Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (23): 4470-4484.doi: 10.3864/j.issn.0578-1752.2018.23.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Quantifying Carbon Sink by Biochar Compound Fertilizer Project for Domestic Voluntary Carbon Trading in Agriculture

SUN JianFei(),ZHENG JuFeng,CHENG Kun(),YE Yi,ZHUANG Yuan,PAN GenXing   

  1. Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095
  • Received:2018-04-19 Accepted:2018-08-02 Online:2018-12-01 Published:2018-12-12

Abstract:

【Objective】Industrial system of straw pyrolysis - biochar compound fertilizer (BCF) - ecological agriculture is emerging in China. As a suggested measure which could promote soil organic carbon pool and mitigate greenhouse gas emissions through replacing chemical fertilizer, BCF application has the potential to participate in China’s ongoing carbon trading of voluntary emission reduction (VER). Development of a measurable, reportable and verifiable net greenhouse gas (GHG) reduction quantification methodology is the basis for the implementation of VER carbon trading. The objective of this study was to discuss and develop a methodology for quantifying carbon sequestration and GHG emission mitigation in BCF project, which might provide scientific basis and methodology support for BCF project to attend the VER carbon trading. 【Method】Based on the theoretical framework of the methodology for VER projects, a discussion of how to develop a methodology for BCF project was performed from the aspects of project eligibility, baseline, boundary, carbon pool, key GHG sources, leakage and net carbon sink quantification by incorporating the recorded VER methodologies, the existing frameworks of carbon sequestration and GHG reduction quantification in cropland, and the BCF scientific research basis. In addition, a case study was conducted to quantify the net carbon sink in BCF project under different cropping systems by using the data from literature collection and field survey, which would assess the feasibility of the discussed methodology by this study. 【Result】Through analyzing and discussing, this study indicated that the baseline scenario of BCF project should be local conventional fertilization management in the methodology, and the boundary could be determined according to the difference of farmland operation mode, such as the boundaries of smallholder operated farmland and factory-farmland system intensive operated by enterprises. The key GHG sources and carbon pool considered in the methodology were suggested as farmland N2O and CH4 emissions, and soil organic carbon pools, respectively. The extra GHG emissions induced by the transportation of BCF or the changes in original straw utilization method could be considered as leakage. According to the case study, the net carbon sink of 1 439.77 kg CO2-eq·hm -2 and 281.58 kg CO2-eq·hm -2 for the growing seasons of winter wheat and rice production could be obtained, respectively, when the boundary was set as smallholder operated farmland. However, in the boundary of factory-farmland system intensive operated by enterprises, the carbon sink obtained in the farmland might offset by the GHG emissions in the process of BCF production, and the net carbon sink of 1 479.01 kg CO2-eq·hm -2 and 340.43 kg CO2-eq·hm -2 for the growing seasons of winter wheat and rice production could be obtained, respectively, once the BCF production process was optimized. Given these, the optimizing of BCF production process by recycling the by-products would make the carbon trading of VER by BCF project feasible. 【Conclusion】A theoretical framework and a set of methods were proposed to quantify the net carbon sink for BCF project. The case study indicated that the developed methodology could be well applied into the quantification of net carbon sink for BCF project, and it was found that dry cropping system had the higher net carbon sink than paddy rice cropping system under BCF project, while optimizing the production process of BCF was an important pathway to obtain the considerable amount of carbon sink under factory-farmland system operated by enterprises. This study indicated that a national or industry standard of BCF should be established as soon as possible to provide a theoretical basis for project eligibility identification; meanwhile the attentions should be paid to the development of regional specific N2O and CH4 emission reduction factors and soil carbon sequestration factors for different types of BCFs applied.

