, 杨正礼. 松干流域不同种植模式对坡耕地土壤氮磷流失的影响. 西北农林科技大学学报(自然科学版), 2018, 46(3): 61-69. doi: 10.13207/j.cnki.jnwafu.2018.03.008.
doi: 10.13207/j.cnki.jnwafu.2018.03.008
YANG S Q, XING L, LIU H Y, HAN R Y, YANG Z L. Effect of planting patterns on soil nitrogen and phosphorus loss in slope farmland in the main Songhua River Basin. Journal of Northwest A & F University (Natural Science Edition), 2018, 46(3): 61-69. doi: 10.13207/j.cnki.jnwafu.2018.03.008. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2018.03.008
[30] 闵炬, 纪荣婷, 王霞, 陈可伟, 徐建陶, 潘云枫, 陆志新, 路广, 王远, 施卫明. 太湖地区种植结构及农田氮磷流失负荷变化. 中国生态农业学报(中英文), 2020, 28(8): 1230-1238. doi: 10.13930/j.cnki.cjea.200152.
doi: 10.13930/j.cnki.cjea.200152
MIN J, JI R T, WANG X, CHEN K W, XU J T, PAN Y F, LU Z X, LU G, WANG Y, SHI W M. Changes in planting structure and nitrogen and phosphorus loss loads of farmland in Taihu Lake region. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1230-1238. doi: 10.13930/j.cnki.cjea.200152. (in Chinese)
doi: 10.13930/j.cnki.cjea.200152
[31] 王宁, 郭红岩, 王晓蓉, 朱建国, 杨林章. 大浦镇农业非点源污染磷负荷定量研究. 农业环境科学学报, 2007, 26(6): 2150-2155. doi: 10.3321/j.issn:1672-2043.2007.06.026.
doi: 10.3321/j.issn:1672-2043.2007.06.026
WANG N, GUO H Y, WANG X R, ZHU J G, YANG L Z. Loading quantity of phosphorus from agricultural non-point source pollution in Dapu town. Journal of Agro-Environment Science, 2007, 26(6): 2150-2155. doi: 10.3321/j.issn:1672-2043.2007.06.026. (in Chinese)
doi: 10.3321/j.issn:1672-2043.2007.06.026
[32] 张敏, 赵淼, 田玉华, 尹斌, 朱兆良. 太湖地区高产高效措施下水稻氮淋溶和径流损失的研究. 土壤, 2018, 50(1): 35-42. doi: 10.13758/j.cnki.tr.2018.01.005.
doi: 10.13758/j.cnki.tr.2018.01.005
ZHANG M, ZHAO M, TIAN Y H, YIN B, ZHU Z L. Study on N leaching and runoff under integrated high yield and high efficiency practices in paddy fields of Taihu Lake region. Soils, 2018, 50(1): 35-42. doi: 10.13758/j.cnki.tr.2018.01.005. (in Chinese)
doi: 10.13758/j.cnki.tr.2018.01.005
[33] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2): 259-273. doi: 10.11674/zwyf.2013.0201.
doi: 10.11674/zwyf.2013.0201
ZHU Z L, JIN J Y. Fertilizer use and food security in China. Plant Nutrition and Fertilizer Science, 2013, 19(2): 259-273. doi: 10.11674/zwyf.2013.0201. (in Chinese)
doi: 10.11674/zwyf.2013.0201
[34] 巨晓棠. 氮肥有效率的概念及意义: 兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933. doi: 10.11766/trxb201405130230.
doi: 10.11766/trxb201405130230
JU X T. The concept and meanings of nitrogen fertilizer availability ratio—Discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. doi: 10.11766/trxb201405130230. (in Chinese)
doi: 10.11766/trxb201405130230
[35] 刘宏斌, 李志宏, 张维理, 林葆. 露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究. 植物营养与肥料学报, 2004, 10(3): 286-291. doi: 10.3321/j.issn:1008-505X.2004.03.013.
doi: 10.3321/j.issn:1008-505X.2004.03.013
LIU H B, LI Z H, ZHANG W L, LIN B. Study on N use efficiency of Chinese cabbage and nitrate leachingunder open field cultivation. Plant Nutrition and Fertilizer Science, 2004, 10(3): 286-291. doi: 10.3321/j.issn:1008-505X.2004.03.013. (in Chinese)
doi: 10.3321/j.issn:1008-505X.2004.03.013
[36] 许世卫. 中国食物消费与浪费分析. 中国食物与营养, 2005, 11(11): 4-8. doi: 10.3969/j.issn.1006-9577.2005.11.001.
doi: 10.3969/j.issn.1006-9577.2005.11.001
XU S W. Analysis on food consumption and waste of China. Food and Nutrition in China, 2005, 11(11): 4-8. doi: 10.3969/j.issn.1006-9577.2005.11.001. (in Chinese)
doi: 10.3969/j.issn.1006-9577.2005.11.001
[37] 武维华. 全国人民代表大会常务委员会专题调研组关于珍惜粮食、反对浪费情况的调研报告:2020年12月23日在第十三届全国人民代表大会常务委员会第二十四次会议上. 中华人民共和国全国人民代表大会常务委员会公报, 2021(1): 194-202.
