Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 3975-3995.doi: 10.3864/j.issn.0578-1752.2023.20.005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years

LIU Meng1,4(), ZHANG Yao1, GE JunZhu1(), YANG YongAn2, WU XiDong1, HOU HaiPeng3   

  1. 1 Tianjin Key Laboratory of Intelligent Breeding of Major Crops/College of Agronomy and Resources and Environment, Tianjin Agricultural University, Tianjin 300392
    2 Tianjin High-Quality Agricultural Products Development Demonstration Center, Tianjin 301500
    3 Tianjin Agricultural Development Service Center, Tianjin 300061
    4 College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2023-01-20 Accepted:2023-04-03 Online:2023-10-16 Published:2023-10-31
  • Contact: GE JunZhu

Abstract:

【Objective】The North China Plain is the thermal resource limited area, summer maize grain mechanical harvesting technology were astricted by higher grain moisture content at harvest stage, which affects the quality of mechanical grain harvest. Under delayed harvest conditions, nitrogen application rate affect summer maize grain yield, and superior and inferior grains morphology and weight are not clear. Through the systematic observation of summer maize superior and inferior grains morphology, filling and dehydration process under different nitrogen application levels, clarified the regulation effect of nitrogen, and which provided support for summer maize grain mechanical harvesting technology cultivation to obtain stabilize yield, reduce nitrogen application and improve efficiency in the of region. 【Method】Summer maize grain mechanical harvesting hybrid Jingnongke 728 was used as the research materials, the field experiment were conducted in 2020-2021 by a harvest time and nitrogen application rate two-factor randomized block design, harvest time were normal harvest time (NH) and delayed harvest (DH), and six nitrogen application rate were 0 (N0), 120 (N120, 2021), 180 (N180), 240 (N240), 300 (N300), 360 (N360) and 450 kg hm-2 (N450, 2020). Summer maize grain yield (GY), superior and inferior grains fresh volume (GFV), fresh weight (GFW), dry weight (GDW), and moisture content (GMC) and their change rates were measured. 【Result】Compared to the dry year (2020), the inferior grains maximum grain filling rate (Gmax), the increment at Gmax (Wmax) and initial potential (R0) of GFV, GFW and GDW were significantly reduced in the rainy year (2021), and the days reached Gmax (Tmax) were delayed, and the active duration (P) were prolonged, which resulted in GFV, GFW and GDW reduced significantly by 15.4%-50.6%, 25.4%-62.0% and 31.2%-57.3%, respectively, however, there were no significant change in superior grains, and so led GY declined significantly by 3.03×103-5.44×103 kg·hm-2. The inferior grains GDWGmax, GDWWmax and GDWR0 in the rainy year were significantly decreased by 55.1%-258.1%, 13.4%-143.0% and 12.0%-126.6%, respectively, and GDWTmax were delayed by 4.2-20.7 d compared to superior grains. The superior grains GFV, GFW and GDW were significantly increased by 56.8%-69.6%, 67.0%-80.4% and 54.1%-92.1%, respectively, than inferior grains. Compared with NH, the grains Gmax and R0 at DH treatments were increased, and the P for superior and inferior grains were significantly prolonged, which led the GFV, GFW decreased significantly by 2.1%-8.1% and 12.2%-17.1%, 4.0%-5.2% and 15.7%-19.5, respectively, under the dry year and rainy year, meanwhile GDW increased from 25.1-28.2 g/100 grains to 28.0-34.4 g/100 grains, the GMC decreased from 22.6%-26.0% to 22.6%-26.0% as well, which were declined by 31.3%-40.4% than NH. The GY for DH were increased 0.02×103-1.67×103 kg·hm-2 than NH. There was no significant difference in GFV, GFW and GDW between nitrogen application levels in dry year. While in the rainy year, the GDWGmax and GDWWmax for N240-N360 treatment were significantly higher than N180, GDWTmax were delayed, and GDWP was prolonged (P<0.05), and the effects were more intense on inferior grains than on superior grains. Under DH treatment, the GFV, GFW and GDW of inferior grains for N240-N360 were significantly increased by 25.7%-85.3%, 59.4%-83.6% and 17.9%-43.9% than N180, respectively. The nitrogen yield increasing effect in rainy year were significantly intense than dry year, as 74.4%-169.5% vs. 51.5%-99.1%. GY of N240 was significantly rised by 12.6%-54.5% than N120-N180. 【Conclusion】In the thermal resource limited area of the North China Plain, changed winter wheat into spring wheat in the wheat-maize cropping system, with summer maize delayed harvest for 23-33 days, the inferior grains capacity and weight were significantly increased, and so the grain moisture content were reduced to the grain mechanical harvesting technology standard to realized the annual grain mechanical harvesting. And by optimized nitrogen application rate at 247.2-248.6 kg·hm-2, the production strategy of stable yield at 7.0×103-12.0×103 kg·hm-2, nitrogen reduction and improve efficiency under different rainfall years were achieved in the region.

