Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (5): 964-980.doi: 10.3864/j.issn.0578-1752.2023.05.012

• HORTICULTURE • Previous Articles     Next Articles

Transcriptome Analysis of Peach Fruits at Different Developmental Stages in Peach Kurakato Wase and Early-Ripening Mutant

PENG JiaWei1(), ZHANG Ye3(), KOU DanDan4, YANG Li1, LIU XiaoFei1, ZHANG XueYing1(), CHEN HaiJiang1(), TIAN Yi2()   

  1. 1 Horticultural Department, Agricultural University of Hebei, Baoding 071000, Hebei
    2 Mountainous Areas Research Institute, Hebei Agricultural University/Technology Innovation Center for Agriculture in Mountainous Areas of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei
    3 Baoding Municipal Bureau of Agriculture and Rural Affairs, Baoding 071000, Hebei
    4 Wangshu Town Middle School of Yanshan County, Hebei Province, Cangzhou 061300, Hebei
  • Received:2022-04-27 Accepted:2022-07-21 Online:2023-03-01 Published:2023-03-13

Abstract:

【Objective】 In this study, transcriptome analyses were carried out on the fruits of Kurakato Wase peach and its early-ripening mutant at different developmental stages. The key factors involved in fruit ripening regulation were explored, so as to provide a theoretical basis for further study on the regulation mechanism of fruit ripening. 【Method】 The flesh of Kurakato Wase peach and its early-ripening mutant was sampled at 30 d, 45 d, 59 d, 71 d, and 89 d after anthesis, and transcriptome analyses were performed on the above samples. The candidate differentially expressed genes (DEGs) were verified by quantitative real-time PCR (qRT-PCR). The biological function of DEGs were analyzed through GO function and KEGG pathway. The weighted gene co-expression network analysis (WGCNA) was constructed to identify the hub modules and hub genes closely related to fruit ripening. 【Result】 Four comparison groups including y1 vs c1, y2 vs c2, y3 vs c4 and y4 vs c5 were obtained based on fruit development stages. A tatal of 4 395 DEGs were identified with 2 212 up- and 2 183 down-regulated genes. There were 10, 11 and 18 candidate genes involved in ethylene, abscisic acid and auxin synthesis and signal transduction, respectively. The interaction networks between 10 IAA proteins and their predictive interacting proteins ARF were constructed. GO function revealed that the DEGs were mainly enriched in cellular processes, metabolic processes and monomeric processes in the biological process category; in cell component category, DEGs were mainly enriched in membranes and cellular components; in molecular function category, DEGs were mainly enriched in binding protein and catalytic activity. There were more DEGs in comparison groups y3 vs c4 and y4 vs c5, and these DEGs mainly enriched in molecular functions, such as binding and catalytic activity. The KEGG pathway analysis showed that a variety of secondary metabolites changed during fruit development and ripening, such as sesquiterpene and triterpenoid biosynthesis, flavonoid biosynthesis, carotenoid biosynthesis, and α-linolenic acid metabolism. In addition, auxin signal transduction pathway was found to be enriched at different time nodes. 【Conclusion】 Among DEGs, a large number of hormone signal transduction pathway genes, especially auxin signal pathway genes, were enriched, and these genes might play an extremely important role during fruit ripening. The functions of candidate genes IAA and ARF and the molecular regulation of fruit ripening would be further elucidated in the future studies.

