Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (22): 4417-4427.doi: 10.3864/j.issn.0578-1752.2023.22.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effect of Light Intensity on Leaf Hydraulic Conductivity and Vein Traits of Soybean at Seedling Stage

GAO Jing(), CHEN JiYu, TAN XianMing, WU YuShan, YANG WenYu, YANG Feng()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu 611130
  • Received:2023-03-27 Accepted:2023-05-04 Online:2023-11-16 Published:2023-11-17

Abstract:

【Objective】The objective of this study is to explore the effects of light intensity on leaf hydraulic conductivity, photosynthetic traits, and water potential in soybean seedlings, analyze the adaptive mechanisms of leaf vein traits in response to varying light intensities, and to provide theoretical support for enhancing future light energy utilization in soybean.【Method】Two soybean varieties, Nandou 12 (shade-tolerant) and Guixia 7 (shade-sensitive), were cultivated and placed in growth chambers. The plants were exposed to varying light conditions, including high light intensity (HL) at (424.47±12.32) µmol·m-²·s-¹, medium light intensity (ML) at (162.52±20.31) µmol·m-²·s-¹, and low light intensity (LL) at (93.93±9.87) µmol·m-²·s-¹. After a 20-day treatment period, the impacts of different light intensities on hydraulic conductivity, photosynthetic parameters, leaf water potential, and leaf vein traits in the seedling leaves of soybean were examined.【Result】Compared with HL treatment, the leaf hydraulic conductivity of Nandou 12 and Guixia 7 under LL treatment was significantly decreased, and the leaf hydraulic conductivity of Nandou 12 under the three treatments was significantly higher than that of Guixia 7 under the three treatments. Compared with HL treatment, the leaf hydraulic conductivity of Nandu 12 under ML and LL treatments decreased by 7.56% and 21.24%, stomatal conductance decreased by 43.96% and 58.89%, and net photosynthetic rate decreased by 29.44% and 46.49%, respectively. Similarly, the leaf hydraulic conductivity of Guixia 7 under the ML and LL treatments decreased by 42.16% and 23.71%, stomatal conductance decreased by 54.55% and 45.79%, and net photosynthetic rate decreased by 37.03% and 42.06%, respectively. Additionally, no statistically significant differences were observed in the leaf water potential of both soybean varieties across the various treatments. Notably, leaf hydraulic conductivity and stomatal conductance of soybean exhibited a highly significant positive correlation (P<0.01) under the three light intensity treatments. As the light intensity decreased, a positive correlation was observed between leaf hydraulic conductivity and net photosynthetic rate (P<0.05) as well as stomatal conductance (P<0.01). Conversely, there was a noticeable decrease in the minor leaf vein density and the area of xylem conduits in major and minor veins under the ML and LL treatments for both soybean varieties. In the case of the minor leaf vein density and the area of xylem conduits in major veins, Nandou 12 exhibited significantly higher values than Guixia 7 under the ML and LL treatments. The major leaf vein density of Nandou 12 remained relatively stable across treatments, while that of Guixia 7 experienced a significant reduction of 11.4% and 15.0% under the ML and LL treatments compared to the HL treatment. Furthermore, a decrease in light intensity had a notable effect on increasing the distance between leaf veins and stomata. Specifically, under the ML and LL treatments, the distance from veins to stomata increased by 21.33% and 60.01% for Nandou 12 and by 31.50% and 53.59% for Guixia 7 in comparison to the HL treatment. The correlation analyses revealed significant positive correlations (P<0.05) between the hydraulic conductivity of soybean leaves and the density of minor leaf veins, the area of xylem conduits in major and minor veins. Conversely, a significant negative correlation (P<0.01) was observed between hydraulic conductivity and the distance from veins to stomata.【Conclusion】Light intensity exerts an influence on the leaf hydraulic conductivity by modulating the leaf vein structure of soybean. Under low light conditions, there is a reduction in leaf hydraulic conductivity in soybean; however, the coordination between leaf hydraulic conductivity and stomatal conductance is maintained to establish equilibrium between leaf water supply and demand as light intensity diminishes. The presence of a higher vein density under low light serves to abbreviate the distance required for water transport, thereby enhancing leaf water supply capacity. Consequently, this facilitates CO2 diffusion and photosynthesis, representing an additional strategy employed by shade-tolerant soybean to acclimate to low-light environments.

