Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (4): 720-733.doi: 10.3864/j.issn.0578-1752.2020.04.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau

KaiYuan GONG1,Liang HE2,DingRong WU3,ChangHe LÜ4,Jun LI4,WenBin ZHOU5,Jun DU6,Qiang YU4,7()   

  1. 1 College of Natural Resources and Environment, Northwest A&F University , Yangling 712100, Shaanxi
    2 National Meteorological Center, Beijing 100081
    3 Chinese Academy of Meteorological Sciences, Beijing 100081
    4 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
    5 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
    6 Institute of Plateau Meteorology, China Meteorological Administration, Chengdu, 610071
    7 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2019-06-25 Accepted:2019-11-18 Online:2020-02-16 Published:2020-03-09
  • Contact: Qiang YU E-mail:yuq@nwafu.edu.cn

Abstract:

【Objective】The climate change of highland barley during the growth season and effect on photo-temperature potential productivity as well as yield gap over Tibetan Plateau from 1977 to 2017 were investigated.【Method】The DSSAT-CERES-barley was validated against statistical and field observational data, and then applied to simulate the potential yield of the highland barley on Tibetan Plateau. Then yield gaps were calculated by using observed yields and simulations. Finally, we analyzed the impact of climate change on highland barley production and yield gaps by using statistical methods.【Result】(1) Temperature and precipitation during highland barley growth period significantly increased on Tibetan Plateau over the past 40 years, whereas solar radiation decreased and it decreased significantly at Lizhi station; (2) The growth period of highland barley has significantly decreased if using the same variety at a fixed sowing date. The decrease of growth period in high-altitude was mainly caused by the increasing of the average maximum temperature, however, at low-altitude, which were mainly caused by the increase of the effective accumulated temperature during the whole growing period due to rising of mean temperature; (3) The potential barley yield was limited by the altitude and more sensitive to solar radiation at the high altitude stations. It was large and stable at the high-altitude stations with an altitude of 3 500 m. The average potential yield of Shannan station approached to 12 000 kg·hm -2 while only 6 000 kg·hm -2at low altitude stations around 3 000 m; (4) The yield gaps of highland barley in Tibetan Plateau in the past 30 years has decreased from 58.2% to 34.5% due to the increase of actual production. And the decreasing rate of yield gaps decelerated in recent decade. The yield gaps in Lasa and Shigatse were the least during 2007-2017, which were less than 25%.【Conclusion】The potential yields of highland barley on Tibetan Plateau were different greatly in different stations on Tibetan Plateau. The potential yield of the high-altitude areas was significantly larger than that of the low-altitude areas in study region. Climate change in the past 40 years had caused the higher variation of potential yield at low-altitude, while relatively stable potential yield at high-altitude. The yield gaps in Tibetan Plateau gradually decreased over the past 30 years because of the increase of actual yield, which was caused by the improvement of varieties and cultivation management. However, the yield gaps except Lasa and Shigatse were still large. Therefore, there was great potential to increase crop production in the future.

Key words: Tibetan Plateau, highland barley, photo-temperature potential productivity, crop model, climate change

Table 1

Basic information of research stations"

省份 Province 站点 Station 经度 Longitude 纬度 Latitude 海拔 Altitude (m) 播种期Sowing date (M-D)
甘肃 Gansu 甘南州 GTA 102.80 °E 35.00 °N 2910.0 04-10
青海 Qinghai 贵南 GN 100.75 °E 35.58 °N 3120.0 04-20
门源 MHA 101.62 °E 37.38 °N 2850.0 04-08
西藏 Tibet 林芝 LZ 94.33 °E 29.67 °N 2991.8 03-11
山南 SN 91.77 °E 29.25 °N 3551.7 04-04
日喀则 RKZ 88.88 °E 29.25 °N 3836.0 05-02
拉萨 LS 91.13 °E 29.67 °N 3648.9 04-19

Table 2

Description of values for variety parameters in research stations and dataset of calibration and validation for the DSSAT-CERES-barley model"