WU W H. Research report of the special issue research tearn of the standing committee of the national People’s congress on cherishing food and opposing waste. Gazette of the Standing Committee of the National People’s Congress of the People’s Republic of China, 2021(1): 194-202. (in Chinese)
[38] 成升魁, 白军飞, 金钟浩, 王东阳, 刘刚, 高思, 包景岭, 李晓婷, 李燃, 蒋南青, 鄢文静, 张世钢. 笔谈: 食物浪费. 自然资源学报, 2017, 32(4): 529-538. doi: 10.11849/zrzyxb.20170202.
doi: 10.11849/zrzyxb.20170202
CHENG S K, BAI J F, JIN Z H, WANG D Y, LIU G, GAO S, BAO J L, LI X T, LI R, JIANG N Q, YAN W J, ZHANG S G. Reducing food loss and food waste: Some personal reflections. Journal of Natural Resources, 2017, 32(4): 529-538. doi: 10.11849/zrzyxb.20170202. (in Chinese)
doi: 10.11849/zrzyxb.20170202
[39] 成升魁, 黄锡生, 胡德胜, 施志源, 落志筠. 科学立法制止餐饮浪费的若干问题: “食物节约立法” 专家笔谈. 自然资源学报, 2020, 35(12): 2821-2830. doi: 10.31497/zrzyxb.20201201.
doi: 10.31497/zrzyxb.20201201
CHENG S K, HUANG X S, HU D S, SHI Z Y, LUO Z Y. Several issues on scientific legislation for prohibiting food waste: Some personal reflections. Journal of Natural Resources, 2020, 35(12): 2821-2830. doi: 10.31497/zrzyxb.20201201. (in Chinese)
doi: 10.31497/zrzyxb.20201201
[40] 陈军, 但斌. 生鲜农产品的流通损耗问题及控制对策. 管理现代化, 2008(4): 19-21.
CHEN J, DAN B. The circulation loss of fresh agricultural products and its control countermeasures. Modernization of Management, 2008(4): 19-21. (in Chinese)
[41] 刘彬, 王书军. 国外降低生鲜蔬菜物流损耗经验及其对我国的启示. 对外经贸实务, 2015(2): 84-87. doi: 10.3969/j.issn.1003-5559.2015.02.023.
doi: 10.3969/j.issn.1003-5559.2015.02.023
LIU B, WANG S J. Foreign experience of reducing logistics loss of fresh vegetables and its enlightenment to China. Practice in Foreign Economic Relations and Trade, 2015(2): 84-87. doi: 10.3969/j.issn.1003-5559.2015.02.023. (in Chinese)
doi: 10.3969/j.issn.1003-5559.2015.02.023
[42] FAO (Food and Agriculture Organization). Global food losses and food waste: Extent, causes and prevention. Rome: FAO, 2011.
[43] 杨世琦, 邢磊, 刘宏元, 杨正礼. 植物篱埂垄向区田技术对坡耕地水土和氮磷流失控制研究. 农业工程学报, 2019, 35(22): 209-215. doi: 10.11975/j.issn.1002-6819.2019.22.025.
doi: 10.11975/j.issn.1002-6819.2019.22.025
YANG S Q, XING L, LIU H Y, YANG Z L. Effect of reducing runoff, sediment, soil nitrogen and phosphorus losses in sloping farmland based on short ridge of clover hedgerow with ridge tillage. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 209-215. doi: 10.11975/j.issn.1002-6819.2019.22.025. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2019.22.025
[44] 杨世琦, 邢磊, 刘宏元, 王惟帅, 郭萍. 羧甲基纤维素铵对黄土高原新造耕地土壤性质的影响. 西北农林科技大学学报(自然科学版), 2021, 49(5): 74-80. doi: 10.13207/j.cnki.jnwafu.2021.05.010.
doi: 10.13207/j.cnki.jnwafu.2021.05.010
YANG S Q, XING L, LIU H Y, WANG W S, GUO P. Effects of applying ammonium carboxymethyl cellulose on soil properties of new cultivated farmland in Loess Plateau. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(5): 74-80. doi: 10.13207/j.cnki.jnwafu.2021.05.010. (in Chinese)
doi: 10.13207/j.cnki.jnwafu.2021.05.010
[45] 中国农业科学院作物所. “十三五”巡礼—中国农科院科技支撑稳产保供系列之小麦、水稻、玉米和大豆. (2020-12-30) http://www.caas.cn/xwzx/yw/309947.html
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences. “The 13th Five-Year-Plan” on show of CAAS-Science and technology stable support crop yield and grain supply of wheat, rice, maize and soybean. (2020-12-30) http://www.caas.cn/xwzx/yw/309947.html. (in Chinese)
[46] 杨世琦, 赵解春, 杨正礼. 日本农业面源污染控制的主要做法及给我国的启示. 上海农业科技, 2018(6): 29-31, 46. doi: 10.3969/j.issn. 1001-0106.2018.06.012.