Key words: summer maize, rainfall year types, delayed harvest, nitrogen application rate, superior and inferior grains, grain filling

Fig. 1

Daily meteorological date during summer maize growing duration in 2020 (A) and 2021 (B)"

Fig. 2

Effects of nitrogen application on delayed harvest summer maize grain yield under different rainfall years NH: Normal harvest; DH: Delayed harvest. The different lowercase letters indicated the GY were significantly different at 0.05 level among different N treatments at same harvest date. The same as below"

Fig. 3

Effects of nitrogen application on delayed harvest summer maize superior and inferior grain fresh volume under different rainfall years"

Table 1

Effects of nitrogen application on delayed harvest summer maize superior and inferior grains fresh volume change rate under different rainfall years"

粒位
Grain
position
年份
Year
施氮量
Nitrogen
GFVGmax
(cm3·d-1/100 grains)
GFVTmax
(d)
GFVP
(d)
GFVWmax
(cm3/100 grains)
GFVR0
(cm3)
NH DH NH DH NH DH NH DH NH DH
上部
Upper
2020 N0 0.97 1.02 20.4 19.9 40.5 42.0 13.5 13.8 0.14 0.15
N180 1.49 1.51 15.7 16.0 30.6 31.8 15.7 15.4 0.19 0.20
N240 1.41 1.50 15.1 16.6 31.6 36.4 17.1 15.8 0.17 0.19
N300 1.47 1.48 16.0 16.2 33.6 34.4 16.8 16.6 0.17 0.18
N360 1.49 1.44 16.2 15.3 35.7 33.0 16.4 17.2 0.18 0.17
N450 1.46 1.48 18.6 18.7 35.2 35.9 17.5 17.3 0.17 0.17
2021 N0 0.60 0.69 32.2 36.4 35.5 50.9 10.1 8.2 0.12 0.17
N120 0.45 0.49 30.1 33.5 36.6 44.5 12.1 10.8 0.07 0.09
N180 0.50 0.61 20.0 26.5 42.5 51.8 11.1 8.7 0.09 0.14
N240 0.62 0.67 23.7 26.4 45.7 55.6 11.4 10.2 0.11 0.13
N300 0.43 0.47 29.7 33.1 47.9 58.4 14.1 12.6 0.06 0.07
N360 0.48 0.52 19.8 22.0 47.7 58.1 10.9 9.8 0.09 0.11
中部
Middle
2020 N0 1.10 1.08 21.1 21.7 45.9 47.8 16.8 17.2 0.13 0.13
N180 1.73 1.69 15.3 15.8 29.9 31.5 17.3 17.8 0.20 0.19
N240 1.48 1.47 16.7 17.0 37.5 38.1 18.4 18.7 0.16 0.16
N300 1.60 1.60 15.7 15.9 34.8 35.3 18.6 18.8 0.17 0.17
N360 1.62 1.60 16.5 17.1 36.1 37.9 19.6 20.2 0.17 0.16
N450 1.69 1.67 17.2 17.6 32.9 34.2 18.6 19.1 0.18 0.18
2021 N0 1.17 1.31 25.7 32.2 34.4 53.1 20.7 15.1 0.11 0.17
N120 1.26 1.37 20.0 21.7 35.5 42.4 17.7 16.2 0.14 0.17
N180 1.92 2.16 16.8 17.6 23.0 27.6 17.7 16.6 0.22 0.26
N240 1.45 1.55 17.0 17.8 33.5 37.6 18.1 17.3 0.16 0.18
N300 1.56 1.55 17.6 17.6 35.1 34.9 18.2 18.2 0.17 0.17
N360 1.31 1.48 14.3 15.9 35.0 42.8 18.7 17.2 0.14 0.17
下部
Lower
2020 N0 1.10 1.15 22.6 21.0 46.9 41.7 17.2 16.0 0.13 0.14
N180 1.68 1.62 14.9 15.6 30.6 33.0 17.1 17.8 0.20 0.18
N240 1.40 1.48 17.7 15.9 42.1 36.6 19.6 18.1 0.14 0.16
N300 1.61 1.53 15.8 17.0 34.5 38.6 18.5 19.7 0.17 0.16
N360 1.36 1.30 16.5 18.1 41.9 46.9 18.9 20.3 0.14 0.13
N450 1.58 1.50 17.2 18.6 34.1 38.9 17.9 19.4 0.18 0.15
2021 N0 2.20 2.26 19.4 20.4 19.3 22.1 16.2 14.5 0.27 0.31
N120 1.65 1.71 18.4 19.0 28.1 30.5 16.7 16.0 0.20 0.21
N180 1.65 1.81 16.6 17.9 26.8 32.2 17.7 16.1 0.19 0.22
N240 1.43 1.51 16.4 17.0 35.9 39.0 18.6 18.0 0.15 0.17
N300 1.87 1.85 16.5 16.4 29.1 28.6 17.8 18.0 0.21 0.21
N360 1.70 1.89 14.3 15.6 29.2 35.0 19.8 18.4 0.17 0.21

Table 2

Correlation between summer maize grain yield with superior and inferior grain fresh volume and its variation parameters at harvest period under different rainfall years"

