Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (13): 2443-2460.doi: 10.3864/j.issn.0578-1752.2023.13.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Establishment and Standardization of Event-Specific Real-Time Quantitative PCR Detection Method of Stress-Resistant Soybean IND-ØØ41Ø-5

LI YunJing1(), XIAO Fang1, WU YuHua1, LI Jun1, GAO HongFei1, ZHAI ShanShan1, LIANG JinGang2(), WU Gang1()   

  1. 1 Oil Crops Research Institute of Chinese Academy of Agricultural Science/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs/ Supervision and Test Center (Wuhan) for Plant Ecological Environment Safety, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agricultural Genetically Modified Organisms Traceability, Ministry of Agriculture and Rural Affairs, Wuhan 430062
    2 Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176
  • Received:2023-02-27 Accepted:2023-04-12 Online:2023-07-01 Published:2023-07-06

Abstract:

【Objective】Stress-resistant soybean IND-ØØ41Ø-5 has been authorized as a safety certificate for imported processed raw materials in China. This study aims to develop a specific, accurate, and sensitive real-time quantitative PCR (qPCR) assay for the quantification of the stress-resistant soybean IND-ØØ41Ø-5 event, providing a precise measurement technique for regulating its safety in China. 【Method】18 pairs of primers and probes were designed using Beacon designer 8.0 software for the 5′ end flanking sequence of the stress-resistant soybean IND-ØØ41Ø-5 event, in combination with one pair of primer and probe providing by Instituto de Agrobiotecnologia Rosario (INDEAR) S.A. Subsequently, the specific screening of the primers and probes was performed using real-time PCR technology, and one pair of candidate primer and probe was selected. The reaction system parameters, such as primer and probe concentration, were optimized during the establishing the qPCR method. A specificity test was performed using different test samples. The pure stress-resistant soybean IND-ØØ41Ø-5 genomic DNA was serially diluted into standard solution templates, and standard curves were plotted to investigate the linear dynamic range of the qPCR method. Test samples with copy number ratios of 5%, 1% and 0.1% were prepared by mixing IND-ØØ41Ø-5 genomic DNA with non-GM counterpart to evaluate the accuracy of the qPCR method. The limit of detection (LOD) was detected by using test samples with copy number ratios of 0.05% and 0.025%. The limit of quantification (LOQ) was determined after 16 tests on samples with a copy number ratio of 0.1%. Finally, the technical parameters of qPCR assay for the stress-resistant soybean IND-ØØ41Ø-5 event were determined. The specificity, LOD, LOQ and accuracy of the qPCR method were validated by eight qualified testing laboratories. The repeatability and reproducibility of the qPCR were evaluated by Cochran′s test and Grubbs' test, and the measurement uncertainty of the accuracy samples were pre-evaluated by linear least-square method. 【Result】The RBORD-F1/RBORD-R1/RBORD-P1 primer and probe combination was selected as a candidate to establish the qPCR for the stress-resistant soybean IND-ØØ41Ø-5 event, with an amplified fragment of 138 bp. The optimized reaction system had a final concentration of 0.4 μmol·L-1 for the primer and 0.2 μmol·L-1 for the probe. Standard curves of IND-ØØ41Ø-5 and Lectin gene assay showed good linearity with the dynamic range from 33 to 83190 copies of genomic DNA. The qPCR can accurately quantify 5%, 1%, and 0.1% content of IND-ØØ41Ø-5 test samples with less than 25% bias and relative standard deviation (RSD). The LOD was determined to be 0.05%, and the LOQ was 0.1%. After validation by eight qualified laboratories, the results indicated that the method was stable, specific and had good repeatability and reproducibility, with the LOD of 0.05% and LOQ of 0.1%. After pre-evaluating the measurement uncertainty, the content of IND-ØØ41Ø-5 in the five test samples was found to be (0.10±0.02)%, (0.53±0.09)%, (1.05±0.18)%, (2.05±0.34)% and (5.18±0.87)%, respectively. These results demonstrate the accuracy and reliability of the qPCR method established in this study for the quantification of stress-resistant soybean IND-ØØ41Ø-5 event components. 【Conclusion】This study successfully developed a specific, accurate, and sensitive qPCR assay for the quantification of stress-resistant soybean IND-ØØ41Ø-5 event using real-time PCR technology. The results show that method is capable of achieving precise measurement and reliable quantification of IND-ØØ41Ø-5 event components.