省份
Province
站点
Station
校准集
Calibration Set
验证集
Validation Set
P1V (d) P1D (%) P5 (℃·d-1) G1 (No./g) G2 (mg) G3 (g) PHINT (℃·d-1)
甘肃
Gansu
甘南州GTA 1989,1995,2006 1987,1988,1990-1994, 1996-2005,2007-2017 0.0 22.1 412.9 10.6 46.5 1.4 64.0
青海
Qinghai
贵南GN 2008,2014,2017 2007,2009-2013,2016 0.0 24.5 435.0 12.2 51.5 1.1 64.0
门源MHA 2012,2016 2010,2013-2015,2017 0.0 24.7 433.0 12.2 51.5 0.9 64.0
西藏
Tibet
林芝LZ 1996,2008 1994,2000-2007,2009 0.0 22.8 677.1 10.0 40.1 1.5 64.0
山南SN 1997 0.0 23.4 735.8 23.8 60.68 0.8 64.0
日喀则RKZ 1989,1999,2002,
2014,2017
2000,2001,
2008
0.0 14.4 650.5 19.9 54.9 1.2 64.0
拉萨LS 2008,2009 2002,2004, 2011 0.0 23.4 735.8 23.8 60.68 0.8 64.0

Fig. 2

Comparison of simulated growing period, flowering, maturity, and grain yield by DSSAT-CERES-barley and observed data The dashed line and solid line are 1:1 line and regression trend line, respectively"

Fig. 1

Climatic conditions of highland barley growing season from 1977 to 2017 at research stations on Tibetan Plateau Minimum temperature (A), average temperature (B), maximum temperature (C), ≥0 ℃ effective accumulated temperature (D), radiation (E), and precipitation (F). Different lowercase letters on different sites of the same table indicate significant differences at 0.05 level"

Table 3

Trend of climatic factors during the growing season of highland barley on Tibetan Plateau from 1977 to 2017"

站点 Station 平均气温
Average temperature (℃·(10a)-1)
最高气温
Maximum temperature (℃·(10a)-1)
最低气温
Minimum temperature (℃·(10a)-1)
降水
Precipitation (mm·(10a)-1)
太阳辐射
Radiation (MJ·m-2·(10a)-1)
有效积温
Accumulated temperature (℃·d·(10a)-1)
日照时数
Solar duration (h·(10a)-1)
GTA 0.39** 0.42** 0.39** -2.11 19.19 61.28** 12.75
GN 0.28** 0.25** 0.29** 29.18** -19.30 42.52** -12.38
MHA 0.59** 0.56** 0.73** 1.24 -22.70 89.71** -15.15
LZ 0.36** 0.31** 0.40** 14.63 -72.91** 65.40** -50.07**
SN 0.26** 0.38** 0.56** 1.89 -20.87 47.29** -13.55
RKZ 0.41** 0.28** 0.51** 8.32 -3.70 74.84** -2.06
LS 0.49** 0.42** 0.78** 31.42** 24.08 90.64** 16.84

Fig. 3

Trends of growth period of highland barley in Tibetan Plateau from 1977 to 2017"

Fig. 4

Trends of photo-temperature potential productivity of highland in Tibetan Plateau from 1977 to 2017"

Fig. 5

Correlation coefficient (P<0.05) between climate change and photo-temperature potential productivity and growth period change ΔPY: Photo-temperature potential productivity change ; ΔPS: Whole growth period change; ΔTmax: Average maximum temperature change in growing season; ΔTmin:Average minimum temperature change in growing season; ΔPrec: Precipitation change in growing season; ΔRad: Radiation change in growing season; ΔTave: Average temperature change in growing season; ΔAe: Effective accumulated temperature change in growing season. The same as below"

Table 4

Stepwise regression equation between photo-temperature potential productivity change of highland barley and climatic factors in difference stations"