年份 Year 处理 <BOLD>T</BOLD>reatment 粒位 Grain position GFV GFVGmax GFVTmax GFVP GFVWmax GFVR0
2020 NH 上部Upper 0.691** 0.934** -0.771** -0.807** 0.880** 0.794**
中部Middle 0.749** 0.835** -0.901** -0.773** 0.729** 0.699**
下部Lower 0.492ns 0.752** -0.870** -0.596* 0.573* 0.441ns
DH 上部Upper 0.465ns 0.845** -0.714** -0.580* 0.822** 0.472ns
中部Middle 0.457ns 0.740** -0.801** -0.631* 0.792** 0.505ns
下部Lower 0.313ns 0.486ns -0.595* 0.094ns 0.846** 0.016ns
2021 NH 上部Upper 0.530ns -0.368ns -0.804** 0.366ns 0.250ns -0.335ns
中部Middle 0.380ns 0.234ns -0.901** -0.467ns -0.550ns 0.301ns
下部Lower 0.532ns -0.572* -0.960** 0.703** 0.843** -0.764**
DH 上部Upper 0.456ns -0.420ns -0.551* 0.434ns 0.478ns -0.515ns
中部Middle 0.559* 0.243ns -0.853** -0.019ns 0.843** 0.039ns
下部Lower 0.702** -0.501ns -0.838** 0.677** 0.866** -0.709**

Fig. 4

Effects of nitrogen application on delayed harvest summer maize superior and inferior grain fresh weight under different rainfall years"

Table 3

Effects of nitrogen application on delayed harvest summer maize superior and inferior grains fresh weight change rate under different rainfall years"

粒位
Grain
position
年份
Year
施氮量
Nitrogen
GFWGmax
(g·d-1/100 grains)
GFWTmax
(d)
GFWP
(d)
GFWWmax
(g/100 grains)
GFWR0
(g)
NH DH NH DH NH DH NH DH NH DH
上部
Upper
2020 N0 1.15 1.20 22.9 22.7 46.9 44.9 18.0 18.0 0.13 0.13
N180 1.98 1.89 16.1 16.9 28.5 31.4 18.8 19.7 0.21 0.19
N240 1.78 1.87 17.6 16.5 34.7 30.9 20.6 19.3 0.17 0.19
N300 2.02 1.96 15.6 16.2 29.8 31.7 20.1 20.7 0.20 0.19
N360 1.82 1.80 16.2 16.6 34.8 35.8 21.1 21.5 0.17 0.17
N450 1.93 1.99 19.3 18.8 35.1 33.0 22.7 22.0 0.17 0.18
2021 N0 0.68 0.82 32.4 39.7 29.4 53.3 12.0 8.0 0.11 0.20
N120 0.96 0.78 29.5 33.7 34.7 48.3 11.1 12.5 0.17 0.12
N180 0.61 0.82 19.2 23.8 36.0 58.2 11.7 9.8 0.10 0.17
N240 0.85 0.69 20.6 23.6 38.1 53.1 10.8 12.2 0.16 0.11
N300 0.70 0.56 26.9 30.7 34.3 47.8 13.0 14.6 0.11 0.08
N360 0.74 0.60 26.1 29.7 31.2 43.4 11.3 12.7 0.13 0.09
中部
Middle
2020 N0 1.51 1.52 21.2 21.3 40.2 40.3 20.2 20.4 0.15 0.15
N180 2.14 2.13 16.5 16.6 30.9 31.2 22.1 22.2 0.19 0.19
N240 2.03 2.02 16.0 16.1 32.7 33.1 22.1 22.3 0.18 0.18
N300 2.06 2.06 16.8 16.8 34.2 34.3 23.5 23.6 0.18 0.18
N360 1.92 1.94 18.0 17.9 39.2 38.7 25.0 25.0 0.15 0.15
N450 2.21 2.19 17.7 17.9 31.8 32.7 23.5 23.9 0.19 0.18
2021 N0 1.45 1.63 27.0 33.2 31.9 49.7 24.1 17.3 0.12 0.19
N120 1.65 1.80 21.1 23.0 31.3 38.2 21.1 18.8 0.16 0.19
N180 2.08 2.32 18.1 19.2 25.4 30.5 21.2 19.6 0.20 0.24
N240 1.61 1.74 18.3 19.3 35.1 40.0 21.5 20.4 0.15 0.17
N300 1.83 1.87 19.2 19.4 35.1 36.5 22.2 21.9 0.16 0.17
N360 1.49 1.68 15.6 17.9 36.3 45.6 22.7 20.4 0.13 0.17
下部
Lower
2020 N0 1.38 1.37 22.7 23.3 44.6 46.3 20.6 21.1 0.13 0.13
N180 2.16 2.03 15.6 16.7 30.2 34.0 21.7 23.0 0.20 0.18
N240 1.90 1.94 17.6 17.1 38.5 36.8 24.3 23.8 0.16 0.16
N300 1.92 1.83 17.2 18.4 37.2 41.6 23.9 25.4 0.16 0.14
N360 1.92 1.76 16.1 18.4 35.8 43.7 22.9 25.6 0.17 0.14
N450 2.10 1.93 17.3 19.0 31.7 38.3 22.2 24.6 0.19 0.16
2021 N0 2.19 2.61 21.9 23.6 19.4 27.5 20.0 16.9 0.22 0.31
N120 1.90 2.09 19.3 20.7 27.2 33.0 20.8 18.9 0.18 0.22
N180 1.89 2.09 18.0 19.8 27.7 34.8 21.9 19.3 0.17 0.22
N240 1.83 1.91 19.3 19.8 34.8 37.3 22.7 22.2 0.16 0.17
N300 2.07 2.15 18.3 18.8 30.9 32.9 22.8 22.1 0.18 0.19
N360 1.98 2.22 15.1 16.9 28.7 36.1 23.8 21.3 0.17 0.21