Key words: soybean, leaf hydraulic conductivity, stomatal conductance, light intensity, leaf vein

Table 1

Light environment of soybean canopy under different light intensity treatments"

处理
Treatment
光照强度
<BOLD>L</BOLD>ight intensity (µmol·m-2·s-1)
红光/远红光
Red/Far-red
高光强HL 424.47±12.32 9.50±0.3
中光强ML 162.52±20.31 9.35±0.4
低光强LL 93.93±9.87 9.61±0.2

Fig. 1

The responses of leaf hydraulic conductivity and water potential of soybean to different light intensities Different lowercases on the bars represent significantly different at P<0.05 level"

Table 2

Effect of light intensity on photosynthetic properties of soybean leaves"

处理
Treatment
品种
Variety
气孔导度Gs
(mol H2O·m-2·s-1)
净光合速率Pn
(μmol CO2·m-2·s-1)
蒸腾速率E
(mmol H2O·m-2·s-1)
胞间二氧化碳浓度Ci
(μmol CO2·mol-1)
叶片水力导度/气孔导度
Kleaf/Gs (-Mpa)
高光强HL ND12 0.91±0.10a 17.83±6.41a 7.92±0.32a 400.29±6.41ab 0.009±0.001c
GX7 0.56±0.13b 18.71±12.29a 6.57±0.79ab 388.35±12.29bc 0.011±0.003bc
中光强ML ND12 0.51±0.18bc 12.53±12.30b 6.57±1.28ab 411.77±12.30a 0.017±0.006ab
GX7 0.25±0.07d 11.78±17.53bc 4.53±0.75c 373.83±17.53c 0.014±0.003abc
低光强LL ND12 0.38±0.06bcd 9.54±5.71c 5.73±0.52bc 412.80±5.71a 0.018±0.003ab
GX7 0.30±0.11cd 10.84±7.87bc 4.99±1.13bc 379.86±7.87bc 0.018±0.007a

Fig. 2

Correlation analysis of hydraulic conductivity and photosynthetic parameters of soybean leaves under different light intensities"

Fig. 3

Leaf vein structure and stomatal density of soybean under different light intensity treatments"

Table 3

Effect of light intensity on leaf vein structure and stomatal density in soybean"

处理
Treatment
品种
Variety
主叶脉密度
VLAmajor
(cm·cm-2)
小叶脉密度
VLAminor
(cm·cm-2)
气孔密度
Stomatal density (n/mm2)
叶脉到气孔
的距离Dm
(μm)
主叶脉木质部
导管面积
Xmajor (μm2)
小叶脉木质部
导管面积
Xminor (μm2)
高光强HL ND12 1.49±0.05a 52.06±5.79a 267.73±24.23a 112.48±22.15c 1102.35±97.21a 34.21±4.31a
GX7 1.40±0.13a 40.58±5.21a 226.25±25.49b 127.98±16.13c 992.44±57.21ab 37.22±6.99a
中光强ML ND12 1.42±0.02ab 34.07±0.93b 165.21±32.99c 136.48±13.48c 900.29±47.39b 29.38±3.02b
GX7 1.24±0.11b 29.86±3.15c 150.65±7.36cd 168.30±16.75b 800.29±66.96cd 27.63±4.11b
低光强LL ND12 1.46±0.14a 29.10±1.81c 136.25±12.16cd 179.98±15.71ab 746.31±32.05c 24.94±2.59bc
GX7 1.19±0.17b 25.53±2.67d 112.80±6.64e 196.56±20.98a 648.33±84.21d 21.29±2.06c

Table 4

Correlation analysis of leaf hydraulic conductivity and leaf vein traits in soybean"