Key words: transgenic, stress-resistant soybean IND-ØØ41Ø-5, event-specific, real-time quantitative PCR (qPCR)

Table 1

Information of experimental materials"

转基因混合样品
Transgenic mixed samples
成分
Components
大豆Soybean GTS40-3-2、MON89788、A5547-127、A2704-12、356043、305423、CV127、MON87701、MON87708、MON87769、MON87705、FG72、DAS81419-2
玉米 Maize Bt11、Bt176、MON810、MON863、GA21、NK603、T25、TC1507、MON89034、MON88017、59122、MIR604、3272、MON87460、DAS40278-9、4114、MON87427、5307
水稻 Rice TT51-1、KF-6、KMD-1、M12、KF-8、KF-2、G6H1、T1C-19
棉花 Cotton MON1445、MON531、MON15985、LLCOTTON25、MON88913、GHB614、COT102
油菜 Oilseed rape MS1、MS8、RF1、RF2、RF3、T45、Oxy-235、Topas19/2、MON88302、73496

Table 2

Primers and probes of qPCR for stress-resistant soybean IND-ØØ41Ø-5 event"

编号
No.
引物/探针名称
Primer/probe names
序列
Sequences (5′-3′)
扩增片段
Amplified fragments (bp)
来源
Sources
19 RBORD-F1 GAGAGAGGTTTTTTCTGTTTAAATTCTCACTTTTT 138 罗萨里奥农业生物技术学院公司
Instituto de Agrobiotecnologia Rosario
RBORD-R1 TCGTTTCCCGCCTTCAGTTTA
RBORD-P1 FAM-ATCAGTACCCTCAATCATC-MGBNFQ
Lectin lec-1215F GCCCTCTACTCCACCCCCA 118 [21]
lec-1332R GCCCATCTGCAAGCCTTTTT
lec-1269P FAM-AGCTTCGCCGCTTCCTTCAACTTCAC-BHQ1

Fig. 1

Primers and probes screening for qPCR of stress- resistant soybean IND-ØØ41Ø-5 event"

Fig. 2

Comparison of standard curves for 12 and 19 primer/probe combinations A: Amplification graph for qPCR assay using primer/probe set 12; a: Standard curves for the qPCR assay corresponding to A; B: Amplification graph for qPCR assay using primer/probe set 19; b: Standard curves for the qPCR assay corresponding to B"

Table 3

Optimization of qPCR reaction system for the stress-resistant soybean IND-ØØ41Ø-5 event"

引物终浓度
Primer final concentration (μmol·L-1)
探针终浓度
Probe final concentration (μmol·L-1)
实时荧光PCR结果Ct值 Ct values of qPCR Ct平均值
Mean value of Ct
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
0.9 0.25 33.13 33.06 33.02 33.07
0.2 0.10 33.39 33.46 33.58 33.48
0.4 0.20 32.73 32.63 32.59 32.65
0.6 0.30 32.46 32.54 32.46 32.49
0.8 0.40 32.41 32.36 32.42 32.40

Fig. 3

Optimization of qPCR reaction system 1: Blank control; 2: Primer concentration 0.2 μmol·L-1, probe concentration 0.10 μmol·L-1; 3: Primer concentration 0.4 μmol·L-1, probe concentration 0.20 μmol·L-1; 4: Primer concentration 0.9 μmol·L-1, probe concentration 0.25 μmol·L-1; 5: Primer concentration 0.6 μmol·L-1, probe concentration 0.30 μmol·L-1; 6: Primer concentration 0.8 μmol·L-1, probe concentration 0.40 μmol·L-1"

Fig. 4

Comparison of standard curves A: Amplification graph for qPCR assay using 0.8 μmol·L-1 primer concentration and 0.40 μmol·L-1 probe concentration; a: Standard curves for qPCR assay corresponding to A; B: Amplification graph for qPCR assay using 0.4 μmol·L-1 primer concentration and 0.20 μmol·L-1 probe concentratio; b: Standard curves for the quantitative PCR assay corresponding to B"

Fig. 5

Specificity test 1: Blank control, negative control, other transgenic soybean mixed sample, transgenic corn mixed sample, transgenic rice mixed sample, transgenic rape mixed sample, transgenic cotton mixed sample; 2: 1% stress-resistant soybean IND-ØØ41Ø-5 event"

Table 4

Genotype identification results"

单株
Single plants
浓度 Concentration (copies/μL) 百分比
Percentages (%)
Lectin IND-ØØ41Ø-5
1 730 718 98.36
2 734 723 98.50
3 729 716 98.22
4 740 766 103.47
5 742 721 97.17
6 732 731 99.86
平均值 Means 735 729 99.26

Fig. 6

Standard curves for stress-resistant soybean IND-ØØ41Ø-5 event and Lectin gene A, B, C: Standard curves of IND-ØØ41Ø-5 event for three repeats; a, b, c: Standard curves of Lectin gene for three repeats"