Key words: peach, fruit ripening, RNA-seq, WGCNA

Fig. 1

The fruits of different development stages (days after flowering) of Kurakato Wase peach (c) and its early-ripening mutant (y)"

Fig. 2

qRT-PCR validation of the differential genes"

Fig. 3

Number of differential genes in the four groups y1 vs c1, y2 vs c2, y3 vs c4, y4 vs c5 (A), and differential expression genes Venn map among samples (B)"

Fig. 4

The number of different genes in GO pathway classification in different developmental fruit developmental stages of Kurakato Wase peach and its early-ripening mutant"

Fig. 5

Functional categorisation of the genes with significant transcriptional differences between Kurakato Wase peach and its early-ripening mutant"

Fig. 6

KEGG enrichment of differentially expressed genes at different developmental stages in Kurakato Wase and early-ripening mutant"

Fig. 7

Expression analysis of differential genes in plant hormone synthesis and signal transduction pathways A: Ethylene; B: Abscisic acid; C: Auxin"

Fig. 8

Constructing system cluster tree based on diss TOM’s dynamic hybrid algorithm"

Fig. 9

Number of genes in each module"

Fig. 10

Expression of IAA gene in Kurakato Wase and its early-ripening mutant"

Fig. 11

Network diagram of proteins interaction between IAA and ARF"

Fig. 12

Expression of ARF genes in Kurakato Wase and its early-ripening mutant"

[1]
GIOVANNONI J, NGUYEN C, AMPOFO B, ZHONG S L, FEI Z J. The epigenome and transcriptional dynamics of fruit ripening. Annual Review of Plant Biology, 2017, 68: 61-84.

doi: 10.1146/annurev-arplant-042916-040906 pmid: 28226232
[2]
SHEN J Y, TIEMAN D, JONES J B, TAYLOR M G, SCHMELZ E, HUFFAKER A, BIES D, CHEN K S, KLEE H J. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 2014, 65(2): 419-428.

doi: 10.1093/jxb/ert382 pmid: 24453226
[3]
KLIE S, OSORIO S, TOHGE T, DRINCOVICH M F, FAIT A, GIOVANNONI J J, FERNIE A R, NIKOLOSKI Z. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. Plant Physiology, 2014, 164(1): 55-68.

doi: 10.1104/pp.113.226142 pmid: 24243932
[4]
KUMAR R, KHURANA A, SHARMA A K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. Journal of Experimental Botany, 2014, 65(16): 4561-4575.

doi: 10.1093/jxb/eru277 pmid: 25028558
[5]
LERSLERWONG L, THIPPAN S, RUGKONG A, IMSABAI W. Expression pattern of ethylene-related genes in response to preharvest chemical treatments during development and ripening of mangosteen fruit (Garcinia mangostana L.). Walailak Journal of Science and Technology, 2021, 18(3): 6663-6672.
[6]
YANG Y Y, SHAN W, KUANG J F, CHEN J Y, LU W J. Four HD-ZIPs are involved in banana fruit ripening by activating the transcription of ethylene biosynthetic and cell wall-modifying genes. Plant Cell Reports, 2020, 39(3): 351-362.

doi: 10.1007/s00299-019-02495-x
[7]
LI S, ZHU B Z, PIRRELLO J, XU C J, ZHANG B, BOUZAYEN M, CHEN K S, GRIERSON D. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. The New Phytologist, 2020, 226(2): 460-475.

doi: 10.1111/nph.v226.2
[8]
HAYAMA H, SHIMADA T, FUJII H, ITO A, KASHIMURA Y. Ethylene-regulation of fruit softening and softening-related genes in peach. Journal of Experimental Botany, 2006, 57(15): 4071-4077.

pmid: 17077183
[9]
阚娟, 刘俊, 金昌海. 桃果实成熟软化与细胞壁降解相关糖苷酶及乙烯生物合成的关系. 中国农业科学, 2012, 45(14): 2931-2938. doi: 10.3864/j.issn.0578-1752.2012.14.016.