Key words: carbon trading, agricultural carbon reduction, biochar compound fertilizer, methodology framework, climate change, straw pyrolysis

Fig. 1

Methodology of development framework"

Table 1

Configuration of energy cost within the life cycle of BCF production"

原料成本参数 Feedstock cost
收储到工厂
Storage to factory distance
运输油耗[25]
Fuel consumption
柴油排放因子[26]
Diesel emission factor
电力排放因子[28]
Electricity emission factor
16 km 1.60 L·t-1 0.00263 t CO2-eq·L-1 0.928 kg·kWh-1
生物质炭生产的能流[27] Energy flow with biochar production
电力消耗
Electricity consumption
原料消耗
Feedstock
产率
Biochar yield
气体发电
Syngas gas generated power
1500 MWh 30000 t 35% 9 GWh
肥料制造能耗 Energy consumption in fertilizer manufacturing
类型
Fertilizer type
产量
Output
耗电
Power consumption
滚筒造粒功率
Drum granulation power
炭基肥 Biochar-based compound fertilizer 2.94 t·h-1 31.3 kWh·t-1 7.48 kWh·t-1
普通复合肥 Chemical Compound fertilizer 5.29 t·h-1 28.0 kWh·t-1 4.16 kWh·t-1

Table 2

Fertilizer application rates in the case study"

作物种植类型
Crop type
基线/项目
Baseline/Project
炭基肥料用量
Biochar compound fertilizer (kg·hm-2)
普通肥料用量
Chemical fertilizer (kg·hm-2)
冬小麦
Winter wheat
基线 Baseline 0 N:180.75; P2O5:50.63; K2O:50
项目活动Project activity Biochar:72; N:54; P2O5:27; K2O:30 N:120.23; P2O5:50.63; K2O:50
水稻
Paddy rice
基线 Baseline 0 N: 208.88; P2O5:72; K2O:72
项目活动 Project activity Biochar:108; N:81; P2O5:40.5; K2O:45 N:186

Fig. 2

The boundary scenarios considered in the methodology"

Table 3

Net carbon sink under baseline A scenario"

作物类型
Crop type
基线/项目
Baseline/Project
温室气体排放GHG emissions (kg CO2-eq·hm-2) 净碳汇量
Net carbon sink (kg CO2-eq·hm-2)
ΔSOC N2O CH4 泄漏 Leakage
小麦
Wheat
基线 Baseline 0 2114.70 0 0 1439.78
项目活动 Project activity -96.23 771.15 0 0
水稻
Paddy rice
基线 Baseline 0 188.15 288.96 0 281.58
项目活动 Project activity -144.34 124.55 215.32 0

Table 4

Greenhouse gas emissions in the process of biochar compound fertilizer production"

排放种类
Emission sources
排放量
GHG emissions (kg CO2-eq·t-1)
秸秆打包收集运输
Straw packing and transportation
2.89
生物质炭生产
Biochar production
优化 Optimize:-162.72
未优化 Un-optimize:70.42
炭基肥生产
Biochar compound fertilizer production
29.06
总排放
Sum of emissions
优化Optimize:-130.77
未优化 Un-optimize:102.36

Table 5

Net carbon sink under scenario B"