Table 5

Trueness and precision tests"

样品
Samples
IND-ØØ41Ø-5测定含量
Contents of IND-ØØ41Ø-5 event (%)
平均值
Means (%)
偏差
Bias (%)
标准偏差
Standard deviation (SD, %)
相对标准偏差
Relative standard deviation (RSD, %)
重复1
Repeat 1
重复2
Repeat 2
重复3
Repeat 3
M1 5.02 4.94 5.12 5.03 0.60 0.089 1.77
M2 1.03 1.02 1.08 1.04 4.38 0.034 3.25
M3 0.10 0.11 0.10 0.11 6.61 0.004 3.53

Fig. 7

Amplification curve of limit of detection (LOD) test a: Amplification result of 0.05% stress-resistant soybean IND-ØØ41Ø-5; b: Amplification result of 0.025% stress-resistant soybean IND-ØØ41Ø-5"

Table 6

Test of limit of quantification (LOQ)"

测试结果
Test results
IND-ØØ41Ø-5转化体拷贝数
Copies of IND-ØØ41Ø-5 event
Lectin拷贝数
Copies of Lectin gene
百分含量
Percentage level (%)
偏差
Bias (%)
1 69 60350 0.11 14.08
2 69 59600 0.12 16.29
3 64 56560 0.11 13.88
4 64 54500 0.12 16.72
5 63 52490 0.12 19.34
6 61 49660 0.12 23.76
7 60 49400 0.12 21.78
8 60 48750 0.12 22.11
9 59 47640 0.12 24.03
10 59 47590 0.12 23.62
11 53 46210 0.12 15.04
12 51 45870 0.11 11.82
13 53 45100 0.12 17.63
14 47 44170 0.11 6.72
15 41 42960 0.10 4.40
16 37 41190 0.09 10.25
平均值 Means 0.11 14.51
标准偏差
Standard deviation (SD, %)
0.01
相对标准偏差
Relative standard deviation (RSD, %)
8.59

Table 7

Validation results of specificity and limit of detection"

样品名称
Samples
8家实验室结果 The results of eight laboratories
Lab1 Lab2 Lab3 Lab4 Lab5 Lab6 Lab7 Lab8
阳性对照 Positive control P P P P P P P P
阴性对照 Negative control N N N N N N N N
1% 抗逆大豆IND-ØØ41Ø-5 1% stress-resistant soybean IND-ØØ41Ø-5 P P P P P P P P
其他转基因大豆混样 Other transgenic soybean mixed sample N N N N N N N N
转基因玉米混样 Transgenic corn mixed sample N N N N N N N N
转基因水稻混样 Transgenic rice mixed sample N N N N N N N N
转基因棉花混合样 Transgenic cotton mixed sample N N N N N N N N
转基因油菜混样 Transgenic rape mixed sample N N N N N N N N
非转基因大豆混样 Non-transgenic soybean mixed sample N N N N N N N N
0.05%抗逆大豆IND-ØØ41Ø-5 0.05% stress-resistant soybean IND-ØØ41Ø-5 P P P P P P P P

Table 8

Amplified Ct values of LOD from eight laboratories"

实验室
Laboratories
Ct值 Ct values
平行1
Parallel 1
平行2
Parallel 2
平行3
Parallel 3
平行4
Parallel 4
平行5
Parallel 5
平行6
Parallel 6
Lab1 35.22 33.41 33.51 33.54 33.46 33.55
Lab2 35.39 35.6 35.39 35.2 35.08 35.23
Lab3 34.639 34.455 34.663 35.012 34.59 34.854
Lab4 34.68 33.88 34.00 34.64 34.07 34.72
Lab5 35.34 35.24 35.76 35.83 35.35 35.26
Lab6 35.26 35.24 35.53 36.18 35.67 35.64
Lab7 35.68 35.4 35.28 35.55 35.38 35.73
Lab8 35.38 35.76 35.33 35.56 35.19 35.82

Table 9

Standard curve validation results of 8 laboratories"