参数
Parameter
叶片水力导度
Kleaf
小叶脉密度VLAminor 叶脉到气孔的距离Dm 主叶脉木质部
导管面积Xmajor
小叶脉木质部
导管面积Xminor
气孔密度
Stomatal density
小叶脉密度VLAminor 0.73* 1
叶脉到气孔的距离Dm -0.80** -0.91*** 1
主叶脉木质部导管面积Xmajor 0.68* 0.65* -0.68* 1
小叶脉木质部导管面积Xminor 0.69* 0.73* -0.75* 0.66* 1
气孔密度Stomatal density 0.62* 0.97*** -0.93*** 0.66* 0.74* 1
[1]
蒋慕东. 二十世纪中国大豆改良、生产与利用研究[D]. 南京: 南京农业大学, 2006.
JIANG M D. Study on improvement, production and utilization of soybean in China during the 20th century[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)
[2]
IQBAL N, HUSSAIN S, AHMED Z, YANG F, WANG X C, LIU W G, YONG T W, DU J B, SHU K, YANG W Y, LIU J. Comparative analysis of maize-soybean strip intercropping systems: A review. Plant Production Science, 2019, 22(2): 131-142.

doi: 10.1080/1343943X.2018.1541137
[3]
LONG S P, ZHU X, NAIDU S L, ORT D R. Can improvement in photosynthesis increase crop yields? Plant, Cell & Environment, 2006, 29(3): 315-330.
[4]
SAGARDOY R, VÁZQUEZ S, FLOREZ-SARASA I D, ALBACETE A, RIBAS-CARBÓ M, FLEXAS J, ABADÍA J, MORALES F. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc. The New Phytologist, 2010, 187(1): 145-158.

doi: 10.1111/nph.2010.187.issue-1
[5]
LIMOUSIN J, MISSON L, LAVOIR A, MARTIN N K, RAMBAL S. Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Plant, Cell & Environment, 2010, 33(5): 863-875.
[6]
FLEXAS J, BARÓN M, BOTA J, DUCRUET J M, GALLÉ A, GALMÉS J, JIMÉNEZ M, POU A, RIBAS-CARBÓ M, SAJNANI C, TOMÀS M, MEDRANO H. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri×V. rupestris). Journal of Experimental Botany, 2009, 60(8): 2361-2377.

doi: 10.1093/jxb/erp069
[7]
GLEASON S M, WIGGANS D R, BLISS C A, COMAS L H, COOPER M, DEJONGE K C, YOUNG J S, ZHANG H H. Coordinated decline in photosynthesis and hydraulic conductance during drought stress in Zea mays. Flora, 2017, 227: 1-9.

doi: 10.1016/j.flora.2016.11.017
[8]
张强强. 水稻气孔导度和光合作用在不同光环境下的响应差异与机理[D]. 武汉: 华中农业大学, 2020.
ZHANG Q Q. Studies on the mechanisms of the responses of stomatal conductance and photosynthesis to different light environments in Oryza[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
[9]
FAN Y F, CHEN J X, WANG Z L, TAN T T, LI S L, LI J F, WANG B B, ZHANG J W, CHENG Y J, WU X L, YANG W Y, YANG F. Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 2019, 19(1): 34.

doi: 10.1186/s12870-019-1633-1
[10]
范元芳, 杨峰, 刘沁林, 谌俊旭, 王锐, 罗式伶, 杨文钰. 套作荫蔽对苗期大豆叶片结构和光合荧光特性的影响. 作物学报, 2017, 43(2): 277-285.
FAN Y F, YANG F, LIU Q L, CHEN J X, WANG R, LUO S L, YANG W Y. Effects of shading on leaf structure and photosynthetic fluorescence characteristics of soybean seedlings in maize-soybean relay intercropping system. Acta Agronomica Sinica, 2017, 43(2): 277-285. (in Chinese)

doi: 10.3724/SP.J.1006.2017.00277
[11]
COCHARD H, VENISSE J, BARIGAH T S, BRUNEL N, HERBETTE S, GUILLIOT A, TYREE M, SAKR S. Putative role of aquaporins in variable hydraulic conductance of leaves in response to light. Plant Physiology, 2007, 143(1): 122-133.

pmid: 17114274
[12]
NARDINI A, SALLEO S, ANDRI S. Circadian regulation of leaf hydraulic conductance in sunflower (Helianthus annuus L. cv Margot). Plant, Cell & Environment, 2005, 28(6): 750-759.
[13]
XIONG D L, DOUTHE C, FLEXAS J. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant, Cell & Environment, 2018, 41(2): 436-450.
[14]
ROCKWELL F E, HOLBROOK N M, ZWIENIECKI M A. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light. Plant, Cell & Environment, 2011, 34(4): 565-579.
[15]
BRODRIBB T J, JORDAN G J. Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. The New Phytologist, 2011, 192(2): 437-448.