doi: 10.3864/j.issn.0578-1752.2012.14.016
KAN J, LIU J, JIN C H. Study on the relationship between peach fruit softening, cell wall degradation related glycosidase and ethlylene biosynthesis. Scientia Agricultura Sinica, 2012, 45(14): 2931-2938. doi: 10.3864/j.issn.0578-1752.2012.14.016.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.14.016
[10]
刘进平. 乙烯生物合成关键酶基因研究进展. 热带农业科学, 2013, 33(1): 51-57.
LIU J P. Advances in research on key enzyme genes of ethylene biosynthesis. Chinese Journal of Tropical Agriculture, 2013, 33(1): 51-57.(in Chinese)
[11]
TRAINOTTI L, TADIELLO A, CASADORO G. The involvement of auxin in the ripening of climacteric fruits comes of age: The hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. Journal of Experimental Botany, 2007, 58(12): 3299-3308.

doi: 10.1093/jxb/erm178 pmid: 17925301
[12]
HAN Y C, KUANG J F, CHEN J Y, LIU X C, XIAO Y Y, FU C C, WANG J N, WU K Q, LU W J. Banana transcription factor MaERF11 recruits histone deacetylase MaHDA1 and represses the expression of MaACO1 and expansins during fruit ripening. Plant Physiology, 2016, 171(2): 1070-1084.
[13]
LI T, XU Y X, ZHANG L C, JI Y L, TAN D M, YUAN H, WANG A D. The jasmonate-activated transcription factor mdmyc2 regulates ethylene response factor and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. The Plant Cell, 2017, 29(6): 1316-1334.

doi: 10.1105/tpc.17.00349
[14]
NICOLAS P, LECOURIEUX D, KAPPEL C, CLUZET S, CRAMER G, DELROT S, LECOURIEUX F. The basic leucine zipper transcription factor abscisic acid response element-binding factor2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiology, 2014, 164(1): 365-383.

doi: 10.1104/pp.113.231977 pmid: 24276949
[15]
LIU Y F, ZHAO Y N, CHAI L P, ZHOU J Q, YANG S, KOU X H, XUE Z H. Transcriptome profiling of abscisic acid-related pathways in SNAC4/9-silenced tomato fruits. Transactions of Tianjin University, 2021, 27(6): 473-486.

doi: 10.1007/s12209-020-00262-8
[16]
ZENG W F, TAN B, DENG L, WANG Y, ASLAM M, WANG X B, QIAO C K, WANG Z Q, FENG J C. Identification and expression analysis of abscisic acid signal transduction genes during peach fruit ripening. Scientia Horticulturae, 2020, 270: 109402.

doi: 10.1016/j.scienta.2020.109402
[17]
WANG X B, ZENG W F, DING Y F, WANG Y, NIU L, YAO J L, PAN L, LU Z H, CUI G C, LI G H, WANG Z Q. PpERF3 positively regulates ABA biosynthesis by activating PpNCED2/3 transcription during fruit ripening in peach. Horticulture Research, 2019, 6: 19.

doi: 10.1038/s41438-018-0094-2
[18]
KLINGLER J P, BATELLI G, ZHU J K. ABA receptors: The start of a new paradigm in phytohormone signalling. Journal of Experimental Botany, 2010, 61(12): 3199-3210.

doi: 10.1093/jxb/erq151 pmid: 20522527
[19]
SUN L, WANG Y P, CHEN P, REN J, JI K, LI Q, LI P, DAI S J, LENG P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK 2 gene families encoding ABA signal core components during tomato fruit development and drought stress. Journal of Experimental Botany, 2011, 62(15): 5659-5669.

doi: 10.1093/jxb/err252
[20]
LEYSER O. Auxin signaling. Plant Physiology, 2018, 176(1): 465-479.

doi: 10.1104/pp.17.00765 pmid: 28818861
[21]
WANG Y C, WANG N, XU H F, JIANG S H, FANG H C, SU M Y, ZHANG Z Y, ZHANG T L, CHEN X S. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Horticulture Research, 2018, 5: 59.

doi: 10.1038/s41438-018-0068-4
[22]
余佳, 李阳, 龚硕, 关伟, 刘悦萍. 桃果实生长素结合蛋白ABP1的组织定位及蛋白表达分析. 中国农业科学, 2015, 48(5): 921-930. doi: 10.3864/j.issn.0578-1752.2015.05.10.