实验室
Laboratories
重复
Repeats
Lectin IND-ØØ41Ø-5
斜率
Slope
PCR效率
PCR Efficiency (%)
决定系数
R2
斜率
Slope
PCR效率
PCR Efficiency (%)
决定系数
R2
Lab1 1 -3.440 95.30 0.999 -3.480 93.80 0.999
2 -3.428 95.70 1.000 -3.464 94.40 0.997
3 -3.404 96.70 0.998 -3.463 94.40 1.000
Lab2 1 -3.349 98.90 0.999 -3.418 96.10 0.998
2 -3.382 97.50 0.999 -3.362 98.40 0.999
3 -3.378 97.70 1.000 -3.414 96.30 0.999
Lab3 1 -3.391 97.21 0.999 -3.506 93.12 1.000
2 -3.327 99.77 1.000 -3.476 94.25 1.000
3 -3.293 101.23 0.999 -3.499 92.96 1.000
Lab4 1 -3.431 95.60 0.995 -3.404 96.70 0.998
2 -3.325 99.90 0.992 -3.335 99.50 0.994
3 -3.405 96.60 0.994 -3.356 98.60 0.993
Lab5 1 -3.556 91.10 0.993 -3.565 90.80 0.998
2 -3.539 91.70 0.998 -3.563 90.90 0.998
3 -3.527 92.10 0.999 -3.510 92.70 1.000
Lab6 1 -3.315 100.29 0.999 -3.312 100.43 0.998
2 -3.381 97.58 0.999 -3.381 97.61 1.000
3 -3.411 96.42 0.996 -3.477 93.90 0.998
Lab7 1 -3.272 102.13 0.999 -3.263 102.50 0.999
2 -3.228 104.10 0.999 -3.288 101.42 1.000
3 -3.318 100.18 0.999 -3.275 102.00 1.000
Lab8 1 -3.117 109.30 0.991 -3.297 101.10 0.998
2 -3.112 109.60 0.983 -3.349 98.90 0.999
3 -3.189 105.80 0.986 -3.217 104.60 0.998
平均值 Means -3.355 98.85 0.996 -3.403 96.89 0.998

Table 10

Percentage content of test samples"

实验室
Laboratories
重复
Repeats
测试样品 Test samples
5.00% (%) 5.00% (%) 1.00% (%) 0.50% (%) 0.10% (%)
Lab1 1 5.51 2.50 1.12 0.60 0.12
2 5.44 2.03 1.05 0.55 0.12
3 5.76 2.32 1.12 0.55 0.13
Lab2 1 5.36 2.05 1.04 0.56 0.11
2 5.41 2.00 1.06 0.53 0.10
3 5.48 2.09 1.01 0.54 0.12
Lab3 1 5.31 2.17 1.09 0.49 0.10
2 5.39 2.22 1.04 0.54 0.09
3 5.36 2.07 1.08 0.51 0.10
Lab4 1 4.95 2.01 1.00 0.50 0.10
2 4.99 1.98 1.00 0.53 0.10
3 4.98 1.94 1.06 0.53 0.11
Lab5 1 5.21 2.05 1.13 0.56 0.10
2 5.41 2.15 1.04 0.54 0.10
3 5.79 2.08 1.06 0.55 0.11
Lab6 1 4.65 1.77 0.92* 0.50 0.08
2 5.62 2.19 1.16 0.62 0.11
3 5.13 2.13 1.11 0.55 0.09
Lab7 1 5.38 2.01 0.96 0.46 0.10
2 5.01 1.85 0.91 0.43 0.09
3 4.75 1.92 0.97 0.48 0.09
Lab8 1 4.41 1.91 0.95 0.52 0.10
2 4.46 1.88 1.03 0.50 0.11
3 4.51 1.95 1.05 0.48 0.11

Fig. 8

Relative deviation from measurement and true value of GM level"

Table 11

Summary of validation results for stress-resistant soybean IND-ØØ41Ø-5"

项目
Items
测试样品预期转基因含量 Test sample expected GM level (%)
5.00 2.00 1.00 0.50 0.10
返回数据的实验室数量 Laboratories having returned valid results 8 8 8 8 8
每个实验室样品数量 Samples per laboratory 5 5 5 5 5
离群值的数量 Number of outlies 0 0 1 0 0
剔除的因素
Reason for exclusion
科克伦检验
Cochran's test
平均值 Mean value (%) 5.18 2.05 1.04 0.53 0.10
实验室内重复性相对标准偏差
Relative repeatability standard deviation, RSDr (%)
4.61 6.18 3.66 5.59 7.75
实验室内重复性标准偏差 Repeatability standard deviation, Sr (%) 0.24 0.13 0.04 0.03 0.01
实验室间再现性相对标准偏差
Relative reproducibility standard deviation, RSDR (%)
8.34 8.61 6.60 8.86 11.58
实验室间再现性标准偏差Reproducibility standard deviation, SR (%) 0.43 0.18 0.07 0.05 0.01
偏差(绝对值)Bias (absolute value, %) 0.18 0.05 0.04 0.03 0.005
偏差Bias (%) 3.56 2.64 4.46 5.06 4.99

Table 12

Summary of LOQ measured results from eight laboratories"