作物类型
Crop type
基线/项目
Baseline/Project
温室气体排放 GHG emissions (kg CO2-eq·hm-2) 净碳汇量
Net carbon sink
(kg CO2-eq·hm-2)
ΔSOC N2O CH4 炭基肥
Biochar compound fertilizer
泄漏
Leakage
小麦
Wheat
基线 Baseline 0 2114.70 0 0 0 1479.01/1329.57
项目活动 Project activity -96.23 771.15 0 -39.23/30.71 0
水稻
Paddy rice
基线 Baseline 0 188.15 288.96 0 0 340.43/235.52
项目活动 Project activity -114.34 124.55 215.32 -58.85/40.06 0
[1] 冯相昭, 李丽平, 田春秀, 尚宏博 . 中国CDM项目对可持续发展的影响评价. 中国人口. 资源与环境, 2010,20(7):129-135.
FENG X Z, LI L P, TIAN C X, SHANG H B . Assessing the Impacts of CDM Projects Implemented in China on Sustainable Development. China Population Resources and Environment, 2010,20(7):129-135. (in Chinese)
[2] SMITH P, HOUSE J I, BUSTAMANTE M, SOBOCKA J, HARPER R, PAN G X, WEST P, CLARK J M, ADHYA T, RUMPEL C, PAUSTIAN K, KUIKMAN P, GRIFFITHS R I, ASAKAWA S, BONDEAU A, JAIN A, MEERSMANS J, PUGH T S A . Global change pressures on soils from land use and management. Global Change Biology, 2016,22(3):1008-1028. DOI: 10.1111/gcb.13068.
doi: 10.1111/gcb.13068 pmid: 26301476
[3] 丁丁 . 开展国内自愿减排交易的理论与实践研究. 中国能源, 2011,33(2):33-37.
doi: 10.3969/j.issn.1003-2355.2011.02.007
DING D . Theoretical and practical research on conducting domestic voluntary emission reduction transactions. Energy and Environment, 2011,33(2):33-37. (in Chinese)
doi: 10.3969/j.issn.1003-2355.2011.02.007
[4] 国家发展和改革委员会. 中华人民共和国国家发展和改革委员会公告 [EB/OL]. , 2017-03-14.
National Development Reform Commission. Announcement of the National Development and Reform Commission of the People’s Republic of China[EB/OL]. , 2017-03-14.(in Chinese)
[5] SMITH P, MARTINO D, CAI Z, GWARY D, JANZEN H, KUMAR P, MCCARL B, OGLE S, O’MARA F, RICE C, SCHOLES BM, SIROTENKO O, HOWDEN M, MCALLISTER T, PAN G X, ROMANENKOV V, SCHNEIDER U, TOWPRAYOON S, WATTENBACH M, SMITH J . Greenhouse gas mitigation in agriculture. Philosophical Transactions Biological Sciences, 2008,363(1492):789-813.
doi: 10.1098/rstb.2007.2184 pmid: 2610110
[6] 王英姿, 黄毅斌, 翁伯琦, 王义祥 . 中国农业CDM发展现状及潜力研究. 福建农林大学学报, 2010,13(4):26-29.
WANG Y Z, HUANG Y B, WENG B Q, WANG Y X . Research on development status and potential of agricultural CDM in China. Journal of Fujian Agriculture and Forestry University, 2010,13(4):26-29. (in Chinese)
[7] 潘根兴, 李恋卿, 刘晓雨, 程琨, 卞荣军, 吉春颖, 郑聚峰, 张旭辉, 郑金伟 . 热裂解生物质炭产业化: 秸秆禁烧与绿色农业新途径. 科技导报, 2015,33(13):92-101.
doi: 10.3981/j.issn.1000-7857.2015.13.015
PAN G X, LI L Q, LIU X Y, CHENG K, BIAN R J, JI C Y, ZHENG J F, ZHANG X H, ZHENG J W . Industrialization of biochar from biomass pyrolysis:A new option for straw burning ban and green agriculture of China. Science & Technology Review, 2015,33(13):92-101. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2015.13.015
[8] WOOLF D, AMONETTE J E, STREETPERROTT F A, LEHMANN J, JOSEPH S . Sustainable biochar to mitigate global climate change. Nature Communications, 2010,1(5):56-65.
doi: 10.1038/ncomms1053 pmid: 20975722
[9] POEPLAU C . Carbon sequestration in agricultural soils via cultivation of cover crops, A meta-analysis. Agriculture Ecosystems & Environment. 2015,200:33-41.
doi: 10.1016/j.agee.2014.10.024
[10] CAYUELA M L, ZWIETEN L V, SINGH B P, JEFFERY S, ROIG A, SANCHEZ-MONEDERO M A . Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture Ecosystems & Environment, 2014,191:5-16.
doi: 10.1016/j.agee.2013.10.009