doi: 10.1111/nph.2011.192.issue-2
[16]
NARDINI A, GORTAN E, SALLEO S. Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species. Functional Plant Biology, 2005, 32(10): 953-961.

doi: 10.1071/FP05100 pmid: 32689191
[17]
SACK L, FROLE K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 2006, 87(2): 483-491.

pmid: 16637372
[18]
LU Z F, XIE K L, PAN Y H, REN T, LU J W, WANG M, SHEN Q R, GUO S W. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy. Plant, Cell & Environment, 2019, 42(7): 2231-2244.
[19]
HUANG G J, ZHANG Q Q, WEI X H, PENG S B, LI Y. Nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance. Frontiers in Plant Science, 2017, 8: 945.

doi: 10.3389/fpls.2017.00945 pmid: 28634485
[20]
THÉROUX-RANCOURT G, EARLES J M, GILBERT M E, ZWIENIECKI M A, BOYCE C K, MCELRONE A J, BRODERSEN C R. The bias of a two-dimensional view: Comparing two- dimensional and three-dimensional mesophyll surface area estimates using noninvasive imaging. The New Phytologist, 2017, 215(4): 1609-1622.

doi: 10.1111/nph.2017.215.issue-4
[21]
BRODRIBB T J, FEILD T S, JORDAN G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 2007, 144(4): 1890-1898.

doi: 10.1104/pp.107.101352 pmid: 17556506
[22]
XIONG D L, NADAL M. Linking water relations and hydraulics with photosynthesis. The Plant Journal, 2020, 101(4): 800-815.

doi: 10.1111/tpj.14595 pmid: 31677190
[23]
李晓鹏. 枣叶脉序及其功能性状研究[D]. 杨凌: 西北农林科技大学, 2016.
LI X P. Leaf venation characteristics and functional traits of Chinese jujube[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[24]
YE M, WU M, ZHANG H, ZHANG Z L, ZHANG Z J. High leaf vein density promotes leaf gas exchange by enhancing leaf hydraulic conductance in Oryza sativa L. plants. Frontiers in Plant Science, 2021, 12: 693815.

doi: 10.3389/fpls.2021.693815
[25]
武晓玲, 梁海媛, 杨峰, 刘卫国, 佘跃辉, 杨文钰. 大豆苗期耐荫性综合评价及其鉴定指标的筛选. 中国农业科学, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002.
WU X L, LIANG H Y, YANG F, LIU W G, SHE Y H, YANG W Y. Comprehensive evaluation and screening identification indexes of shade tolerance at seedling in soybean. Scientia Agricultura Sinica, 2015, 48(13): 2497-2507. doi: 10.3864/j.issn.0578-1752.2015.13.002. (in Chinese)
[26]
陈吉玉, 冯铃洋, 高静, 时健祎, 周雨晨, 涂发涛, 陈元凯, 杨文钰, 杨峰. 光照强度对苗期大豆叶片气孔特性及光合特性的影响. 中国农业科学, 2019, 52(21): 3773-3781. doi: 10.3864/j.issn.0578-1752.2019.21.006.
CHEN J Y, FENG L Y, GAO J, SHI J Y, ZHOU Y C, TU F T, CHEN Y K, YANG W Y, YANG F. Influence of light intensity on stoma and photosynthetic characteristics of soybean leaves. Scientia Agricultura Sinica, 2019, 52(21): 3773-3781. doi: 10.3864/j.issn.0578-1752.2019.21.006. (in Chinese)
[27]
SACK L, SCOFFONI C. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the evaporative flux method (EFM). Journal of Visualized Experiments, 2012, 70: 4179.
[28]
MAMUN M, TANG C, SUN Y, ISLAM M, LIU P, WANG X J, KANG Z S. Wheat gene TaATG8j contributes to stripe rust resistance. International Journal of Molecular Sciences, 2018, 19(6): 1666.

doi: 10.3390/ijms19061666
[29]
SACK L, SCOFFONI C. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. The New Phytologist, 2013, 198(4): 983-1000.