实验室
Laboratories
LOQ样品测量值 Measured values of LOQ samples
平行1
Parallel 1 (%)
平行2
Parallel 2 (%)
平行3
Parallel 3 (%)
平均值
Means
(%)
实验室内标准偏差
In-laboratory standard deviation (SDr, %)
实验室内重复性相对标准偏差
In-laboratory relative repeatability standard deviation (RSDr, %)
Lab1 0.12 0.12 0.13 0.12 0.01 5.63
Lab2 0.11 0.10 0.12 0.11 0.01 7.54
Lab3 0.10 0.09 0.10 0.10 0.01 6.42
Lab4 0.10 0.10 0.11 0.10 0.01 6.89
Lab5 0.10 0.10 0.11 0.11 0.00 1.69
Lab6 0.08 0.11 0.09 0.10 0.02 16.82
Lab7 0.10 0.09 0.09 0.10 0.01 5.30
Lab8 0.10 0.11 0.11 0.11 0.01 5.14
平均值 Means 0.10
实验室间标准偏差
Interlaboratory standard deviation (SDR, %)
0.01
实验室间再现性相对标准偏差 Interlaboratory relative repeatability standard deviation (RSDR, %) 8.61

Fig. 9

The regression curve was established by reproducibility standard deviation (SR) against the test sample mean values ($\overline{C}$)"

[1]
国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2021, 41(1): 114-119.
International Service for the Acquisition of Agri-biotech Applications. Global commercialization of biotechnology/transgenic crops in 2019. China Biotechnology, 2021, 41(1): 114-119. (in Chinese)
[2]
陈佳俊, 高维新. 我国大豆进口冲击下的大豆产业优化发展路径. 市场周刊, 2022, 35(1): 85-89.
CHEN J J, GAO W X. Optimal development path of soybean industry under the impact of soybean import in China. Market Weekly, 2022, 35(1): 85-89. (in Chinese)
[3]
LIANG J G, YANG X W, JIAO Y, WANG D X, ZHAO Q, SUN Y, LI Y H, WU K M. The evolution of China’s regulation of agricultural biotechnology. aBIOTECH, 2022, 3(4): 237-249.

doi: 10.1007/s42994-022-00086-1
[4]
黄耀辉, 樊殿峰, 焦悦, 吴小智, 叶纪明. 浅谈多国转基因产品标识制度对我国的启示. 生物技术进展, 2022, 12(4): 516-522.

doi: 10.19586/j.2095-2341.2021.0185
HUANG Y H, FAN D F, JIAO Y, WU X Z, YE J M. Enlightenment of GMO labeling system in other countries to China. Current Biotechnology, 2022, 12(4): 516-522. (in Chinese)

doi: 10.19586/j.2095-2341.2021.0185
[5]
徐琳杰, 刘培磊, 李文龙, 孙卓婧, 宋贵文. 国际转基因标识制度变动趋势分析及对我国的启示. 中国生物工程杂志, 2018, 38(9): 94-98.
XU L J, LIU P L, LI W L, SUN Z J, SONG G W. Analysis of the recent trends of international labeling policies for genetically modified products and the enlightenment to China’s labeling management. China Biotechnology, 2018, 38(9): 94-98. (in Chinese)
[6]
RANDHAWA G, SINGH M, SOOD P. DNA-based methods for detection of genetically modified events in food and supply chain. Current Science, 2016, 110(6): 1000.

doi: 10.18520/cs/v110/i6/1000-1009
[7]
WU G, WU Y H, XIAO L, LU C M. Event-specific qualitative and quantitative PCR methods for the detection of genetically modified rapeseed Oxy-235. Transgenic Research, 2008, 17(5): 851-862.

doi: 10.1007/s11248-008-9168-5 pmid: 18283554
[8]
WU G, WU Y H, NIE S J, ZHANG L, XIAO L, CAO Y L, LU C M. Real-time PCR method for detection of the transgenic rice event TT51-1. Food Chemistry, 2010, 119(1): 417-422.

doi: 10.1016/j.foodchem.2009.08.031
[9]
WU Y H, WANG Y L, LI J, LI W, ZHANG L, LI Y J, LI X F, LI J, ZHU L, WU G. Development of a general method for detection and quantification of the P35S promoter based on assessment of existing methods. Scientific Reports, 2014, 4: 7358.

doi: 10.1038/srep07358 pmid: 25483893
[10]
LONG L K, YAN W, LI C C, DONG L M, LIU N, XING Z J, LI F W. Event-specific quantitative polymerase chain reaction methods for detection of double-herbicide-resistant genetically modified corn MON 87419 based on the 3’-junction of the insertion site. Bioscience, Biotechnology, and Biochemistry, 2021, 85(6): 1468-1475.

