Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4453-4466.doi: 10.3864/j.issn.0578-1752.2023.22.008

• PLANT PROTECTION • Previous Articles     Next Articles

Screening, Identification and Control Efficacy Analysis of Trichoderma Strains Against Maize Pythium Stalk Rot

GUO Ning(), SUN Hua, MA HongXia, LIU ShuSen, ZHANG HaiJian, SHI Jie(), ZHENG XiaoJuan, DONG YueGuang   

  1. Plant Protection Institute, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs/IPM Innovation Center of Hebei Province/ International Science and Technology Joint Research Center on IPM of Hebei Province, Baoding 071000, Hebei
  • Received:2023-08-02 Accepted:2023-08-27 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】The objective of this study is to screen Trichoderma strains which have inhibitory effect on the Pythium spp. causing maize stalk rot, and to clarify their taxonomic status, control efficacy and antifungal mechanism. This study will provide important resources for the research and development of biocontrol agent against Pythium stalk rot.【Method】For the antagonistic strains screening, the inhibitory effect of Tichoderma strains on P. inflatum, P. arrhenomanes and P. aristosporum was tested by measuring the mycelia growth. The taxonomic status of Tr21 was determined by morphological and molecular characteristics. The effect of Tr21 on the mycelia morphology of Pythium spp. was observed in the laboratory. In order to analyze the effect of Tr21 fermentation broth on the membrane permeability of Pythium spp., propyridine bromide (PI) dye solution was used to stain, and the absorbance values of protein and nucleic acid in mycelia supernatant at different treatment times were detected. The effect of Tr21 fermentation broth on germination characteristics of maize seeds was tested by seed soaking with different concentrations of fermentation broth. The control efficacy of Tr21 on stalk rot was confirmed through greenhouse pot and field inoculation experiments.【Result】From the 109 strains of Trichoderma spp., seven strains were screened with antagonistic activity against P. inflatum, P. arrhenomanes and P. aristosporum, and the inhibition rate was above 60%. The inhibition rate of Tr21 to three Pythium species reached 100%, the inhibition rate of 5×, 10× and 20× diluent to three Pythium species reached 100%, and the inhibition rate of 50× diluent to three Pythium species was also more than 55.56%. Tr21 strain was identified by morphological and molecular biology as T. afroharzianum. The results of microscopic observation showed that the fermentation broth of Tr21 could cause mycelial malformations, such as rough mycelia, increased mycelial branching, shortened nodes, and overflow of mycelia contents. The result of PI fluorescence stain showed that the cell membrane of three Pythium species was damaged by Tr21 fermentation broth, and the PI dye was more likely to penetrate the damaged cell membrane into the mycelium and stain the mycelia red. The results of nucleic acid and protein leakage showed that the absorbance values of the mycelia treated by the fermentation broth changed greatly. After treatment for 5 h, the OD260 increased by 0.08 and OD280 increased by 0.10, 0.11 and 0.10, respectively, indicating that the membrane of the mycelia was damaged, leading to the overflow of mycelia contents. The different concentrations of Tr21 fermentation broth had no effect on the germination characteristics of maize seeds, and the 20× diluent had the best effect on germination and growth of seeds. The results of pot experiment showed that 5× diluted fermentation broth of Tr21 had the best control efficacy on Pythium stalk rot caused by three Pythium species, which was 60.67%, 63.15% and 59.66%, respectively. The control efficacy on Pythium stalk rot of 5× diluent was the highest, reaching 82.25%, with a mass ratio of 1﹕100 (5× diluent to seed).【Conclusion】An effective T. afroharzianum strain Tr21 was obtained for preventing and controlling of maize Pythium stalk rot. The fermentation broth of Tr21 can lead to mycelia malformation, breakage, cell membrane damage and contents leakage, etc. In conclusion, the T. afroharzianum strain Tr21 is a promising biocontrol microbial.