doi: 10.1111/nph.2013.198.issue-4
[30]
李盛蓝, 谭婷婷, 范元芳, 杨文钰, 杨峰. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019, 52(21): 3782-3793. doi: 10.3864/j.issn.0578-1752.2019.21.007.
LI S L, TAN T T, FAN Y F, YANG W Y, YANG F. Effects of maize shading on photosynthetic characteristics, vein and stomatal characteristics of soybean. Scientia Agricultura Sinica, 2019, 52(21): 3782-3793. doi: 10.3864/j.issn.0578-1752.2019.21.007. (in Chinese)
[31]
熊栋梁. 水稻叶片结构对水力导度与光合作用的影响及其机理[D]. 武汉: 华中农业大学, 2016.
XIONG D L. Coordination of leaf morpho-anatomical traits, photosynthesis and leaf hydraulic conductance in Oryza[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[32]
SACK L, HOLBROOK N M. Leaf hydraulics. Annual Review of Plant Biology, 2006, 57: 361-381.

pmid: 16669766
[33]
RAIMONDO F, TRIFILÒ P, LO GULLO M A, BUFFA R, NARDINI A, SALLEO S. Effects of reduced irradiance on hydraulic architecture and water relations of two olive clones with different growth potentials. Environmental and Experimental Botany, 2009, 66(2): 249-256.

doi: 10.1016/j.envexpbot.2009.03.022
[34]
吴海英, 张明荣. 不同播期对夏大豆南豆12产量和品质的影响. 大豆科技, 2009(6): 30-32.
WU H Y, ZHANG M R. Effects of different planting dates on yield and quality in summer soybean Nandou 12. Soybean Science and Technology, 2009(6): 30-32. (in Chinese)
[35]
韦清源, 陈渊, 汤复跃, 陈文杰, 郭小红, 梁江. 高产大豆新品种桂夏7号的选育及栽培技术要点. 种子, 2020, 39(2): 122-124, 127.
WEI Q Y, CHEN Y, TANG F Y, CHEN W J, GUO X H, LIANG J. Breeding and cultivation techniques of a new high-yielding soybean variety Guixia 7. Seed, 2020, 39(2): 122-124, 127. (in Chinese)
[36]
YANG F, LIU Q L, CHENG Y J, FENG L Y, WU X L, FAN Y F, RAZA M A, WANG X C, YONG T W, LIU W G, LIU J, DU J B, SHU K, YANG W Y. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC Plant Biology, 2020, 20(1): 148.

doi: 10.1186/s12870-020-02352-0 pmid: 32268881
[37]
SCOFFONI C, KUNKLE J, PASQUET-KOK J, VUONG C, PATEL A J, MONTGOMERY R A, GIVNISH T J, SACK L. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads. The New Phytologist, 2015, 207(1): 43-58.

doi: 10.1111/nph.2015.207.issue-1
[38]
SELLIN A, KUPPER P. Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch. Oecologia, 2005, 142(3): 388-397.

pmid: 15517405
[39]
BRODRIBB T J, HOLBROOK N M. Forced depression of leaf hydraulic conductance in situ: Effects on the leaf gas exchange of forest trees. Functional Ecology, 2007, 21(4): 705-712.

doi: 10.1111/fec.2007.21.issue-4
[40]
SELLIN A, OUNAPUU E, KUPPER P. Effects of light intensity and duration on leaf hydraulic conductance and distribution of resistance in shoots of silver birch (Betula pendula). Physiologia Plantarum, 2008, 134(3): 412-420.

doi: 10.1111/ppl.2008.134.issue-3
[41]
THOLEN D, ZHU X G. The mechanistic basis of internal conductance: A theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiology, 2011, 156(1): 90-105.

doi: 10.1104/pp.111.172346
[42]
HUANG G J, SHU Y, PENG S B, LI Y. Leaf photosynthesis is positively correlated with xylem and phloem areas in leaf veins in rice (Oryza sativa) plants. Annals of Botany, 2022, 129(5): 619-631.

doi: 10.1093/aob/mcac020 pmid: 35143609
[43]
NORTH G B, LYNCH F H, MAHARAJ F D R, PHILLIPS C A, WOODSIDE W T. Leaf hydraulic conductance for a tank bromeliad: Axial and radial pathways for moving and conserving water. Frontiers in Plant Science, 2013, 4: 78.