doi: 10.1093/bbb/zbab040
[11]
LI Y J, XIAO F, ZHAI C, LI X F, WU Y H, GAO H F, LI J, ZHAI S S, LIU B, WU G. Qualitative and quantitative real-time PCR methods for assessing false-positive rates in genetically modified organisms based on the microbial-infection-linked HPT gene. International Journal of Molecular Sciences, 2022, 23(17): 10000.

doi: 10.3390/ijms231710000
[12]
YANG L T, WANG, C M, HOLST-JENSEN A, MORISSET D, LIN Y J, ZHANG D B. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific Reports, 2013, 3: 2839.

doi: 10.1038/srep02839 pmid: 24088728
[13]
LI Y J, LI J, WU Y H, CAO Y L, LI J, ZHU L, LI X F, HUANG S M, WU G. Successful detection of foreign inserts in transgenic rice TT51-1 (BT63) by RNA-sequencing combined with PCR. Journal of the Science of food and Agriculture, 2017, 97(5): 1634-1639.

doi: 10.1002/jsfa.7913 pmid: 27436567
[14]
LI X F, WU Y H, LI J, LI Y J, LONG L K, LI F W, WU G. Development and validation of a 48-target analytical method for high-throughput monitoring of genetically modified organisms. Scientific Reports, 2015, 5: 7616.

doi: 10.1038/srep07616 pmid: 25556930
[15]
DEMEKE T, LEE S J, ENG M. Increasing the efficiency of canola and soybean GMO detection and quantification using multiplex droplet digital PCR. Biology, 2022, 11(2): 201.

doi: 10.3390/biology11020201
[16]
XU J Y, ZHENG Q Y, YU L, LIU R, ZHAO X, WANG G, WANG Q H, CAO J J. Loop-mediated isothermal amplification (LAMP) method for detection of genetically modified maize T25. Food Science & Nutrition, 2013, 1(6): 432-438.
[17]
TAKABATAKE R, KAGIYA Y, MINEGISHI Y, FUTO S, SOGA K, NAKAMURA K, KONDO K, MANO J, KITTA K. Rapid screening detection of genetically modified crops by loop-mediated isothermal amplification with a lateral flow dipstick. Journal of Agricultural and Food Chemistry, 2018, 66(29): 7839-7845.

doi: 10.1021/acs.jafc.8b01765 pmid: 29949351
[18]
SÁNCHEZ-PANIAGUA LÓPEZ M, MANZANARES-PALENZUELA C L, LÓPEZ-RUIZ B. Biosensors for GMO testing: Nearly 25 years of research. Critical Reviews in Analytical Chemistry, 2018, 48(5): 391-405.

doi: 10.1080/10408347.2018.1442708
[19]
BROEDERSA S, HUBERB I, GROHMANNC L, BERBEND G, TAVERNIERSE I, MAZZARAF M, ROOSENSA N, MORISSETG D. Guidelines for validation of qualitative real-time PCR methods. Trends in Food Science & Technology, 2014, 37(2): 115-126.
[20]
HOLST-JENSEN A, BERTHEAU Y, DE LOOSE M, GROHMANN L, HAMELS S, HOUGS L, MORISSET D, PECORARO S, PLA M, VAN DEN BULCKE M, WULFF D. Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnology Advances, 2012, 30(6): 1318-1335.

doi: 10.1016/j.biotechadv.2012.01.024
[21]
农业部2031号公告—8—2013, 转基因植物及其产品成分检测大豆内标准基因定性PCR方法. 北京: 中国农业出版社, 2013.
Announcement by the Ministry of Agriculture No.2031-8-2013. Detection of genetically modified plants and derives products target-taxon specific qualitative PCR method for soybean. Beijing: China Agriculture Press, 2013. (in Chinese)
[22]
吴昊, 陈太钰, 林拥军, 陈浩. 水稻叶片高质量DNA抽提. Bio-Protoc, 2018, 101, e1010102. DOI: 10.21769/BioProtoc.1010102.