doi: 10.3864/j.issn.0578-1752.2015.05.10
YU J, LI Y, GONG S, GUAN W, LIU Y P. Tissue location and protein expression analysis of auxin binding protein ABP1 in peach fruit (Prunus persica L.). Scientia Agricultura Sinica, 2015, 48(5): 921-930. doi: 10.3864/j.issn.0578-1752.2015.05.10.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2015.05.10
[23]
TATSUKI M, NAKAJIMA N, FUJII H, SHIMADA T, NAKANO M, HAYASHI K I, HAYAMA H, YOSHIOKA H, NAKAMURA Y. Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). Journal of Experimental Botany, 2013, 64(4): 1049-1059.

doi: 10.1093/jxb/ers381
[24]
GUAN D, HU X, DIAO D H, WANG F, LIU Y P. Genome-wide analysis and identification of the Aux/IAA gene family in peach. International Journal of Molecular Sciences, 2019, 20(19):4703-4721.

doi: 10.3390/ijms20194703
[25]
PAN L Z W F, NIU L, LU Z H, LIU H, CUI G C, ZHU Y Q, CHU J F, LI WP, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66(22): 7031-7044.

doi: 10.1093/jxb/erv400
[26]
WANG X B, PAN L, WANG Y, MENG J R, DENG L, NIU L, LIU H, DING Y F, YAO J L, NIEUWENHUIZEN N J, AMPOMAH- DWAMENA C, LU Z H, CUI G C, WANG Z Q, ZENG W F. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals. Plant Science: an International Journal of Experimental Plant Biology, 2021, 313: 111084.
[27]
WANG X B, ZENG W F, DING Y F, WANG Y, NIU L, YAO J L, PAN L, LU Z H, CUI G C, LI G H, WANG Z Q. Peach ethylene response factor PpeERF2 represses the expression of ABA biosynthesis and cell wall degradation genes during fruit ripening. Plant Science: an International Journal of Experimental Plant Biology, 2019, 283: 116-126.
[28]
CHEN S F, ZHOU Y Q, CHEN Y R, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17): i884-i890.

doi: 10.1093/bioinformatics/bty560
[29]
赵湾湾. 基于RNA-seq的红肉番木瓜果实成熟相关基因的挖掘[D]. 福州: 福建农林大学, 2019.
ZHAO W W. Mining related genes of red meat papaya fruit ripening based on RNA-seq[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.(in Chinese)
[30]
徐献斌, 耿晓月, 李慧, 孙丽娟, 郑焕, 陶建敏. 基于转录组分析ABA促进葡萄花青苷积累相关基因. 中国农业科学, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012.

doi: 10.3864/j.issn.0578-1752.2022.01.012
XU X B, GENG X Y, LI H, SUN L J, ZHENG H, TAO J M. Transcriptome analysisof genes involved inABA-induced anthocyanin accumulation in grape. Scientia Agricultura Sinica, 2022, 55(1): 134-151. doi: 10.3864/j.issn.0578-1752.2022.01.012.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.01.012
[31]
郭永春, 王鹏杰, 金珊, 侯炳豪, 王淑燕, 赵峰, 叶乃兴. 基于WGCNA鉴定茶树响应草甘膦相关的基因共表达模块. 中国农业科学, 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022.01.013.

doi: 10.3864/j.issn.0578-1752.2022.01.013
GUO Y C, WANG P J, JIN S, HOU B H, WANG S Y, ZHAO F, YE N X. Identification of Co-expression gene related to tea plant response to glyphosate based on WGCNA. Scientia Agricultura Sinica, 2022, 55(1): 152-166. doi: 10.3864/j.issn.0578-1752.2022.01.013.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.01.013
[32]
何平, 李林光, 王海波, 常源升, 李慧峰. 遮光性套袋对桃果实转录组的影响. 中国农业科学, 2017, 50(6): 1088-1097. doi: 10.3864/j.issn.0578-1752.2017.06.010.