站点 Station 回归方程 Stepwise regression equation F R2 MAE RMSE
GTA ΔPY=31.78+2.37ΔPrec+1.60ΔRad 9.90 0.35 412.72 509.26
GN ΔPY=11.74-597.29ΔTmax+2.99ΔRad+5.37ΔAe 9.52 0.44 394.69 510.40
MHA ΔPY=14.15-672.45ΔTmax-428.09ΔTmin+1.11ΔRad+10.10ΔAe 9.59 0.52 377.84 486.23
LZ ΔPY=-17.52+270.49ΔTmax-1.90ΔAe 1.39 0.07 260.90 322.67
SN ΔPY=36.93-890.86ΔTmax+773.67ΔTmin+3.95ΔRad 2.82 0.20 620.33 759.47
RKZ ΔPY=-0.86+3.87ΔRad 18.46 0.33 542.49 416.02
LS ΔPY=-18.25+2.36ΔRad-3.68ΔAe 4.55 0.35 329.92 416.02

Fig. 6

Comparison of photo-temperature potential productivity and statistical yield of highland barley in Tibetan Plateau from 1987 to 2017"

[1] PIAO S, CIAIS P, HUANG Y, SHEN Z, PENG S, LI J, ZHOU L, LIU H, MA Y, DING Y, FRIEDLINGSTEIN P, LIU C, TAN K, YU Y, ZHANG T, FANG J . The impacts of climate change on water resources and agriculture in China. Nature, 2010,467(7311):43-51.
[2] LOBELL D B, BURKE M B . On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 2010,150(11):1443-1452.
[3] WU G, LIU Y, HE B, BAO Q, DUAN A, JIN F F . Thermal controls on the Asian summer monsoon. Scientific Reports, 2012,2:404.
[4] 潘宝田, 李吉均 . 青藏高原:全球气候变化的驱动机与放大器──Ⅲ.青藏高原隆起对气候变化的影响. 兰州大学学报, 1996,32(1):108-115.
PAN B T, LI J J . Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change. Journal of Lanzhou University(Natural Sienees), 1996,32(1):108-115. (in Chinese)
[5] YU Q, LIU Y, LIU J, WANG T . Simulation of leaf photosynthesis of winter wheat on Tibetan Plateau and in North China Plain. Ecological Modelling, 2002,155(2/3):202-216.
[6] 吴绍洪, 尹云鹤, 郑度, 杨勤业 . 青藏高原近30年气候变化趋势. 地理学报, 2005,60(1):3-11.
WU S H, YIN Y H, ZHENG D, YANG Y Q . Climate change in the Tibetan Plateau during the last three decades. Acta Geographica Sinica, 2005,60(1):3-11. (in Chinese)
[7] 姚檀栋, 刘晓东, 王宁练 . 青藏高原地区的气候变化幅度问题. 科学通报, 2000,45(1):98-105.
YAO T D, LIU X D, WANG N L . The extent of climate change in Tibet Plateau. Chinese Science Bulletin, 2000,45(1):98-105. (in Chinese)
[8] 强小林, 迟德钊, 冯继林 . 青藏高原区域青稞生产与发展现状. 西藏科技, 2008(3):11-17.
QIANG X L, CHI D Z, FENG J L . Status of production and development of barley in the Tibet Plateau. Tibet Science and Technology, 2008(3):11-17. (in Chinese)
[9] DE DATTA S K . Principles and Practices of Rice Production. New York(USA):Wiley-Interscience Publications. 1981.
[10] LOBELL D B, CASSMAN K G, FIELD C B . Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009,34:179-204.
[11] 杨晓光, 刘志娟 . 作物产量差研究进展. 中国农业科学, 2014,47(14):2731-2741.
YANG X G, LIU Z J . Advances in research on crop yield gaps. Scientia Agricultura Sinica, 2014,47(14):2731-2741. (in Chinese)
[12] LOBELL D B, CASSMAN K G, FIELD C B . Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009,34(1):179-204.
[13] DE WIT C T . Simulation of assimilation, respiration, and transpiration of crops. Simulation Monographs. Wageningen:Pudoc, 1978, 1-112.
[14] BATTISTI R, SENTELHAS P C, PASCOALINO J A L, SAKO H, DE Sá DANTAS J P, MORAES M F Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production, 2018,12(3):159-168.