Table 4

Correlation between summer maize grain yield with superior and inferior grain fresh weight and its variation parameters at harvest period under different rainfall years"

年份Year 处理 <BOLD>T</BOLD>reatment 粒位 Grain position GFW GFWGmax GFWTmax GFWP GFWWmax GFWR0
2020 NH 上部Upper 0.503* 0.909** -0.870** -0.857** 0.613* 0.742**
中部Middle 0.727** 0.846** -0.895** -0.640** 0.762** 0.598*
下部Lower 0.719** 0.822** -0.884** -0.664** 0.780** 0.635**
DH 上部Upper 0.201ns 0.830** -0.873** -0.765** 0.666** 0.767**
中部Middle 0.369ns 0.700** -0.771** -0.363ns 0.790** 0.273ns
下部Lower 0.346ns 0.660** -0.748** -0.302ns 0.900** 0.193ns
2021 NH 上部Upper 0.511ns -0.279ns -0.557* 0.395ns 0.356ns -0.227ns
中部Middle 0.493ns 0.102ns -0.893** -0.223ns -0.332ns 0.085ns
下部Lower 0.593* -0.400ns -0.930** 0.791** 0.937** -0.781**
DH 上部Upper 0.471ns -0.717** -0.271ns 0.717** 0.677** -0.735**
中部Middle 0.610* 0.134ns -0.843** 0.347ns 0.843** -0.251ns
下部Lower 0.715** -0.576* -0.777** 0.743** 0.837** -0.776**

Fig. 5

Effects of nitrogen application on delayed harvest summer maize superior and inferior grain dry weight under different rainfall years"

Table 5

Effects of nitrogen application on delayed harvest summer maize superior and inferior grain dry weight filling rate under different rainfall years"

粒位
Grain
position
年份
Year
施氮量
Nitrogen
GDWGmax
(g·d-1/100 grains)
GDWTmax
(d)
GDWP
(d)
GDWWmax
(g/100 grains)
GDWR0
(g)
NH DH NH DH NH DH NH DH NH DH
上部
Upper
2020 N0 0.75 0.75 31.0 33.3 45.8 51.2 11.4 12.8 0.13 0.12
N180 0.98 0.87 23.7 27.2 37.2 49.0 12.1 14.2 0.16 0.12
N240 0.92 0.91 26.0 26.2 46.7 47.8 14.3 14.5 0.13 0.13
N300 0.99 0.95 26.2 26.7 45.2 47.8 15.0 15.2 0.13 0.13
N360 1.01 0.88 24.3 28.4 39.1 53.5 13.1 15.7 0.15 0.11
N450 1.12 1.07 25.8 27.0 38.6 43.1 14.5 15.3 0.16 0.14
2021 N0 0.39 0.43 39.3 41.0 41.9 42.6 5.4 6.1 0.14 0.14
N120 0.52 0.50 36.6 48.8 40.3 42.9 6.9 11.8 0.15 0.09
N180 0.41 0.35 27.8 33.3 41.5 41.4 5.6 7.0 0.14 0.10
N240 0.51 0.47 40.5 36.7 50.2 50.3 11.4 9.7 0.09 0.10
N300 0.66 0.56 45.2 43.1 41.8 43.8 12.9 11.2 0.10 0.10
N360 0.65 0.55 43.3 41.3 44.4 46.6 9.8 8.5 0.13 0.13
中部
Middle
2020 N0 0.89 0.84 28.7 31.4 41.9 50.4 12.5 14.1 0.14 0.12
N180 1.12 1.01 23.9 26.3 38.1 46.9 14.2 15.8 0.16 0.13
N240 1.09 1.02 23.8 26.0 40.4 47.8 14.6 16.2 0.15 0.13
N300 1.11 1.04 24.5 26.7 40.5 47.9 15.0 16.6 0.15 0.13
N360 1.16 1.12 26.4 28.5 41.6 47.6 16.0 17.8 0.14 0.13
N450 1.23 1.09 24.1 26.8 36.3 46.6 14.8 16.9 0.17 0.13
2021 N0 1.39 1.39 35.1 35.1 26.5 26.5 12.3 12.2 0.23 0.23
N120 1.28 1.24 29.0 29.5 29.2 31.0 12.4 12.9 0.21 0.19
N180 1.10 1.10 27.5 27.4 37.3 37.2 13.7 13.6 0.16 0.16
N240 1.00 1.00 29.6 29.5 45.1 45.2 15.1 15.0 0.13 0.13
N300 1.17 1.15 28.1 28.7 37.6 39.4 14.6 15.1 0.16 0.15
N360 1.01 1.05 28.0 26.5 41.4 45.9 15.5 14.5 0.13 0.15
下部
Lower
2020 N0 0.91 0.78 29.5 32.6 40.2 53.0 12.2 13.8 0.15 0.11
N180 1.08 0.89 23.3 28.1 37.8 55.9 13.6 16.5 0.16 0.11
N240 1.13 1.06 24.7 26.8 40.6 47.5 15.3 16.8 0.15 0.13
N300 1.09 0.98 25.1 29.1 41.2 54.2 14.9 17.6 0.15 0.11
N360 1.09 0.98 23.9 30.5 37.7 56.6 13.7 18.4 0.16 0.11
N450 1.29 0.87 22.6 30.2 30.7 62.1 13.2 18.0 0.20 0.10
2021 N0 1.14 0.91 28.7 31.5 26.9 39.4 10.3 11.9 0.22 0.15
N120 1.07 1.03 27.3 28.1 34.0 36.9 12.2 12.6 0.18 0.16
N180 1.17 1.16 26.9 26.9 33.6 33.7 13.0 13.0 0.18 0.18
N240 1.07 1.01 27.8 29.4 39.6 45.4 14.2 15.2 0.15 0.13
N300 1.22 1.06 25.9 28.2 32.8 42.2 13.3 14.9 0.18 0.14
N360 1.12 1.07 24.7 25.4 38.2 41.6 14.3 14.8 0.16 0.14