[11] LIU X Y, ZHANG A F, JI C Y, JOSEPH S, BIAN R J, LI L Q, PAN G X, PAZ-FERRERIO J . Biochar’s effect on crop productivity and the dependence on experimental conditions—A meta-analysis of literature data. Plant & Soil, 2013,373(1/2):583-594.
doi: 10.1007/s11104-013-1806-x
[12] 潘根兴, 林振衡, 李恋卿, 张阿凤, 郑金伟, 张旭辉 . 试论我国农业和农村有机废弃物生物质碳产业化. 中国农业科技导报, 2011,13(01):75-82.
doi: 10.3969/j.issn.1008-0864.2011.01.12
PAN G X, LIN Z H, LI L Q, ZHANG A F, ZHENG J W, ZHANG X H . Perspective on biomass carbon industrialization of organic waste from agriculture and rural areas in China. Journal of Agricultural Science and Technology, 2011,13(01):75-82. (in Chinese)
doi: 10.3969/j.issn.1008-0864.2011.01.12
[13] 李正东, 陶金沙, 李恋卿, 潘根兴, 刘晓雨, 张旭辉, 郑聚锋, 郑金伟, 王家芳, 俞欣妍 . 生物质炭复合肥对小麦产量及温室气体排放的影响. 土壤通报, 2015,46(01):177-183.
LI Z D, TAO J S, LI L Q, PAN G X, LIU X Y, ZHANG X H, ZHENG J F, ZHENG J W, WANG J F, YU X Y . Effects of biochar-based fertilizers on wheat yield and greenhouse gases emissions. Chinese Journal of Soil Science, 2015,46(01):177-183. (in Chinese)
[14] QIAN L, CHEN L, JOSEPH S, PAN G X, LI L Q, ZHENG J W, ZHANG X H, ZHENG J F, YU X Y, WANG J F . Biochar compound fertilizer as an option to reach high productivity but low carbon intensity in rice agriculture of China. Carbon Management, 2014,5(2):145-154.
doi: 10.1080/17583004.2014.912866
[15] ZHENG J F, HAN J M, LIU Z W, XIA W B, ZHANG X H, LI L Q, LIU X Y, BIAN R J, CHENG K, ZHENG J W, PAN G X . Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture Ecosystems & Environment, 2017,241:70-78.
doi: 10.1016/j.agee.2017.02.034
[16] 程琨, 潘根兴, 罗婷 . 测土配方施肥固碳减排计量方法指南. 北京: 中国标准出版社, 2012.
CHENG K, PAN G X, LUO T. Quantifying Carbon Sequestration and Reduction in Greenhouse Gas Emission Under Recommended Fertilization Project Methodology Guide. Beijing: Standards Press of China, 2012. ( in Chinese)
[17] 中国碳交易网 . 保护性耕作减排增汇项目方法学. .2016-06-27.
China Carbon Trading Network . Conservation tillage emission reduction project methodology. .2016-06-27.(in Chinese)
[18] 齐海云, 张一婷, 张尊举, 姚淑霞 . 清洁发展机制项目合格性识别方法. 环境保护, 2008(24):84-85.
doi: 10.3969/j.issn.0253-9705.2008.24.030
QI H Y, ZHANG Y T, ZHANG Z J, YAO S X . Clean development mechanism project compliance recognition method.Environmental Protection, 2008(24):84-85. (in Chinese)
doi: 10.3969/j.issn.0253-9705.2008.24.030
[19] 黄山枫, 陆根法, 刘庆强 . CDM的项目合格性识别分析. 环境科学与管理, 2007(5):31-34.
doi: 10.3969/j.issn.1673-1212.2007.05.009
HUANG S F, LU G F, LIU Q Q . Analysis of project identification for eligibility in CDM.Environmental Science and Management, 2007(5):31-34. (in Chinese)
doi: 10.3969/j.issn.1673-1212.2007.05.009
[20] 吕学都 . 清洁发展机制在中国. 北京: 清华大学出版社, 2004.
LÜ X D. Clean Development Mechanism in China. Beijing: Tsinghua University Press, 2004. ( in Chinese)
[21] 李玉娥, 董红敏, 万运帆, 秦晓波, 高清竹, 华珞 . 规模化养鸡场CDM项目减排及经济效益估算. 农业工程学报, 2009,25(1):194-198.
LI Y E, DONG H M, WAN Y F, QIN X B, GAO Q Z, HUA L . Emission reduction from Clean Development Mechanism projects on intensive livestock farms and its economic benefits. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(1):194-198. (in Chinese)
[22] 李晓 . 施用生物质炭及炭基肥对温室气体排放、玉米生长及土壤性质的影响.[D]. 南京: 南京农业大学, 2013.
LI X . Effects of biochar and biochar-based fertilizer amendment on greenhouse gas emission, maize growth and soil properties[D]. Nanjing: Nanjing Agricultural University, 2013. ( in Chinese)
[23] 陈琳, 乔志刚, 李恋卿, 潘根兴 . 施用生物质炭基肥对水稻产量及氮素利用的影响. 生态与农村环境学报, 2013,29(5):671-675.