doi: 10.3389/fpls.2013.00078 pmid: 23596446
[44]
龚容, 高琼. 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 2015, 39(3): 300-308.

doi: 10.17521/cjpe.2015.0029
GONG R, GAO Q. Research progress in the effects of leaf hydraulic characteristics on plant physiological functions. Chinese Journal of Plant Ecology, 2015, 39(3): 300-308. (in Chinese)

doi: 10.17521/cjpe.2015.0029
[45]
韩玲, 赵成章, 冯威, 徐婷, 郑慧玲, 段贝贝. 张掖湿地芨芨草叶脉密度和叶脉直径的权衡关系对3种生境的响应. 植物生态学报, 2017, 41(8): 872-881.

doi: 10.17521/cjpe.2016.0316
HAN L, ZHAO C Z, FENG W, XU T, ZHENG H L, DUAN B B. Trade-off relationship between vein density and vein diameter of Achnatherum splendens in response to habitat changes in Zhangye wetland. Chinese Journal of Plant Ecology, 2017, 41(8): 872-881. (in Chinese)

doi: 10.17521/cjpe.2016.0316
[46]
CARINS MURPHY M R, JORDAN G J, BRODRIBB T J. Differential leaf expansion can enable hydraulic acclimation to sun and shade. Plant, Cell & Environment, 2012, 35(8): 1407-1418.
[47]
潘莹萍, 陈亚鹏. 叶片水力性状研究进展. 生态学杂志, 2014, 33(10): 2834-2841.
PAN Y P, CHEN Y P. Recent advances in leaf hydraulic traits. Chinese Journal of Ecology, 2014, 33(10): 2834-2841. (in Chinese)
[48]
XIONG D L, YU T, ZHANG T, LI Y, PENG S B, HUANG J L. Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. Journal of Experimental Botany, 2015, 66(3): 741-748.

doi: 10.1093/jxb/eru434
[49]
王贝贝, 何乾瑞, 张佳伟, 王仲林, 范元芳, 杨文钰, 杨峰. 弱光下不同大豆品种光合能力综合评价. 大豆科学, 2021, 40(1): 45-58.
WANG B B, HE Q R, ZHANG J W, WANG Z L, FAN Y F, YANG W Y, YANG F. Comprehensive evaluation of photosynthetic capacity of different soybean varieties under low light. Soybean Science, 2021, 40(1): 45-58. (in Chinese)
[1] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[2] CAO Jie, GU YongZhe, HONG HuiLong, WU HaiTao, ZHANG Xia, SUN JianQiang, BAO LiGao, QIU LiJuan. Pigment Identification and Gene Mapping in Red Seed Coat of Soybean [J]. Scientia Agricultura Sinica, 2023, 56(14): 2643-2659.
[3] LI YunJing, XIAO Fang, WU YuHua, LI Jun, GAO HongFei, ZHAI ShanShan, LIANG JinGang, WU Gang. Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5 [J]. Scientia Agricultura Sinica, 2023, 56(13): 2443-2460.
[4] LIU YuYing, SHEN Feng, YANG JinFeng, CAI FangFang, FU ShiFeng, LUO PeiYu, LI Na, DAI Jian, HAN XiaoRi. Variation Characteristics of Soybean Yield and Soil Nitrogen Distribution in Brown Soil Under Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(10): 1920-1934.
[5] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[6] LI YiLing, PENG XiHong, CHEN Ping, DU Qing, REN JunBo, YANG XueLi, LEI Lu, YONG TaiWen, YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[7] GUO ShiBo, ZHANG FangLiang, ZHANG ZhenTao, ZHOU LiTao, ZHAO Jin, YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[8] MA XiaoYan, YANG Yu, HUANG DongLin, WANG ZhaoHui, GAO YaJun, LI YongGang, LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[10] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[11] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[12] YUAN Cheng, ZHANG MingCong, WANG MengXue, HUANG BingLin, XIN MingQiang, YIN XiaoGang, HU GuoHua, ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[13] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[14] REN JunBo, YANG XueLi, CHEN Ping, DU Qing, PENG XiHong, ZHENG BenChuan, YONG TaiWen, YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[15] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!