doi: 10.3864/j.issn.0578-1752.2017.06.010
HE P, LI L G, WANG H B, CHANG Y S, LI H F. Effects of shading fruit with opaque paper bag on transcriptome in peach. Scientia Agricultura Sinica, 2017, 50(6): 1088-1097. doi: 10.3864/j.issn.0578-1752.2017.06.010.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.06.010
[33]
CHEN C W, GUO J, CAO K, ZHU G R, FANG W C, WANG X W, LI Y, WU J L, XU Q, WANG L R. Identification of candidate genes associated with slow-melting flesh trait in peach using bulked segregant analysis and RNA-seq. Scientia Horticulturae, 2021, 286: 110208.

doi: 10.1016/j.scienta.2021.110208
[34]
ONIK J C, HU X J, LIN Q, WANG Z D. Comparative transcriptomic profiling to understand pre- and post-ripening hormonal regulations and anthocyanin biosynthesis in early ripening apple fruit. Molecules, 2018, 23(8): 1908-1927.

doi: 10.3390/molecules23081908
[35]
殷亚蕊. ‘京红’桃及其晚熟芽变果实发育特征和转录组测序分析[D]. 秦皇岛: 河北科技师范学院, 2020.
YIN Y R. Development characteristics and transcriptome sequencing analysis of ‘Jinghong’ peach and its late-maturing bud mutation fruit[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2020.(in Chinese)
[36]
王小贝. ERFsPpIAA1协同调控桃成熟软化的分子机制研究[D]. 武汉: 华中农业大学, 2019.
WANG X B. Study on the molecular mechanism of synergistic regulation of peach ripening and softening by ERFs and PpIAA1[D]. Wuhan: Huazhong Agricultural University, 2019.(in Chinese)
[37]
YUAN H, YUE P T, BU H D, HAN D G, WANG A D. Genome-wide analysis of ACO and ACS genes in pear (Pyrus ussuriensis). in vitro Cellular & Developmental Biology-Plant, 2020, 56(2): 193-199.
[38]
LI T, TAN D M, YANG X Y, WANG A D. Exploring the apple genome reveals six ACC synthase genes expressed during fruit ripening. Scientia Horticulturae, 2013, 157: 119-123.

doi: 10.1016/j.scienta.2013.04.016
[39]
王宏, 杨王莉, 蔺经, 杨青松, 李晓刚, 盛宝龙, 常有宏. 早熟砂梨‘苏翠1号’与其亲本‘翠冠’‘华酥’成熟果实差异代谢产物及差异基因比较分析. 园艺学报, 2022, 49(3): 493-508.
WANG H, YANG W L, LIN J, YANG Q S, LI X G, SHENG B L, CHANG Y H. Comparative metabolic and transcriptomic analysis of ripening fruit in pear cultivars of ‘Sucui l’ ‘Cuiguan’ and ‘Huasu’. Acta Horticulturae Sinica, 2022, 49(3): 493-508.(in Chinese)
[40]
JI K, KAI W B, ZHAO B, SUN Y F, YUAN B, DAI S J, LI Q, CHEN P, WANG Y, PEI Y L, WANG H Q, GUO Y D, LENG P. SlNCED1 and SlCYP707A2: Key genes involved in ABA metabolism during tomato fruit ripening. Journal of Experimental Botany, 2014, 65(18): 5243-5255.

doi: 10.1093/jxb/eru288
[41]
ZHAO S L, QI J X, DUAN C R, SUN L, SUN Y F, WANG Y P, JI K, CHEN P, DAI S J, LENG P. Expression analysis of the DkNCED1,DkNCED2 and DkCYP707A1 genes that regulate homeostasis of abscisic acid during the maturation of persimmon fruit. The Journal of Horticultural Science and Biotechnology, 2015, 87(2): 165-171.