[15] WU D, YU Q, LU C, HENGSDIJK H . Quantifying production potentials of winter wheat in the North China Plain. European Journal of Agronomy, 2006,24(3):226-235.
[16] ESPE M B, CASSMAN K G, YANG H, GUILPART N, GRASSINI P, VAN WART J, ANDERS M, BEIGHLEY D, HARRELL D, LINSCOMBE S, MCKENZIE K, MUTTERS R, WILSON L T, LINQUIST B A . Yield gap analysis of US rice production systems shows opportunities for improvement. Field Crops Research, 2016,196:276-283.
[17] LU C, FAN L . Winter wheat yield potentials and yield gaps in the North China Plain. Field Crops Research, 2013,143:98-105.
[18] 刘志娟, 杨晓光, 吕硕, 王静, LIN X M . 东北三省春玉米产量差时空分布特征. 中国农业科学, 2017,50(9):1606-1616.
LIU Z J, YANG X G, LÜ S, WANG J, LIN X M . Spatial-temporal variations of yield gaps of spring maize in Northeast China. Scientia Agricultura Sinica, 2017,50(9):1606-1616. (in Chinese)
[19] IMMERZEEL W W, VAN BEEK L P H, BIERKENS M F P . Climate change will affect the Asian water towers. Science, 2017,328(5984):1382-1385.
[20] 格桑曲珍, 普布次仁, 胡希远 . 西藏气候变化及其对作物产量潜力的影响. 干旱地区农业研究, 2015,33(2):266-271.
GE S Q Z, PU B C R, HU X Y . Effect of climate change on yield potential of crops in Tibet. Agricultural Research in the Arid Areas, 2015,33(2):266-271. (in Chinese)
[21] 吴让, 周秉荣 . 高原气候变化对青海省粮食生产潜力影响的研究. 青海科技, 2011,18(1):34-38.
WU R, ZHOU B R . Study on the influence of plateau climate change on the potential of grain production in Qinghai province. Qinghai Science and Technology, 2011,18(1):34-38. (in Chinese)
[22] 赵雪雁, 王伟军, 万文玉, 李花 . 近50年气候变化对青藏高原青稞气候生产潜力的影响. 中国生态农业学报, 2015,23(10):1329-1338.
ZHAO X Y, WANG W J, WAN W Y, LI H . Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years. Chinese Journal of Eco-Agriculture, 2015,23(10):1329-1338. (in Chinese)
[23] MORELL F J, YANG H S, CASSMAN K G, WART J V, ELMORE R W, LICHT M, COULTER J A, CIAMPITTI I A, PITTELKOW C M, BROUDER S M, THOMISON P, LAUER J, GRAHAM C, MASSEY R, GRASSINI P . Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt? Field Crops Research, 2016,192:1-12.
[24] JONES J W, HOOGENBOOM G, PORTER C H, BOOTE K J, BATCHELOR W D, HUNT L A, WILKENS P W, SINGH U, GIJSMAN A J, RITCHIE J T . The DSSAT cropping system model. European Journal of Agronomy, 2003,18:235-265.
[25] LI S, WANG Z, ZHANG Y . Crop cover reconstruction and its effects on sediment retention in the Tibetan Plateau for 1900-2000. Journal of Geographical Sciences, 2017,27(7):786-800.
[26] 芦海涛, 李召霞 . 青海省青稞生产现状及发展前景的调查研究. 青海农牧业, 2013(8):7-9.
LU H T, LI Z X . Investigation and research on the status quo and development prospect of highland barley production in Qinghai province. Journal of Qinghai Agriculture and Animal Husbandry, 2013(8):7-9. (in Chinese)
[27] 徐新良, 刘纪远, 张树文, 李仁东, 颜长珍, 吴世新 . 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC). 中国科学院资源环境科学数据中心数据注册与出版系统(), 2018.
XU X L, LIU J Y, ZHANG S W, LI R D, YAN C Z, WU S X. China land use and land cover change database(CNLUCC). Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences (), 2018. (in Chinese)