doi: 10.21769/BioProtoc.1010102
WU H, CHEN T Y, LIN Y J, CHEN H. High-quality DNA extraction from rice leaves. Bio-Protoc, 2018, 101, e1010102. DOI: 10.21769/BioProtoc.1010102. (in Chinese)

doi: 10.21769/BioProtoc.1010102
[23]
农业部2259号公告—5—2015, 转基因植物及其产品成分检测实时荧光定量PCR方法制定指南. 北京: 中国农业出版社, 2015.
Announcement by the Ministry of Agriculture No.2259-5-2015. Beijing: China Agriculture Press, 2015. (in Chinese)
[24]
农业部2122号公告-8-2014, 转基因植物及其产品成分检测抗虫水稻TT51-1及其衍生品种定量PCR方法. 北京: 中国农业出版社, 2014.
Announcement by the Ministry of Agriculture No.2122-8-2014. Detection of genetically modified plants and derives products quantitative PCR method for insect-resistant rice TT51-1 and its derivates. Beijing: China Agriculture Press, 2014. (in Chinese)
[25]
BUSTIN S A, BENES V, GARSON J A, HELLEMANS J, HUGGETT J, KUBISTA M, MUELLER R, NOLAN T, PFAFFL M W, SHIPLEY G L, VANDESOMPELE J, WITTWER C T. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622.

doi: 10.1373/clinchem.2008.112797 pmid: 19246619
[26]
MARCO M, CRISTIAN S, CHRYSTELE C D, HERMANN B, ANDREW D, CLAUDIA P, DEN EEDE GUY V. Definition of minimum performance requirements for analytical methods of GMO testing. European Network of GMO Laboratories, 2015.
[27]
WU Y H, YANG L T, CAO Y L, SONG G W, SHEN P, ZHANG D B, WU G. Collaborative validation of an event-specific quantitative real-time PCR method for genetically modified rice event TT51-1 detection. Journal of Agricultural and Food Chemistry, 2013, 61(25): 5953-5960.

doi: 10.1021/jf401339k pmid: 23731165
[28]
段武德. 转基因植物检测. 北京: 中国农业出版社, 2008.
DUAN W D. Detection of genetically modified plants. Beijing: China Agriculture Press, 2008. (in Chinese)
[29]
GB/T 6379. 2-2004, 测量方法与结果的准确度(正确度与精密度)第2部分: 确定标准测量方法重复性与再现性的基本方法. 北京: 中国标准出版社, 2004.
GB/T 6379. 2-2004. Accuracy (trueness and precision) of measurement methods and results-Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, Beijing: China standard press, 2004. (in Chinese)
[30]
LI J, ZHANG L, LI L, LI X Y, ZHANG X J, ZHAI S S, GAO H F, LI Y J, WU G, WU Y H. Development of genomic DNA certified reference materials for genetically modified rice Kefeng 6. ACS Omega, 2020, 5(34): 21602-21609.

doi: 10.1021/acsomega.0c02274 pmid: 32905288
[31]
安娜, 柳方方, 董美, 胡晓颖, 宛煜嵩, 金芜军, 兰青阔, 李亮, 韩阳. 基于PCR技术的DNA分析测试关键要素. 基因组学与应用生物学, 2019, 38(2): 624-629.
AN N, LIU F F, DONG M, HU X Y, WAN Y S, JIN W J, LAN Q K, LI L, HAN Y. Key elements of DNA analysis and testing based on PCR technology. Genomics and Applied Biology, 2019, 38(2): 624-629. (in Chinese)
[32]
王颢潜, 肖芳, 杨蕾, 缪青梅, 张旭冬, 张秀杰. 转基因玉米双抗12-5转化体特异性PCR方法验证结果分析. 生物技术通报, 2020, 36(5): 48-55.

doi: 10.13560/j.cnki.biotech.bull.1985.2020-0299
WANG H Q, XIAO F, YANG L, MIAO Q M, ZHANG X D, ZHANG X J. Analysis of verification results by PCR methods for genetically modified double-resistant 12-5 event-specific maize. Biotechnology Bulletin, 2020, 36(5): 48-55. (in Chinese)
[33]
宋君, 常丽娟, 张富丽, 王东, 李洁. 采用蒙特卡洛法评定转基因水稻样品中NOS终止子的测量不确定度. 计量学报, 2019, 40(1): 164-171.
SONG J, CHANG L J, ZHANG F L, WANG D, LI J. Measurement uncertainty in NOS terminator from genetically modified rice estimated by Monte Carlo method. Acta Metrologica Sinica, 2019, 40(1): 164-171. (in Chinese)
[34]
杨冬燕, 杨永存, 李浩. 转基因成分定量检测数据分析及不确定度评估现状概述. 食品安全质量检测学报, 2016, 7(8): 3025-3028.
YANG D Y, YANG Y C, LI H. Data analysis and uncertainty evaluation of genomic modified ingredients quantitation by real- time PCR. Journal of Food Safety & Quality, 2016, 7(8): 3025-3028. (in Chinese)
[35]
TRAPMAN S, BURNS M, CORBISIER P, GATTO F, ROBOUCH P, SOWA S, EMONS H. Guidance document on measurement uncertainty for GMO testing laboratories-3rd edition. European Union, 2020. DOI: 10.2760/738565.