Table 6

Correlation between summer maize grain yield with superior and inferior grain dry weight and its variation parameters at harvest period under different rainfall years"

年份 Year 处理 <BOLD>T</BOLD>reatment 粒位 Grain position GDW GDWGmax GDWTmax GDWP GDWWmax GDWR0
2020 NH 上部Upper 0.797** 0.761** -0.845** -0.298ns 0.737** 0.304ns
中部Middle 0.861** 0.822** -0.838** -0.387ns 0.870** 0.419ns
下部Lower 0.830** 0.694** -0.836** -0.176ns 0.769** 0.206ns
DH 上部Upper 0.467ns 0.583* -0.822** -0.128ns 0.877** 0.111ns
中部Middle 0.586* 0.863** -0.690** -0.688** 0.863** 0.890**
下部Lower 0.674** 0.780** -0.538* 0.045ns 0.888** 0.159ns
2021 NH 上部Upper 0.542ns 0.772** 0.396ns 0.505ns 0.703** -0.533ns
中部Middle 0.625* -0.821** -0.794** 0.847** 0.884** -0.869**
下部Lower 0.670* 0.117ns -0.821** 0.784** 0.921** -0.827**
DH 上部Upper 0.484ns 0.401ns -0.166ns 0.139ns 0.310ns -0.239ns
中部Middle 0.524ns -0.792** -0.776** 0.810** 0.832** -0.834**
下部Lower 0.708** 0.530ns -0.668** 0.343ns 0.811** -0.296ns

Fig. 6

Effects of nitrogen application on delayed harvest summer maize superior and inferior grain moisture content under different rainfall years"

Fig. 7

Effects of nitrogen application on delayed harvest summer maize superior and inferior s grain dehydration rate under different rainfall years"

[1]
陆伟婷, 于欢, 曹胜男, 陈长青. 近20年黄淮海地区气候变暖对夏玉米生育进程及产量的影响. 中国农业科学, 2015, 48(16): 3132-3145.

doi: 10.3864/j.issn.0578-1752.2015.16.004
LU W T, YU H, CAO S N, CHEN C Q.Effects of climate warming on growth process and yield of summer maize in Huang-Huai-Hai plain in last 20 years. Scientia Agricultura Sinica, 2015, 48(16): 3132-3145. (in Chinese)
[2]
沈皓俊, 罗勇, 赵宗慈, 王汉杰. 基于LSTM网络的中国夏季降水预测研究. 气候变化研究进展, 2020, 16(3): 263-275.
SHEN H J, LUO Y, ZHAO Z C, WANG H J. Prediction of summer precipitation in China based on LSTM network. Climate Change Research, 2020, 16(3): 263-275. (in Chinese)
[3]
于维祯, 张晓驰, 胡娟, 邵靖宜, 刘鹏, 赵斌, 任佰朝. 弱光涝渍复合胁迫对夏玉米产量及光合特性的影响. 中国农业科学, 2021, 54(18): 3834-3846.