[28] DAI Y, SHANGGUAN W, DUAN Q, LIU B, FU S, NIU G . Development of a China dataset of soil hydraulic parameters using pedotransfer functions for land surface modeling. Journal of Hydrometeorology, 2013,14(3):869-887.
[29] 青海省统计局. 青海统计年鉴. 北京:中国统计出版社,1983-2017.
Qinghai Bureau of Statistics. QingHai Statistical Yearbook. Beijing:China Statistics Press, 1983-2017. (in Chinese)
[30] 西藏自治区统计局. 西藏统计年鉴. 北京:中国统计出版社,1989-2017.
Tibet Autonomous Region Bureau of Statistics. Tibet Statistical Yearbook. Beijing:China Statistics Press, 1977-2017. (in Chinese)
[31] 尹志芳, 欧阳华, 张宪州 . 西藏地区春青稞耗水特征及适宜灌溉制度探讨. 自然资源学报, 2010,25(10):1666-1675. DOI: 10.11849/ zrzyxb.2010.10.005.
YIN Z F, OUYANG H, ZHANG X Z . Study on water consumption of spring naked barley land and suitable irrigation system in Tibet. Journal of Natural Resources, 2010,25(10):1666-1675. (in Chinese)
[32] 侯亚红 . 不同播期和灌溉水平下青稞需水规律. 西藏农业科技 2018(1):13-18.
HOU Y H . Water requirement rules of highland barley in different sowing time and irrigation levels. Tibet Journal of Agricultural Sciences, 2018(1):13-18. (in Chinese)
[33] 罗红英, 崔远来, 赵树君 . 西藏青稞灌溉定额的空间分布规律. 农业工程学报, 2013,29(10):116-122.
LUO H Y, CUI Y L, ZHAO S J . Spatial distribution of irrigation water quota of highland barley in Tibet region. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(10):116-122. (in Chinese)
[34] PRESCOTT J A . Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 1940,64:114-125.
[35] KENDALL M G . Rank Correlation Measures. London:Charles Griffin. 1975.
[36] MANN H B . Non-parametric tests against trend. Econometric, 1945,13:245-259.
[37] SEN P K . Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 1968,63:1379-1389.
[38] THEIL H . A rank-invariant method of linear and polynomial regression analysis, Part 3. Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A, 1950,53:1397-1412.
[39] GOCIC M, TRAJKOVIC S . Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global and Planetary Change, 2013,100:172-182.
[40] 蔺学东, 张镱锂, 姚治君, 巩同梁, 王宏, 刘林山 . 拉萨河流域近50年来径流变化趋势分析. 地理科学进展, 2007,26(3):58-67.
LIN X D, ZHANG Y L, YAO Z J, GONG T L, WANG H, LIU L S . Trend analysis of the runoff variation in Lhasa River Basin in Tibetan Plateau during the last 50 years. Progress in Geography, 2007,26(3):58-67. (in Chinese)
[41] PARTAL T, KAHYA E . Trend analysis in Turkish precipitation data. Hydrological Processes, 2006,20(9):2011-2026.
[42] LOBELL D B, ASNER G P . Climate and management contributions to recent trends in U.S. agricultural yields. Science, 2003,299:1032.
[43] 胡实, 莫兴国, 林忠辉 . 气候变化对海河流域主要作物物候和产量影响. 地理研究, 2014,33(1):3-12.
HU S, MO X G, LIN Z H . The contribution of climate change to the crop phenology and yield in Haihe River Basin. Geographical Research, 2014,33(1):3-12. (in Chinese)
[44] 丛振涛, 王舒展, 倪广恒 . 气候变化对冬小麦潜在产量影响的模型模拟分析. 清华大学学报: 自然科学版, 2008,48(9):46-50.
CONG Z T, WANG S Z, NI G H . Simulations of the impact of climate change on winter wheat production. Journal of Tsinghua University (Science and Technology), 2008,48(9):46-50. (in Chinese)