doi: 10.3969/j.issn. 1001-0106.2018.06.012
YANG S Q, ZHAO J C, YANG Z L. The main practice of controlling agricultural non-point source pollution in Japan and its enlightenment to China. Shanghai Agricultural Science and Technology, 2018(6): 29-31, 46. doi: 10.3969/j.issn.1001-0106.2018.06.012. (in Chinese)
doi: 10.3969/j.issn. 1001-0106.2018.06.012
[1] HUA ChunLin,ZHANG JiuHong,JIN ShuQin. Analysis to Evolution Characteristics of Policies for Controlling Agricultural Non-Point Source Pollution in China: Based on Text Quantification [J]. Scientia Agricultura Sinica, 2022, 55(7): 1385-1398.
[2] GONG ShiFei,DING WuHan,JU XueHai,XIAO NengWu,YE QingSong,HUANG Jin,LI Hu. Source Analysis and Control Strategies of Non-Point Source Pollution in Typical Agricultural Small Watershed: A Case Study of Danjiangkou Water Conservation Area [J]. Scientia Agricultura Sinica, 2021, 54(18): 3919-3931.
[3] CHEN Kevin,BI JieYing,NIE FengYing,FANG XiangMing,FAN ShengGen. New Vision and Policy Recommendations for Nutrition-Oriented Food Security in China [J]. Scientia Agricultura Sinica, 2019, 52(18): 3097-3107.
[4] MA Lin, BAI ZhaoHai, WANG Xuan, CAO YuBo, MA WenQi, ZHANG FuSuo. Significance and Research Priority of Nutrient Management in Soil-Crop-Animal Production System in China [J]. Scientia Agricultura Sinica, 2018, 51(3): 406-416.
[5] JIN ShuQin, XING XiaoXu. Trend Analysis, Policy Evaluation, and Recommendations of Agricultural Non-Point Source Pollution [J]. Scientia Agricultura Sinica, 2018, 51(3): 593-600.
[6] CHEN Yin-jun, YI Xiao-yan, FANG Lin-na, YANG Rui-zhen. Analysis of Cultivated Land and Grain Production Potential in China [J]. Scientia Agricultura Sinica, 2016, 49(6): 1117-1131.
[7] HU Yun-yun, WANG Yong-dong, LI Ting-xuan, ZHENG Zi-cheng, PU Yong. Characteristics Analysis of Agricultural Nonpoint Source Pollution on Tuojiang River Basin [J]. Scientia Agricultura Sinica, 2015, 48(18): 3654-3665.
[8] LI Bao-guo, HUANG Feng. Defining the Baselines for China Agricultural Water Use in Green and Blue Water Approach [J]. Scientia Agricultura Sinica, 2015, 48(17): 3493-3503.
[9] SHI Wen-Jiao, TAO Fu-Lu. Climate Change and Agricultural Production in Africa: A Review of Impacts and Adaptations [J]. Scientia Agricultura Sinica, 2014, 47(16): 3157-3166.
[10] CHEN Wen-Fu, ZHANG Wei-Ming, MENG Jun. Advances and Prospects in Research of Biochar Utilization in Agriculture [J]. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333.
[11] ZHANG Wei-Jian, CHEN Jin, XU Zhi-Yu, CHEN Chang-Qing, DENG Ai-Xing, QIAN Chun-Rong, DONG Wen-Jun. Actual Responses and Adaptations of Rice Cropping System to Global Warming in Northeast China [J]. Scientia Agricultura Sinica, 2012, 45(7): 1265-1273.
[12] TANG Hua-Jun, LI Zhe-Min. Study on Per Capita Grain Demand Based on Chinese Reasonable Dietary Pattern [J]. Scientia Agricultura Sinica, 2012, 45(11): 2315-2327.
[13] LI Chen,YAN Xiao-hong,YANG Jie,YANG Qing,WEI Wen-hui
. Plant Artificial Chromosome: The Vector for the Next Generation of Genetic Engineering [J]. Scientia Agricultura Sinica, 2011, 44(4): 657-663 .
[14] YU Qiang-Yi, WU Wen-Bin, TANG Hua-Jun, CHEN You-Qi, YANG Peng. A Food Security Assessment in APEC Based on Grain Productivity [J]. Scientia Agricultura Sinica, 2011, 44(13): 2838-2848 .
[15]

TIAN Yun-lu,ZHENG Jian-chu,ZHANG Bin,CHEN Jin,DONG Wen-jun,YANG Fei,ZHANG Wei-jian

.

Design of Free Air Temperature Increasing (FATI) System for Upland with Three Diurnal Warming Scenarios and Their Effects

[J]. Scientia Agricultura Sinica, 2010, 43(18): 3724-3731 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!