CHEN L, QIAO Z G, LI L Q, PAN G X . Effects of biochar-based fertilizers on rice yield and nitrogen use efficiency. Journal of Ecology and Rural Environment, 2013,29(5):671-675. (in Chinese)
[24] 杜衍红, 蒋恩臣, 王明峰, 许细微, 郭信辉, 史冬冬, 李世博 . 炭基缓释肥对玉米生长的影响研究. 中国农学通报, 2015,31(12):72-76.
doi: 10.11924/j.issn.1000-6850.2014-2393
DU Y H, JIANG E C, WANG M F, XU X W, GUO X H, SHI D D, LI S B . Study on growth and yield of maize with charcoal based slow-release fertilizer. Chinese Agricultural Science Bulletin, 2015,31(12):72-76. (in Chinese)
doi: 10.11924/j.issn.1000-6850.2014-2393
[25] 方艳茹, 廖树华, 王林风, 任兰天, 谢光辉 . 小麦秸秆收储运模型的建立及成本分析研究. 中国农业大学学报, 2014,19(2):28-35.
doi: 10.11841/j.issn.1007-4333.2014.02.05
FANG Y R, LIAO S H, WANG L F, REN L T, XIE G H . Model establishment and cost analysis on wheat straw logistic system. Journal of China Agricultural University, 2014,19(2):28-35. (in Chinese)
doi: 10.11841/j.issn.1007-4333.2014.02.05
[26] BP China, 2007. Calculator of Carbon Emission. .
[27] JI C Y, CHENG K, NAYAK D, PAN G X . Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. Journal of Cleaner Production, 2018,192:916-923.
doi: 10.1016/j.jclepro.2018.05.026
[28] 国家发改委气候变化司 . 省级温室气体清单编制指南(试行). .
Climate Change Division of National Development and Reform Commission. Guidelines for the provincial inventory of greenhouse gas(Trial). (in Chinese)
[29] IBI ( 2013) ‘Standardized product definition and product testing guidelines for biochar that is used in soil’, IBI-STD-01.1, International Biochar Initiative, , accessed Augus. 12, 2013.
[30] 农业部新闻办公室 . 农业部办公厅关于推介发布秸秆农用十大模式的通知. , 2017-04-28.
News Office of Ministry of Agriculture. The general office of the ministry of agriculture on promoting the release of ten models for straw agricultural use. , 2017-04-28.(in Chinese)
[31] 潘根兴, 李恋卿, 刘晓雨, 程琨, 卞荣军, 吉春颖, 郑聚锋, 张旭辉, 郑金伟 . 热裂解生物质炭产业化:秸秆禁烧与绿色农业新途径. 科技导报, 2015,33(13):92-101.
doi: 10.3981/j.issn.1000-7857.2015.13.015
PAN G X, LI L Q, LIU X Y, CHENG K, BIAN R J, JI C Y, ZHENG J F, ZHENG X H, ZHENG J W . Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China. Science & Technology Review, 2015,33(13):92-101. (in Chinese)
doi: 10.3981/j.issn.1000-7857.2015.13.015
[32] ZHANG X, BOL R, RAHN C, XIAO G, MENG F Q, WU W L . Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980-2014 in Northern China. Science of the Total Environment, 2017,61:596-597.
doi: 10.1016/j.scitotenv.2017.04.064 pmid: 28415005
[33] BURNEY J A, DAVIS S J, LOBELL D B . Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(26):12052-12057.
doi: 10.1073/pnas.0914216107
[34] LEHNDORFF E, ROTH P J, CAO Z H, AMELUNG W . Black carbon accrual during 2000 years of paddy-rice and non-paddy cropping in the Yangtze River Delta, China. Global Change Biology, 2014,20(6):1968-1978.
doi: 10.1111/gcb.12468 pmid: 24227744
[35] ZIMMERMAN A R, GAO B. The Stability of Biochar in the Environment. Biochar and Soil Biota. Boca Raton. FL: CRC Press, 2013: 1-40.
[36] SINGH N, ABIVEN S, TORN M S, SCHMIDT M . Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences, 2012,9(8):2847-2857.
doi: 10.5194/bg-9-2847-2012
[37] LEHMANN J, SKJEMSTAD J, SOHI S, CARTER J, BARSON M, FALLOON P, COLEMAN K, WOODBURY P, KRULL E . Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geoscience, 2008,1(12):832-835.
doi: 10.1038/ngeo358
[38] BOSCO S, BENE C D, GALLI M, REMORINI D, MASSAI R, BONARI E . Soil organic matter accounting in the carbon footprint analysis of the wine chain. International Journal of Life Cycle Assessment, 2013,18(5):973-989.