doi: 10.3864/j.issn.0578-1752.2021.18.004
YU W Z, ZHANG X C, HU J, SHAO J Y, LIU P, ZHAO B, REN B Z. Combined effects of shade and waterlogging on yield and photosynthetic characteristics of summer maize. Scientia Agricultura Sinica, 2021, 54(18): 3834-3846. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.18.004
[4]
REN B Z, ZHANG J W, LI X, FAN X, DONG S T, LIU P, ZHAO B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science, 2014, 94(1): 23-31.

doi: 10.4141/cjps2013-175
[5]
任佰朝, 张吉旺, 李霞, 范霞, 董树亭, 赵斌, 刘鹏. 淹水胁迫对夏玉米籽粒灌浆特性和品质的影响. 中国农业科学, 2013, 46(21): 4435-4445.

doi: 10.3864/j.issn.0578-1752.2013.21.005
REN B Z, ZHANG J W, LI X, FAN X, DONG S T, ZHAO B, LIU P. Effect of waterlogging on grain filling and quality of summer maize. Scientia Agricultura Sinica, 2013, 46(21): 4435-4445. (in Chinese)
[6]
任佰朝, 朱玉玲, 李霞, 范霞, 董树亭, 赵斌, 刘鹏, 张吉旺. 大田淹水对夏玉米光合特性的影响. 作物学报, 2015, 41(2): 329-338.
REN B Z, ZHU Y L, LI X, FAN X, DONG S T, ZHAO B, LIU P, ZHANG J W. Effects of waterlogging on photosynthetic characteristics of summer maize under field conditions. Acta Agronomica Sinica, 2015, 41(2): 329-338. (in Chinese)

doi: 10.3724/SP.J.1006.2015.00329
[7]
任佰朝, 高飞, 魏玉君, 董树亭, 赵斌, 刘鹏, 张吉旺. 冬小麦-夏玉米周年生产条件下夏玉米的适宜熟期与积温需求特性. 作物学报, 2018, 44(1): 137-143.
REN B Z, GAO F, WEI Y J, DONG S T, ZHAO B, LIU P, ZHANG J W. Suitable maturity period and accumulated temperature of summer maize in wheat-maize double cropping system. Acta Agronomica Sinica, 2018, 44(1): 137-143. (in Chinese)

doi: 10.3724/SP.J.1006.2018.00137
[8]
李璐璐, 明博, 谢瑞芝, 王克如, 侯鹏, 李少昆. 黄淮海夏玉米品种脱水类型与机械粒收时间的确立. 作物学报, 2018, 44(12): 1764-1773.

doi: 10.3724/SP.J.1006.2018.01764
LI L L, MING B, XIE R Z, WANG K R, HOU P, LI S K. Grain dehydration types and establishment of mechanical grain harvesting time for summer maize in the yellow-Huai-Hai rivers plain. Acta Agronomica Sinica, 2018, 44(12): 1764-1773. (in Chinese)

doi: 10.3724/SP.J.1006.2018.01764
[9]
李璐璐, 王克如, 谢瑞芝, 明博, 赵磊, 李姗姗, 侯鹏, 李少昆. 玉米生理成熟后田间脱水期间的籽粒重量与含水率变化. 中国农业科学, 2017, 50(11): 2052-2060.

doi: 10.3864/j.issn.0578-1752.2017.11.011
LI L L, WANG K R, XIE R Z, MING B, ZHAO L, LI S S, HOU P, LI S K. Corn kernel weight and moisture content after physiological maturity in field. Scientia Agricultura Sinica, 2017, 50(11): 2052-2060. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.11.011
[10]
周宝元, 马玮, 孙雪芳, 高卓晗, 丁在松, 李从锋, 赵明. 播/收期对冬小麦-夏玉米一年两熟模式周年气候资源分配与利用特征的影响. 中国农业科学, 2019, 52(9): 1501-1517.

doi: 10.3864/j.issn.0578-1752.2019.09.003
ZHOU B Y, MA W, SUN X F, GAO Z H, DING Z S, LI C F, ZHAO M. Effects of different sowing and harvest dates of winter wheat-summer maize under double cropping system on the annual climate resource distribution and utilization. Scientia Agricultura Sinica, 2021, 2019, 52(9):1501-1517. (in Chinese)
[11]
王克如, 李璐璐, 鲁镇胜, 高尚, 王浥州, 黄兆福, 谢瑞芝, 明博, 侯鹏, 薛军, 张镇涛, 侯梁宇, 李少昆.黄淮海夏玉米机械化粒收质量及其主要影响因素. 农业工程学报, 2021, 37(7): 1-7. WANG K R, LI L L, LU Z S, GAO S, WANG Y Z, HUANG Z F, XIE R Z, MING B, HOU P, XUE J, ZHANG Z T, HOU L Y, LI S K. Mechanized grain harvesting quality of summer maize and its major influencing factors in Huanghuaihai region of China. Transactions of
the Chinese Society of Agricultural Engineering, 2021, 37(7): 1-7. (in Chinese)
[12]
徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39(8): 1452-1461.
XU Y J, GU D J, ZHANG B B, ZHANG H, WANG Z Q, YANG J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agronomica Sinica, 2013, 39(8): 1452-1461. (in Chinese)