[45] CHEN J, TIAN Y, ZHANG X, ZHENG C, SONG Z, DENG A, ZHANG W . Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China. Journal of Plant Growth Regulation, 2013,33(2):397-407.
[46] 刘晓东, 程志刚, 张冉 . 青藏高原未来30—50年A1B情景下气候变化预估. 高原气象, 2009,28(3):475-484.
LIU X D, CHENG Z G, ZHANG R . The A1B scenario projection for climate change over the Tibetan Plateau in the next 30-50 years. Plateau Meteorology, 2009,28(3):475-484. (in Chinese)
[47] 胡芩, 姜大膀, 范广洲 . 青藏高原未来气候变化预估_CMIP5模式结果. 大气科学, 2015,39(2):260-270.
HU Q, JIANG D B, FAN G Z . Climate change projection on the Tibetan Plateau: Results of CMIP5 models. Chinese Journal of Atmospheric Sciences, 2015,39(2):260-270. (in Chinese)
[48] 陈玉华 . 青稞生产在甘南州的技术应用及措施. 甘肃农业 2013(7):6-7.
CHEN Y H . Technical application and measures of barley production in Gannan. Gansu Agriculture, 2013(7):6-7. (in Chinese)
[49] 强小林, 顿珠次仁, 次珍, 魏新虹, 张玉红 . 西藏青稞产业发展现状分析. 西藏农业科技, 2011,33(1):1-3.
QIANG X L , DUN Z C R, CI Z, WEI X H, ZHANG Y H. Analysis on industry status of Tibetan highland barley. Tibet Journal of Agricultural Sciences, 2011,33(1):1-3. (in Chinese)
[1] ZHANG WenJing, ZHAO Jin, CUI WenQian, LI ManYao, LI E, GONG XiaoYa, YANG XiaoGuang. Effects of Changing Normal and Extreme Climate States on Maize Meteorological Yield in Northeast China [J]. Scientia Agricultura Sinica, 2023, 56(10): 1859-1870.
[2] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[3] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[5] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[6] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[7] WANG YuLin,LEI Lin,XIONG WenWen,YE FaYin,ZHAO GuoHua. Effects of Steaming-Retrogradation Pretreatment on Physicochemical Properties and in Vitro Starch Digestibility of the Roasted Highland Barley Flour [J]. Scientia Agricultura Sinica, 2021, 54(19): 4207-4217.
[8] ZHANG WeiJian, YAN ShengJi, ZHANG Jun, JIANG Yu, DENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[9] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[10] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[11] FANG HuiTing,MENG JiHua,CHENG ZhiQiang. Spatio-Temporal Variability of Soil Available Nutrients Based on Remote Sensing and Crop Model [J]. Scientia Agricultura Sinica, 2019, 52(3): 478-490.
[12] JiRong LI,TangWei ZHANG,DeJi CIREN,XiaoJun YANG,Dun CI. Fractionation Effect of Stable Isotopic Ratios in Tsamba Processing [J]. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602.
[13] SUN JianFei,ZHENG JuFeng,CHENG Kun,YE Yi,ZHUANG Yuan,PAN GenXing. Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture [J]. Scientia Agricultura Sinica, 2018, 51(23): 4470-4484.
[14] XU Meng, LI XiaoLiang, CAI XiaoBu, LI XiaoLin, ZHANG XuBo, ZHANG JunLing. Impact of Land Use Type on Soil Organic Carbon Fractionation and Turnover in Southeastern Tibet [J]. Scientia Agricultura Sinica, 2018, 51(19): 3714-3725.
[15] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!