doi: 10.1080/14620316.2012.11512848
[42]
ITO J, FUKAKI H, ONODA M, LI L, LI C Y, TASAKA M, FURUTANI M. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6562-6567.
[43]
欧春青, 姜淑苓, 王斐, 赵亚楠. 梨全基因组生长素反应因子(ARF)基因家族鉴定及表达分析. 中国农业科学, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012.

doi: 10.3864/j.issn.0578-1752.2018.02.012
OU C Q, JIANG S L, WANG F, ZHAO Y N. Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in pear. Scientia Agricultura Sinica, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012.(in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.02.012
[44]
TAO S B, ESTELLE M. Mutational studies of the Aux/IAA proteins in Physcomitrella reveal novel insights into their function. The New Phytologist, 2018, 218(4): 1534-1542.

doi: 10.1111/nph.2018.218.issue-4
[45]
HOU K, WU W, GAN S S. Saur36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. Plant Physiology, 2013, 161(2): 1002-1009.

doi: 10.1104/pp.112.212787
[46]
朱宇斌, 孔莹莹, 王君晖. 植物生长素响应基因SAUR的研究进展. 生命科学, 2014, 26(4): 407-413.
ZHU Y B, KONG Y Y, WANG J H. Research advances in auxin-responsive SA UR genes. Chinese Bulletin of Life Sciences, 2014, 26(4): 407-413.(in Chinese)
[47]
KONG Y Y, ZHU Y B, GAO C, SHE W J, LIN W Q, CHEN Y, HAN N, BIAN H W, ZHU M Y, WANG J H. Tissue-specific expression of SMALL AUXIN UP RNA41 differentially regulates cell expansion and root meristem patterning in Arabidopsis. Plant and Cell Physiology, 2013, 54(4): 609-621.

doi: 10.1093/pcp/pct028
[48]
LIU M C, CHEN Y, CHEN Y, SHIN J H, MILA I, AUDRAN C, ZOUINE M, PIRRELLO J, BOUZAYEN M. The tomato ethylene response factor Sl-ERF.B 3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. The New Phytologist, 2018, 219(2): 631-640.

doi: 10.1111/nph.2018.219.issue-2
[49]
秦天元, 孙超, 毕真真, 梁文君, 李鹏程, 张俊莲, 白江平. 基于WGCNA的马铃薯根系抗旱相关共表达模块鉴定和核心基因发掘. 作物学报, 2020, 46(7): 1033-1051.

doi: 10.3724/SP.J.1006.2020.94130
QIN T Y, SUN C, BI Z Z, LIANG W J, LI P C, ZHANG J L, BAI J P. Identification of drought-related co-expression modules and hub genes in potato roots based on WGCNA. Acta Agronomica Sinica, 2020, 46(7): 1033-1051.(in Chinese)

doi: 10.3724/SP.J.1006.2020.94130
[1] CAO Ke, CHEN ChangWen, YANG XuanWen, BIE HangLing, WANG LiRong. Genomic Selection for Fruit Weight and Soluble Solid Contents in Peach [J]. Scientia Agricultura Sinica, 2023, 56(5): 951-963.
[2] QIU YiLei,WU Fan,ZHANG Li,LI HongLiang. Effects of Sublethal Doses of Imidacloprid on the Expression of Neurometabolic Genes in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2022, 55(8): 1685-1694.
[3] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[4] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[5] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[6] ZHANG XiaoPing,SA ShiJuan,WU HanYu,QIAO LiYuan,ZHENG Rui,YAO XinLing. Leaf Stomatal Close and Opening Orchestrate Rhythmically with Cell Wall Pectin Biosynthesis and Degradation [J]. Scientia Agricultura Sinica, 2022, 55(17): 3278-3288.
[7] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[8] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[9] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[10] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[11] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[12] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[13] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!