Key words: Pythium, stalk rot, maize, Trichoderma afroharzianum, biological control

Fig. 1

Inhibitory effect of Tr21 fermentation broth with different concentrations on three Pythium species"

Table 1

Inhibitory rate of Tr21 fermentation broth with different concentrations on three Pythium species"

处理
Treatment
抑制率Inhibition rate (%)
肿囊腐霉
P. inflatum
强雄腐霉
P. arrhenomanes
芒孢腐霉
P. aristosporum
100±0a 100±0a 100±0a
10× 100±0a 100±0a 100±0a
20× 100±0a 100±0a 100±0a
50× 69.11±0.59b 76.00±4.23b 55.56±1.78b
100× 39.33±1.02c 50.22±2.62c 24.89±2.32c

Fig 2

Morphology of Tr21 strain"

Fig. 3

Phylogenetic tree of Tr21 strain based on EF-1α partial sequences"

Fig. 4

Phylogenetic tree of Tr21 strain based on RPB2 partial sequences"

Fig. 5

Effect of Tr21 fermentation broth on mycelia development of three Pythium species"

Fig. 6

Effect of Tr21 fermentation broth on membrane permeability of three Pythium species"

Fig. 7

Effect of Tr21 fermentation broth on leakage of nucleic acid (A) and protein (B) in three Pythium species"

Table 2

Germination indexes of maize seeds treated with different concentrations of Tr21 fermentation broth"

处理Treatment 发芽率Germination rate (%) 胚芽长度Germ length (cm) 胚根长度Radicle length (cm) 根系数量Root number
CK 83.33±8.82a 3.40±0.45a 4.74±1.50a 2.87±0.58b
93.33±6.67a 3.71±0.27a 5.83±0.77a 3.80±0.17ab
93.33±3.33a 4.34±0.24a 6.88±0.57a 4.30±0.47ab
10× 96.67±3.33a 4.01±0.57a 7.21±1.60a 3.97±0.29ab
20× 100±0a 4.72±0.12a 8.09±0.15a 4.50±0.20ab
50× 86.67±13.33a 3.50±0.96a 6.84±2.33a 4.27±1.09ab
100× 96.67±3.33a 4.17±0.36a 7.59±1.25a 4.73±0.38a
200× 96.67±3.33a 3.98±0.22a 6.51±0.38a 4.63±0.27a
500× 96.67±3.33a 4.25±0.29a 6.56±0.93a 4.27±0.49ab

Table 3

Control efficacy of Tr21 fermentation broth on Pythium stalk rot at seedling stage in the greenhouse"

处理
Treatment
防治效果Control efficacy (%)
肿囊腐霉
P. inflatum
强雄腐霉
P. arrhenomanes
芒孢腐霉
P. aristosporum
60.67±3.08a 63.15±2.27a 59.66±1.57a
20× 46.54±3.48b 44.91±2.71b 38.06±3.63b
100× 32.01±2.44c 41.45±2.32b 40.89±6.04b

Fig. 8

Biocontrol efficacy of Tr21 fermentation broth on Pythium stalk rot"

Table 4

Field control efficacy of different coating ratios of Tr21 fermentation broth on Pythium stalk rot"