doi: 10.1007/s11367-013-0567-3
[39] LIU X Y, QU J J, LI L Q, ZHANG A F, ZHENG J F, ZHENG J W, PAN G X . Can biochar amendment be an ecological engineering technology to depress N2O emission in rice paddies?—A cross site field experiment from South China. Ecological Engineering, 2012,42(9):168-173.
doi: 10.1016/j.ecoleng.2012.01.016
[40] LIU J Y, SHEN J L, LI Y, SU Y R, GE T D, JONES D L . Effects of biochar amendment on the net greenhouse gas emission and greenhouse gas intensity in a Chinese double rice cropping system. European Journal of Soil Biology, 2014,65:30-39.
doi: 10.1016/j.ejsobi.2014.09.001
[41] SHEN J L, TANG H, LIU J Y, WANG C, LI Y, HE T D, JONES D L, WU J S . Contrasting effects of straw and straw-derived biochar amendments on greenhouse gas emissions within double rice cropping systems. Agriculture Ecosystems & Environment, 2014,188(4):264-274.
doi: 10.1016/j.agee.2014.03.002
[42] 中华人民共和国统计局. 中国统计年鉴2016. 北京: 中国统计出版社, 2016.
National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2016. Beijing: China Statistics Press, 2016. ( in Chinese)
[43] CHENG K, PAN G X, SMITH P, LUO T, LI L Q, ZHENG J W, ZHANG X H, HAN X J, YAN M . Carbon footprint of China’s crop production-An estimation using agro-statistics data over 1993-2007. Agriculture Ecosystems & Environment, 2011,142(3/4):231-237.
doi: 10.1016/j.agee.2011.05.012
[44] HILLIER J, HAWES C, SQUIRE G, HILTON A, WALE S, SMITH P . The carbon footprints of food crop production. International Journal of Agricultural Sustainability. 2009,7(2):107-118.
doi: 10.3763/ijas.2009.0419
[45] HUANG Y, SASS R L, FRANK M. FISHER J . A semi‐empirical model of methane emission from flooded rice paddy soils. Global Change Biology, 1998,4(3):247-268.
doi: 10.1046/j.1365-2486.1998.00129.x
[46] HUANG Y, ZHANG W, Zheng X H, LIU J, YU Y Q . Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research Atmospheres, 2004,109(D8):1-12. DOI: 10.1029/2003JD004401.
doi: 10.1029/2003JD004401
[47] YAN X Y, CAI Z C, OHARA T, AKIMOTO H . Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. Journal of Geophysical Research Atmospheres, 2003,108(D16):4505-4515. DOI: 10.1029/2002JD003182.
doi: 10.1029/2002JD003182
[48] ZOU J W, HUANG Y, ZHENG X H, WANG Y S . Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China: Dependence on water regime. Atmospheric Environment, 2007,41(37):8030-8042.
doi: 10.1016/j.atmosenv.2007.06.049
[49] ZHENG X H, FU C B, XU X K, YAN X D, HUANG Y, HAN S H, HU F, CHEN G X . The Asian nitrogen cycle case study. Ambio A Journal of the Human Environment, 2002,31(2):79-87.
doi: 10.1639/0044-7447(2002)031[0079:TANCCS]2.0.CO;2 pmid: 12078013
[50] ZHENG X H, LIU C Y, HAN S H . Description and application of a model for simulating regional nitrogen cycling and calculating nitrogen flux. Advances in Atmospheric Sciences, 2008,25(2):181-201.
doi: 10.1007/s00376-008-0181-7
[51] CHENGK, OGLE S M, PARTON W J, PAN G X . Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model. Ecological Modelling, 2013,261:19-31.
doi: 10.1016/j.ecolmodel.2013.04.003
[52] BUDAI A, ZIMMERMAN A R, COWIE A L, WEBBER J B W, SINGH B P, GLASER B, MASIELLO C A, ANDERSSON D, SHIELDS F, LEHMANN J, ARBESTAIN M C, WILLIAMS M, SOHI S, JOSEPH S . ( 2013) ‘Biochar Carbon Stability Test Method: An assessment of methods to determine biochar carbon stability’, IBI Document, Carbon Methodology. International Biochar Initiative. , accessed 15 February 2014.