doi: 10.3724/SP.J.1006.2013.01452
[13]
徐云姬, 顾道健, 秦昊, 张耗, 王志琴, 杨建昌. 玉米灌浆期果穗不同部位籽粒碳水化合物积累与淀粉合成相关酶活性变化. 作物学报, 2015, 41(2): 297-307.
XU Y J, GU D J, QIN H, ZHANG H, WANG Z Q, YANG J C. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling. Acta Agronomica Sinica, 2015, 41(2): 297-307. (in Chinese)

doi: 10.3724/SP.J.1006.2015.00297
[14]
于宁宁, 赵子航, 任佰朝, 赵斌, 刘鹏, 张吉旺. 综合农艺管理促进夏玉米氮素吸收、籽粒灌浆和品质提高. 植物营养与肥料学报, 2020, 26(5): 797-805.
YU N N, ZHAO Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Integrated agronomic management practices improve nitrogen absorption, grain filling and nutritional qualities of summer maize. Journal of Plant Nutrition and Fertilizers, 2020, 26(5): 797-805. (in Chinese)
[15]
于宁宁, 任佰朝, 赵斌, 刘鹏, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和营养品质的影响. 应用生态学报, 2019, 30(11): 3771-3776.

doi: 10.13287/j.1001-9332.201911.021
YU N N, REN B Z, ZHAO B, LIU P, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and nutritional quality of summer maize. Chinese Journal of Applied Ecology, 2019, 30(11): 3771-3776. (in Chinese)

doi: 10.13287/j.1001-9332.201911.021
[16]
茹淑华, 耿暖, 张国印, 王凌, 孙世友. 施用氮肥对太行山前平原区作物产量和土壤硝态氮残留量的影响. 华北农学报, 2015, 30(5): 161-166.

doi: 10.7668/hbnxb.2015.05.027
RU S H, GENG N, ZHANG G Y, WANG L, SUN S Y. Effect of nitrogen application rate on crop yield and the soil nitrate nitrogen content in Taihang piedmont area. Acta Agriculturae Boreali-Sinica, 2015, 30(5): 161-166. (in Chinese)
[17]
修明, 谷世禄, 田中伟, 祝庆, 蔡剑, 姜东, 戴廷波. 稻秸还田下播种密度与氮肥运筹对小麦产量及氮素利用效率的影响. 麦类作物学报, 2016, 36(10): 1377-1385.
XIU M, GU S L, TIAN Z W, ZHU Q, CAI J, JIANG D, DAI T B. Effect of planting density and nitrogen application on wheat yield and nitrogen use efficiency under rice straw returning. Journal of Triticeae Crops, 2016, 36(10): 1377-1385. (in Chinese)
[18]
王艳群. 华北小麦/玉米轮作体系氮素调控综合效应研究[D]. 保定: 河北农业大学, 2018.
WANG Y Q. Comprehensive effects of nitrogen regulation on wheat and maize rotation system in the North China[D]. Baoding: Hebei Agricultural University, 2018. (in Chinese)
[19]
XIONG W, MATTHEWS R, HOLMAN I, LIN E D, XU Y L. Modelling China’s potential maize production at regional scale under climate change. Climatic Change, 2007, 85(3): 433-451.

doi: 10.1007/s10584-007-9284-x
[20]
DONG J W, LIU J Y, TAO F L, XU X L, WANG J B. Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000. Climate Research, 2009, 40: 37-48.

doi: 10.3354/cr00823
[21]
CHEN C, WANG E L, YU Q, ZHANG Y Q.Quantifying the effects of climate trends in the past 43 years (1961-2003) on crop growth and water demand in the North China Plain. Climatic Change, 2010, 100(3): 559-578.
[22]
ZHOU B Y, YUE Y, SUN X F, WANG X B, WANG Z M, MA W, ZHAO M. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 2016, 108(1): 196-204.

doi: 10.2134/agronj2015.0196
[23]
徐振和, 梁明磊, 路笃旭, 刘梅, 刘鹏, 董树亭, 张吉旺, 赵斌, 李耕, 杨金胜. 在植株不同水平距离处垂直断根对夏玉米产量形成和籽粒库容特性的影响. 作物学报, 2016, 42(12): 1805-1816.
XU Z H, LIANG M L, LU D X, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G. Effect of cutting roots vertically at a place with different horizontal distance from plant on yield and grain storage capacity of summer maize. Acta Agronomica Sinica, 2016, 42(12): 1805-1816. (in Chinese)

doi: 10.3724/SP.J.1006.2016.01805
[24]
路笃旭, 徐振和, 刘梅, 刘鹏, 董树亭, 张吉旺, 赵斌, 李耕, 刘少坤, 李庆方. 侧向垂直断根对不同根型夏玉米品种叶片光合性能及产量的影响. 中国农业科学, 2017, 50(18): 3482-3493.