包衣比例
Coating ratio
发病率
Disease incidence (%)
防治效果
Control efficacy (%)
CK 54.00±3.06a
1﹕50 30.11±2.58b 43.97±5.53b
1﹕100 9.56±2.70d 82.25±2.70a
1﹕200 27.56±1.55c 49.13±1.55b
[1]
王振营, 王晓鸣. 我国玉米病虫害发生现状、趋势与防控对策. 植物保护, 2019, 45(1): 1-11.
WANG Z Y, WANG X M. Current status and management strategies for corn pests and diseases in China. Plant Protection, 2019, 45(1): 1-11. (in Chinese)
[2]
王晓鸣, 段灿星. 玉米病害和病原名称整理及其汉译名称规范化探讨. 中国农业科学, 2020, 53(2): 288-316. doi: 10.3864/j.issn.0578-1752.2020.02.006.
WANG X M, DUAN C X. Reorganization of maize disease and causal agent names and disscution on their standardized translation of Chinese names. Scientia Agricultura Sinica, 2020, 53(2): 288-316. doi: 10.3864/j.issn.0578-1752.2020.02.006. (in Chinese)
[3]
刘树森, 马红霞, 郭宁, 石洁, 张海剑, 孙华, 金戈. 黄淮海夏玉米主产区茎腐病主要病原菌及优势种分析. 中国农业科学, 2019, 52(2): 262-272. doi: 10.3864/j.issn.0578-1752.2019.02.006.
LIU S S, MA H X, GUO N, SHI J, ZHANG H J, SUN H, JIN G. Analysis of main pathogens and dominant species of maize stalk rot in the main summer maize producing areas of Huang-Huai-Hai. Scientia Agricultura Sinica, 2019, 52(2): 262-272. doi: 10.3864/j.issn.0578-1752.2019.02.006. (in Chinese)
[4]
徐书法, 陈捷, 高增贵, 邹庆道, 纪明山, 刘海南. 中国玉米茎基腐病和穗腐病研究进展. 植物病理学报, 2006, 36(3): 193-203.
XU S F, CHEN J, GAO Z G, ZOU Q D, JI M S, LIU H N. Maize stalk rot and ear rot in China. Acta Phytopathologica Sinica, 2006, 36(3): 193-203. (in Chinese)
[5]
段灿星, 王晓鸣, 武小菲, 杨知还, 宋凤景, 赵立萍, 孙素丽, 朱振东. 玉米种质和新品种对腐霉茎腐病和镰孢穗腐病的抗性分析. 植物遗传资源学报, 2015, 16(5): 947-954.

doi: 10.13430/j.cnki.jpgr.2015.05.004
DUAN C X, WANG X M, WU X F, YANG Z H, SONG F J, ZHAO L P, SUN S L, ZHU Z D. Analysis of maize accessions resistance to Pythium stalk rot and Fusarium ear rot. Journal of Plant Genetic Resources, 2015, 16(5): 947-954. (in Chinese)

doi: 10.13430/j.cnki.jpgr.2015.05.004
[6]
段灿星, 曹言勇, 董怀玉, 夏玉生, 李红, 胡清玉, 杨知还, 王晓鸣. 玉米种质资源抗腐霉茎腐病和镰孢茎腐病精准鉴定. 中国农业科学, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003.
DUAN C X, CAO Y Y, DONG H Y, XIA Y S, LI H, HU Q Y, YANG Z H, WANG X M. Precise characterization of maize germplasm for resistance to Pythium stalk rot and Gibberella stalk rot. Scientia Agricultura Sinica, 2022, 55(2): 265-279. doi: 10.3864/j.issn.0578-1752.2022.02.003. (in Chinese)
[7]
陈捷, 宋佐衡, 梁知洁, 咸洪泉. 玉米茎腐病生物防治初步研究. 植物保护, 1994, 20(3): 6-8.
CHEN J, SONG Z H, LIANG Z J, XIAN H Q. Preliminary study on biocontrol of corn stalk rot. Plant Protection, 1994, 20(3): 6-8. (in Chinese)
[8]
陈志谊. 芽孢杆菌类生物杀菌剂的研发与应用. 中国生物防治学报, 2015, 31(5): 723-732.