[53] 章明奎, 顾国平, 王阳 . 生物质炭在土壤中的降解特征. 浙江大学学报(农业与生命科学版)., 2012,38(3):329-335.
ZHANG M K, GU G P, WANG Y . Degradation characteristic of different biochar material in soil environments. Journal of Zhejiang University (Agric. & Life Sci.), 2012,38(3):329-335. (in Chinese)
[54] LEHMANN J, JOSEPH S . Biochar for environment management science and technology. Science and Technology. Earthscan, 2009,25(1):15801-15811.
[55] HERATH H M S K, CAMPS‐ARBESTAIN M, HEDLEY M J, KIRSCHBAUM M U F, WANG T, HALE R V . Experimental evidence for sequestering C with biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. Global Change Biology Bioenergy, 2015,7(3):512-526.
doi: 10.1111/gcbb.2015.7.issue-3
[56] BRUUN E W, AMBUS P, EGSGAARD H, NIELSEN H H . Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry, 2012,46(1):73-79.
doi: 10.1016/j.soilbio.2011.11.019
[57] JI X H, WU J M, PENG H, SHI L H, ZHANG Z H, LIU Z B, TIAN F X, HUO L J, ZHU J . The effect of rice straw incorporation into paddy soil on carbon sequestration and emissions in the double cropping rice system. Journal of the Science of Food & Agriculture, 2012,92(5):1038-1045.
doi: 10.1002/jsfa.5550 pmid: 22227948
[58] KHAN S, CHAO C, WAQAS M, ARO H P H, ZHU Y G . Sewage sludge biochar influence upon rice (Oryza sativa L.) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science & Technology., 2013,47(15):8624-8632.
doi: 10.1021/es400554x pmid: 23796060
[59] XU H J, WANG X H, LI H, YAO H Y, SU J Q, ZHU Y G . Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environmental Science & Technology, 2014,48(16):9391-9399.
doi: 10.1021/es5021058 pmid: 25054835
[60] HARTER J, KRAUSE H M, SCHUETTLER S, RUSER R, FROMME M, SCHOLTEN T, KAPPLER A, BEHRENS S . Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. The ISME Journal, 2014,8(3):660-674.
doi: 10.1038/ismej.2013.160 pmid: 3930306
[61] LIU X Y, YE Y X, LIU M L, ZAHNG A F, ZHANG X H, LI L Q, PAN G X . Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China. Agricultural Systems, 2014,129:22-29.
doi: 10.1016/j.agsy.2014.05.008
[62] CAYUELA M L, ZWIETEN L V, SINGH B P, JEFFERY S, ROIG A , SANCHEZ-MONEDERO M A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture Ecosystems & Environment, 2014,191:5-16.
[63] 潘根兴, 卞荣军, 程琨 . 从废弃物处理到生物质制造业:基于热裂解的生物质科技与工程. 科技导报., 2017,35(23):82-93.
PAN G X, BIAN R J, CHENG K . From biowaste treatment to novel bio-material manufacturing: Biomaterial science and technology based on biomass pyrolysis. Science & Technology Review, 2017,35(23):82-93. (in Chinese)
[64] 原鲁明, 赵立欣, 沈玉君, 尚书旗, 孟海波 . 我国生物炭基肥生产工艺与设备研究进展. 中国农业科技导报, 2015,17(4):107-113.
YUAN L M, ZHAO L X, SHEN Y J, SHANG S Q, MENG H B . Progress on biochar-based fertilizer production technology and equipment in China. Journal of Agricultural Science and Technology, 2015,17(4):107-113. (in Chinese)
[65] HE Y H, ZHOU X H, JIANG L L, LI M, DU Z G, ZHOU G Y, SHAO J J, WANG X H, XU Z H, BAI S H, WALLACE H, XU C Y . Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy., 2017,9:743-755. DOI: 10.1111/gcbb.1237.
doi: 10.1111/gcbb.12376
[66] SONG X Z, PAN G X, ZHANG C, ZAHNG L, WANG H L . Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta‐analysis. Ecosystem Health & Sustainability, 2016,2(2):1-13. DOI: 10.1002/ehs2.1202.