doi: 10.2760/738565
[36]
黄文胜, 邓婷婷, 韩建勋, 吴亚君, 陈颖. 转基因定量检测的不确定度研究. 中国生物工程杂志, 2012, 32(1): 49-55.
HUANG W S, DENG T T, HAN J X, WU Y J, CHEN Y. Estimate the uncertainty on quantification of GMO by the fluorescence real-time PCR method. China Biotechnology, 2012, 32(1): 49-55. (in Chinese)
[1] CAO Peng, XU JianJian, LI ChuXin, WANG XinLiang, WANG ChunQing, SONG ChenHu, SONG Zhen. Real-Time Quantitative PCR Detection of Citrus Yellow Mosaic Virus and Its Spatial and Temporal Distribution in Host Plants [J]. Scientia Agricultura Sinica, 2023, 56(18): 3574-3584.
[2] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[3] HE KeWei,CHEN JiaFa,ZHOU ZiJian,WU JianYu. Fusarium verticillioides Resistant Maize Inbred Line Development Using Host-Induced Gene Silencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(9): 1835-1845.
[4] XIAO Fang,LI Jun,WANG HaoQian,ZHAI ShanShan,CHEN ZiYan,GAO HongFei,LI YunJing,WU Gang,ZHANG XiuJie,WU YuHua. Establishment and Application of A Duplex ddPCR Method to Quantify the NK603/zSSIIb Copy Number Ratio in Transgenic Maize NK603 [J]. Scientia Agricultura Sinica, 2021, 54(22): 4728-4739.
[5] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[6] SONG ShaoZheng,YU KangYing,ZHANG Ting,LU Rui,PAN ShengQiang,CHENG Yong,ZHOU MingMing. Preparation and Expression of rhPA/GH Double Transgenic Rabbits [J]. Scientia Agricultura Sinica, 2021, 54(2): 412-421.
[7] HuiLin YU,Fang JIA,ZongHua QUAN,HaiLan CUI,XiangJu LI. Effects of Glyphosate on Weed Control, Soybean Safety and Weed Occurrence in Transgenic Herbicide-Resistant Soybean [J]. Scientia Agricultura Sinica, 2020, 53(6): 1166-1177.
[8] WEN Jing,GUO Yong,QIU LiJuan. Establishment and Application of Multiple PCR Detection System for Glyphosate-Tolerant Gene EPSPS/GAT in Soybean [J]. Scientia Agricultura Sinica, 2020, 53(20): 4127-4136.
[9] GONG Qiang,WANG Ke,YE XingGuo,DU LiPu,XU YanHao. Generation of Marker-Free Transgenic Barley Plants by Agrobacterium-Mediated Transformation [J]. Scientia Agricultura Sinica, 2020, 53(18): 3638-3649.
[10] LIU AiLi,WEI MengYuan,LI DongHua,ZHOU Rong,ZHANG XiuRong,YOU Jun. Cloning and Function Analysis of Sesame Galactinol Synthase Gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442.
[11] ZHAO Yan,WANG TianQi,ZHU JunLi. Diversity of Endophytic Fungi in Transgenic Rice Seeds from Different Planting Sites Based on PTN System [J]. Scientia Agricultura Sinica, 2020, 53(11): 2305-2320.
[12] WeiYuan SONG,Yu HOU,JianYu ZHAO,XiaoFeng LIU,XiaoLan ZHANG. Cloning and Functional Analysis of CsRPL1/2 in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(1): 148-159.
[13] HAO QingTing,ZHANG Fei,JI XiaJie,XUE JinAi,LI RunZhi. Phenotypic Analysis of Epoxygenase-Transgenic Soybeans [J]. Scientia Agricultura Sinica, 2019, 52(2): 191-200.
[14] WU GenTu, CHEN GuangXiang, ZHANG JiaYuan, HU Qiao, MA MingGe, DOU YanXia, LI MingJun, QING Ling. Disease Resistance of Rice stripe virus NS3-Transgenic Nicotiana benthamiana [J]. Scientia Agricultura Sinica, 2019, 52(10): 1710-1720.
[15] FAN Xin,ZHAO LeiLin,ZHAI HongHong,WANG Yuan,MENG ZhiGang,LIANG ChengZhen,ZHANG Rui,GUO SanDui,SUN GuoQing. Functional Characterization of AtNEK6 Overexpression in Cotton Under Drought and Salt Stress [J]. Scientia Agricultura Sinica, 2018, 51(22): 4230-4240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!