doi: 10.16409/j.cnki.2095-039x.2015.05.012
CHEN Z Y. Research and application of bio-fungicide with Bacillus spp.. Chinese Journal of Biological Control, 2015, 31(5): 723-732. (in Chinese)
[9]
张望月, 高健, 张超, 张友明, 胡胜标, 李岚岚, 孙运军, 丁学知, 夏立秋. 五种假单胞菌的分离鉴定及其生物活性. 微生物学报, 2013, 53(9): 957-965.
ZHANG W Y, GAO J, ZHANG C, ZHANG Y M, HU S B, LI L L, SUN Y J, DING X Z, XIA L Q. Isolation, identification and characterization of five Pseudomonas strains. Acta Microbiologica Sinica, 2013, 53(9): 957-965. (in Chinese)
[10]
王炫栋, 宋振, 兰赫婷, 江樱姿, 齐文杰, 刘晓阳, 蒋冬花. 杨梅园土壤优势放线菌的分离及其防病促生功能. 中国农业科学, 2023, 56(2): 275-286. doi: 10.3864/j.issn.0578-1752.2023.02.006.
WANG X D, SONG Z, LAN H T, JIANG Y Z, QI W J, LIU X Y, JIANG D H. Isolation of dominant actinomycetes from soil of waxberry orchards and its disease prevention and growth-promotion function. Scientia Agricultura Sinica, 2023, 56(2): 275-286. doi: 10.3864/j.issn.0578-1752.2023.02.006. (in Chinese)
[11]
吴晓儒, 陈硕闻, 杨玉红, 王永宏, 刘艳, 陈捷. 木霉菌颗粒剂对玉米茎腐病防治的应用. 植物保护学报, 2015, 42(6): 1030-1035.
WU X R, CHEN S W, YANG Y H, WANG Y H, LIU Y, CHEN J. Application of Trichoderma granules in the control of corn stalk rot. Journal of Plant Protection, 2015, 42(6): 1030-1035. (in Chinese)
[12]
李红磊, 刘二平, 李萍. 玉米青枯病生防细菌的筛选. 河南农业科学, 2010(7): 66-69.

doi: 10.3969/j.issn.1004-3268.2010.07.018
LI H L, LIU E P, LI P. Screening of biocontrol bacteria against corn stalk rot. Journal of Henan Agricultural Sciences, 2010(7): 66-69. (in Chinese)
[13]
任学祥, 苏贤岩, 闫学梅, 迟雨, 李钊, 叶正和. 含OH11发酵液玉米种衣剂的研制及其对茎基腐病的效果评价. 中国生物防治学报, 2022, 38(6): 1566-1571.

doi: 10.16409/j.cnki.2095-039x.2022.08.006
REN X X, SU X Y, YAN X M, CHI Y, LI Z, YE Z H. Development of corn seed coating agent containing OH11 fermentation broth and effect evaluation on stalk base rot. Chinese Journal of Biological Control, 2022, 38(6): 1566-1571. (in Chinese)

doi: 10.16409/j.cnki.2095-039x.2022.08.006
[14]
郭成, 张小杰, 张有富, 王春明, 周天旺, 李敏权.短密木霉菌株GAS1-1 的分离鉴定、拮抗作用及其生物学特性. 植物保护学报, 2019, 46(2): 305-312.
GUO C, ZHANG X J, ZHANG Y F, WANG C M, ZHOU T W, LI M Q. Isolation, identification, antagonistic effect and biological characteristics of Trichoderma brevicompactum strain GAS 1-1. Journal of Plant Protection, 2019, 46(2): 305-312. (in Chinese)
[15]
宋燕春, 裴二芹, 石云素, 王天宇, 黎裕. 玉米重要自交系的肿囊腐霉茎腐病抗性鉴定与评价. 植物遗传资源学报, 2012, 13(5): 798-802.

doi: 10.13430/j.cnki.jpgr.2012.05.016
SONG Y C, PEI E Q, SHI Y S, WANG T Y, LI Y. Identification and evaluation of resistance to stalk rot (Pythium inflatum Matthews) in important inbred lines of maize. Journal of Plant Genetic Resources, 2012, 13(5): 798-802. (in Chinese)
[16]
杨洋, 郭成, 孙素丽, 陈国康, 朱振东, 王晓鸣, 段灿星. 玉米抗腐霉茎腐病种质标记基因型鉴定与遗传多样性分析. 植物遗传资源学报, 2019, 20(6): 1418-1427.