[67] JEFFERY S, VERHEIJEN F G A, KAMMANN C, ABALOS D . Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology & Biochemistry, 2016,101:251-258.
doi: 10.1016/j.soilbio.2016.07.021
[68] GOGLIO P, SMITH W N, GRANT B B, DESJARDINS R L, CAO X, TENUTA M, CAMPBELL C A, MCCONKEY B G, NEMECEK T, BURGESS P J, WILLIAMS A G . A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. Journal of Cleaner Production, 2018,172:4010-4017.
doi: 10.1016/j.jclepro.2017.03.133
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] JianZhao TANG,Jing WANG,DengPan XIAO,XueBiao PAN. Research Progress and Development Prospect of Potato Growth Model [J]. Scientia Agricultura Sinica, 2021, 54(5): 921-932.
[5] ZHANG WeiJian,CYAN ShengJi,CZHANG Jun,CJIANG Yu,CDENG Aixing. Win-Win Strategy for National Food Security and Agricultural Double-Carbon Goals [J]. Scientia Agricultura Sinica, 2021, 54(18): 3892-3902.
[6] FANG Rui,YU ZhenHua,LI YanSheng,XIE ZhiHuang,LIU JunJie,WANG GuangHua,LIU XiaoBing,CHEN Yuan,LIU JuDong,ZHANG ShaoQing,WU JunJiang,Stephen J HERBERT,JIN Jian. Effects of Elevated CO2 Concentration and Warming on Soil Carbon Pools and Microbial Community Composition in Farming Soil [J]. Scientia Agricultura Sinica, 2021, 54(17): 3666-3679.
[7] KaiYuan GONG,Liang HE,DingRong WU,ChangHe LÜ,Jun LI,WenBin ZHOU,Jun DU,Qiang YU. Spatial-Temporal Variations of Photo-Temperature Potential Productivity and Yield Gap of Highland Barley and Its Response to Climate Change in the Cold Regions of the Tibetan Plateau [J]. Scientia Agricultura Sinica, 2020, 53(4): 720-733.
[8] WANG MingLei,SHI WenJiao. Spatial-Temporal Changes of Newly Cultivated Land in Northern China and Its Zoning Based on Driving Factors [J]. Scientia Agricultura Sinica, 2020, 53(12): 2435-2449.
[9] ZHANG ZhenTao, YANG XiaoGuang, GAO JiQing, WANG XiaoYu, BAI Fan, SUN Shuang, LIU ZhiJuan, MING Bo, XIE RuiZhi, WANG KeRu, LI ShaoKun. Analysis of Suitable Sowing Date for Summer Maize in North China Plain Under Climate Change [J]. Scientia Agricultura Sinica, 2018, 51(17): 3258-3274.
[10] JING LiQuan, HU ShaoWu, MU HaiRong, WANG YunXia, YANG LianXin. Change of Atmospheric Environment Leads to Deterioration of Rice Quality [J]. Scientia Agricultura Sinica, 2018, 51(13): 2462-2475.
[11] LIU Wei, LI YiJun, Lü HouQuan. Responses of Heading to Flowering to Maturity of Early Rice to Climate Change and Different Transplant Periods [J]. Scientia Agricultura Sinica, 2018, 51(1): 49-59.
[12] ZHANG Ting, SHI ZhiGang, WANG GenPing, GAO Xiang, XIA XueYan, YANG WeiHong, ZHANG XiRui, TIAN XiaoJian, CHENG RuHong, DIAO XianMin. The Alterations of Foxtail Millet Breeding in North China Summer-Sowing Region from 2001 to 2015 [J]. Scientia Agricultura Sinica, 2017, 50(23): 4475-4485.
[13] SUN XinSu, LONG ZhiWei, SONG GuangPeng, CHEN ChangQing. Effects of Climate Change on Cropping Pattern and Yield of Summer Maize-Winter Wheat in Huang-Huai-Hai Plain [J]. Scientia Agricultura Sinica, 2017, 50(13): 2476-2487.
[14] FU Xiao-wei, WU Kong-ming. Responses of Migratory Insects to Global Climate Change [J]. Scientia Agricultura Sinica, 2015, 48(S): 1-15.
[15] LI Yue, GUO Li-ping, XIE Li-yong, HUANG Shu-qing, XU Yu-xiu, ZHAO Xun. Modeling the Future Changes of Soil Organic Carbon Under Different Management Practices in Upland Soils of Northeast China [J]. Scientia Agricultura Sinica, 2015, 48(3): 501-513.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!