doi: 10.13430/j.cnki.jpgr.20190228001
YANG Y, GUO C, SUN S L, CHEN G K, ZHU Z D, WANG X M, DUAN C X. Marker-assisted identification and genetic diversity analysis of maize germplasm resources with resistance to Pythium stalk rot. Journal of Plant Genetic Resources, 2019, 20(6): 1418-1427. (in Chinese)
[17]
丁新华, 宋子硕, 杨杰, 高国文, 付开赟, 贾尊尊, 吐尔逊·阿合买提, 郭文超. 玉米种质对腐霉茎腐病和镰孢茎腐病抗性鉴定与评价. 新疆农业科学, 2022, 59(12): 3047-3056.

doi: 10.6048/j.issn.1001-4330.2022.12.020
DING X H, SONG Z S, YANG J, GAO G W, FU K Y, JIA Z Z, TURSUN A, GUO W C. Identification and evaluation of maize germplasm resistance to Pythium stem rot and Fusarium stem rot. Xinjiang Agricultural Sciences, 2022, 59(12): 3047-3056. (in Chinese)

doi: 10.6048/j.issn.1001-4330.2022.12.020
[18]
宋凤景. 玉米对腐霉茎腐病抗病性研究[D]. 北京: 中国农业科学院, 2015.
SONG F J. Resistance of maize to Pythium stalk rot[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[19]
侯梦薇. 玉米芒孢腐霉茎腐病抗性鉴定与全基因组关联分析[D]. 郑州: 河南农业大学, 2022.
HOU M W. Precise characterization and genome wide association analysis of maize for resistance to Pythium aristosporum stalk rot[D]. Zhengzhou: Henan Agricultural University, 2022. (in Chinese)
[20]
SONG F J, XIAO M G, DUAN C X, LI H J, ZHU Z D, LIU B T, SUN S L, WU X F, WANG X M. Two genes conferring resistance to Pythium stalk rot in maize inbred line Qi319. Molecular Genetics and Genomics, 2015, 290(4): 1543-1549.

doi: 10.1007/s00438-015-1019-5
[21]
DUAN C X, SONG F J, SUN S L, GUO C, ZHU Z D, WANG X M. Characterization and molecular mapping of two novel genes resistant to Pythium stalk rot in maize. Phytopathology, 2019, 109(5): 804-809.

doi: 10.1094/PHYTO-09-18-0329-R pmid: 30328778
[22]
王晓鸣, 吴全安, 刘晓娟, 马国忠. 寄生玉米的6种腐霉及其致病性研究. 植物病理学报, 1994, 24(4): 343-346.
WANG X M, WU Q A, LIU X J, MA G Z. Identification and pathogenicity of Pythium spp. isolated from maize. Acta Phytopathologica Sinica, 1994, 24(4): 343-346. (in Chinese)
[23]
CARBONE I, KOHN L M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 1999, 91(3): 553-556.

doi: 10.1080/00275514.1999.12061051
[24]
JAKLITSCH W M, KOMON M, KUBICEK C P, DRUZHININA I S.Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia, 2005, 97(6): 1365-1378.

doi: 10.1080/15572536.2006.11832743
[25]
VISAGIE C, HOUBRAKEN J, FRISVAD J, HONG S B, KLAASSEN C H W, PERRONE G, SEIFERT K A, VARGA J, YAGUCHI T, SAMSON R A. Identification and nomenclature of the genus Penicillium. Studies in Mycology, 2014, 78(3): 343-371.

doi: 10.1016/j.simyco.2014.09.001
[26]
李明通, 孟凡强, 周立邦, 陈美容, 陆兆新. 生姜根腐病的病原菌鉴定及抗菌脂肽的防治效果. 南京农业大学学报, 2020, 43(6): 1134-1142.
LI M T, MENG F Q, ZHOU L B, CHEN M R, LU Z X. Identification of the pathogen of ginger root rot and the control efficiency of antifungal lipopeptides. Journal of Nanjing Agricultural University, 2020, 43(6): 1134-1142. (in Chinese)
[27]
张婷. 木霉菌生物种衣剂的创制与应用[D]. 上海: 上海交通大学, 2012.
ZHANG T. Creation and application of Trichodema bio-seed coating agent[D]. Shanghai: Shanghai Jiaotong University, 2012. (in Chinese)
[28]
晋齐鸣, 卢宗志, 潘顺法, 姜晶春. 玉米茎腐病病原对玉米苗期致病性研究. 玉米科学, 1994, 2(1): 73-75.
JIN Q M, LU Z Z, PAN S F, JIANG J C. Study on pathogenicities of pathogenic fungi of corn stalk rot in corn seedling stage. Journal of Maize Sciences, 1994, 2(1): 73-75. (in Chinese)
[29]
LU Z X, TU G P, ZHANG T, LI Y Q, WANG X H, ZHANG Q G, SONG W, CHEN J. Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize. Journal of Integrative Agriculture, 2020, 19(1): 145-152.

doi: 10.1016/S2095-3119(19)62734-6
[30]
GHISALBERTI E L, SIVASITHAMPARAM K. Antifungal antibiotics produced by Trichoderma spp.. Soil Biology and Biochemistry, 1991, 23(11): 1011-1020.

doi: 10.1016/0038-0717(91)90036-J
[31]
刘路宁, 屠艳拉, 张敬泽. 绿木霉菌株TY009防治纹枯病等水稻主要真菌病害的潜力. 中国农业科学, 2010, 43(10): 2031-2038. doi: 10.3864/j.issn.0578-1752.2010.10.008.
LIU L N, TU Y L, ZHANG J Z. Biocontrol potential of Trichoderma virens strain TY009 against rice sheath blight and other main fungal diseases. Scientia Agricultura Sinica, 2010, 43(10): 2031-2038. doi: 10.3864/j.issn.0578-1752.2010.10.008. (in Chinese)
[32]
陈凯, 杨合同, 李纪顺, 扈进冬, 张广志. 绿色木霉菌LTR-2孢子提取物的抑菌活性及化学成分分析. 微生物学通报, 2007, 34(3): 455-458.
CHEN K, YANG H T, LI J S, HU J D, ZHANG G Z. Analysis of chemical components and antifungal activity of extraction from conidia of Trichoderma viride LTR-2. Microbiology China, 2007, 34(3): 455-458. (in Chinese)
[33]
潘顺, 刘雷, 王为民. 哈茨木霉发酵液中peptaibols抗菌肽的鉴定及活性研究. 中国生物防治学报, 2012, 28(4): 528-536.
PAN S, LIU L, WANG W M. Identification of antibiotic peptaibols from fermentation broth of Trichoderma harzianum. Chinese Journal of Biological Control, 2012, 28(4): 528-536. (in Chinese)
[34]
LINDO L, MCCORMICK S P, CARDOZA R E, BUSMAN M, ALEXANDER N J, PROCTOR R H, GUTIERREZ S. Requirement of two acyltransferases for 4-O-acylation during biosynthesis of harzianum A, an antifungal trichothecene produced by Trichoderma arundinaceum. Journal of Agricultural and Food Chemistry, 2019, 67(2): 723-734.

doi: 10.1021/acs.jafc.8b05564
[35]
MALMIERCA M G, BARUA J, MCCORMICK S P, IZQUIERDO- BUENO I, CARDOZA R E, ALEXANDER N J, HERMOSA R, COLLADO I G, MONTE E, GUTIERREZ S. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environmental Microbiology, 2015, 17(4): 1103-1118.

doi: 10.1111/emi.2015.17.issue-4
[36]
LEITGEB B, SZEKERES A, MANCZINGER L, VAGVOELGYI C, KREDICS L. The history of alamethicin: A review of the most extensively studied peptaibol. Chemistry & Biodiversity, 2007, 4(6): 1027-1051.
[37]
张量, 张敬泽. 渐绿木霉抑菌物质的分离纯化及其对植物病原菌的抑制作用. 中国农业科学, 2015, 48(5): 882-888. doi: 10.3864/j.issn.0578-1752.2015.05.06.
ZHANG L, ZHANG J Z. Isolation and purification of active compound from Trichoderma viridescens and its inhibitory activities against phytopathogens. Scientia Agricultura Sinica, 2015, 48(5): 882-888. doi: 10.3864/j.issn.0578-1752.2015.05.06. (in Chinese)
[38]
CLAYDON N, ALLAN M, HANSON J R, AVENT A G. Antifungal alkyl pyrones of Trichoderma harzianum. Transactions of the British Mycological Society, 1987, 88(4): 503-513.

doi: 10.1016/S0007-1536(87)80034-7
[39]
COLLINS R P, HALIM A F. Characterization of the major aroma constituent of the fungus Trichoderma viride (Pers.). Journal of Agricultural and Food Chemistry, 1972, 20(2): 437-438.

doi: 10.1021/jf60180a010
[40]
SIMON A, DUNLOP R W, GHISALBERTI E L, SIVASITHAMPARAM K. Trichoderma koningii produces a pyrone compound with antibiotic properties. Soil Biology and Biochemistry, 1988, 20(2): 263-264.

doi: 10.1016/0038-0717(88)90050-8
[41]
杨萍, 杨谦. 木霉重寄生过程分子机制的研究进展. 中国农学通报, 2012, 28(27): 163-166.
YANG P, YANG Q. Research progress on molecular mechanism of Trichoderma mycoparasitism. Chinese Agricultural Science Bulletin, 2012, 28(27): 163-166. (in Chinese)
[42]
贺字典, 宋士清, 高玉峰, 石延霞, 李宝聚. 棘孢木霉Trichoderma asperellum在土壤中定殖量的荧光定量PCR检测. 植物保护学报, 2016, 43(4): 552-558.
HE Z D, SONG S Q, GAO Y F, SHI Y X, LI B J. Detection of Trichoderma asperellum colonization in soils by real-time fluorescent quantitative PCR. Journal of Plant Protection, 2016, 43(4): 552-558. (in Chinese)
[43]
王永阳. 防治苦瓜枯萎病的木霉菌株分离鉴定、定殖检测及其防病促生机理[D]. 泰安: 山东农业大学, 2018.
WANG Y Y. Isolation, identification, detection of colonization of Trichoderma strains for bitter gourd wilt and their mechanism of disease control and growth promotion[D]. Taian: Shandong Agricultural University, 2018. (in Chinese)
[1] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[2] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[3] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] WU Jing, CHEN Meng, WANG ZhiHua, YANG JiZhi, LI YanLi, WU YuShan, YANG WenYu. Effect of Different Strip Distances on Light Energy Utilization in Strip Intercropping Maize [J]. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659.
[13] JIANG WenYang, CHEN JunNan, ZAN ZhiMan, WANG JiangTao, ZHENG Bin, LIU Ling, LIU Juan, JIAO NianYuan. Regulation of Single-Seed Sowing and Phosphorus Application on Interspecific Competition and Growth of Intercropping Peanut [J]. Scientia Agricultura Sinica, 2023, 56(23): 4660-4670.
[14] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[15] WANG DanDan, CHEN HuanXuan, ZHANG Chong, JU XiaoTang. Spatial Differences and Driving Factors of Aboveground Nitrogen Uptake in Per Hundred Kilograms Grain of Maize in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 3996-4009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!