doi: 10.3864/j.issn.0578-1752.2017.18.005
LU D X, XU Z H, LIU M, LIU P, DONG S T, ZHANG J W, ZHAO B, LI G, LIU S K, LI Q F. Effect of vertically cutting roots at different horizontal distances from plant on leaf photosynthetic characteristics and yield of summer maize with different root types. Scientia Agricultura Sinica, 2017, 50(18): 3482-3493. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.18.005
[25]
张萍, 陈冠英, 耿鹏, 高雅, 郑雷, 张沙沙, 王璞. 籽粒灌浆期高温对不同耐热型玉米品种强弱势粒发育的影响. 中国农业科学, 2017, 50(11): 2061-2070.

doi: 10.3864/j.issn.0578-1752.2017.11.012
ZHANG P, CHEN G Y, GENG P, GAO Y, ZHENG L, ZHANG S S WANG P. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 2017, 50(11): 2061-2070. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2017.11.012
[26]
张巽, 郝建平, 王璞, 张萍, 陈璐洁. 灌浆期低温对离体培养玉米强弱势粒发育的影响. 中国农业科学, 2018, 51(12): 2263-2273.

doi: 10.3864/j.issn.0578-1752.2018.12.004
ZHANG X, HAO J P, WANG P, ZHANG P, CHEN L J. Effects of low temperature on maize superior and inferior kernels development during grain filling in vitro. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.12.004
[27]
张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48(9): 2366-2376.

doi: 10.3724/SP.J.1006.2022.13056
ZHANG Z B, QU X Y, YU N N, REN B Z, LIU P, ZHAO B, ZHANG J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agronomica Sinica, 2022, 48(9): 2366-2376. (in Chinese)
[28]
朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应. 作物学报, 2021, 47(3): 507-519.

doi: 10.3724/SP.J.1006.2021.03024
ZHU Y L, WANG C G, YANG M, ZHENG X H, ZHAO C F, ZHANG R H. Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density. Acta Agronomica Sinica, 2021, 47(3): 507-519. (in Chinese)

doi: 10.3724/SP.J.1006.2021.03024
[29]
王志刚, 梁红伟, 高聚林, 于晓芳, 孙继颖, 苏治军, 胡树平, 余少波, 李雅剑, 魏淑丽, 杨哲. 玉米弱势粒库活性与籽粒内源激素及多胺含量的关系. 作物学报, 2017, 43(8): 1196-1204.
WANG Z G, LIANG H W, GAO J L, YU X F, SUN J Y, SU Z J, HU S P, YU S B, LI Y J, WEI S L, YANG Z. Relationship of sink activity with endogenous hormones and polyamine contents in inferior kernels of maize. Acta Agronomica Sinica, 2017, 43(8): 1196-1204. (in Chinese)

doi: 10.3724/SP.J.1006.2017.01196
[30]
WORKU M, BÄNZIGER M, ERLEY G S A, FRIESEN D, DIALLO A O, HORST W J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop Science, 2007, 47(2): 519-528.

doi: 10.2135/cropsci2005.05.0070
[31]
NYIRANEZA J, N'DAYEGAMIYE A, CHANTIGNY M H, LAVERDIÈRE M R. Variations in corn yield and nitrogen uptake in relation to soil attributes and nitrogen availability indices. Soil Science Society of America Journal, 2009, 73(1): 317-327.

doi: 10.2136/sssaj2007.0374
[32]
张法全, 王小燕, 于振文, 王西芝, 白洪立. 公顷产10000kg小麦氮素和干物质积累与分配特性. 作物学报, 2009, 35(6): 1086-1096.
ZHANG F Q, WANG X Y, YU Z W, WANG X Z, BAI H L. Characteristics of accumulation and distribution of nitrogen and dry matter in wheat at yield level of ten thousand kilograms per hectare. Acta Agronomica Sinica, 2009, 35(6): 1086-1096. (in Chinese)

doi: 10.3724/SP.J.1006.2009.01086
[33]
MALHI S S, LEMKE R, WANG Z H, CHHABRA B S. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil and Tillage Research, 2006, 90(1/2): 171-183.

doi: 10.1016/j.still.2005.09.001
[34]
ZHAO R F, CHEN X P, ZHANG F S, ZHANG H L, SCHRODER J, RÖMHELD V. Fertilization and nitrogen balance in a wheat-maize rotation system in North China. Agronomy Journal, 2006, 98(4): 938-945.

doi: 10.2134/agronj2005.0157
[35]
SNYDER C S, BRUULSEMA T W, JENSEN T L, FIXEN P E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agriculture, Ecosystems & Environment, 2009, 133(3/4): 247-266.

doi: 10.1016/j.agee.2009.04.021
[36]
周宝元, 葛均筑, 孙雪芳, 韩玉玲, 马玮, 丁在松, 李从锋, 赵明. 黄淮海麦玉两熟区周年光温资源优化配置研究进展. 作物学报, 2021, 47(10): 1843-1853.

doi: 10.3724/SP.J.1006.2021.13012
ZHOU B Y, GE J Z, SUN X F, HAN Y L, MA W, DING Z S, LI C F, ZHAO M. Research advance on optimizing annual distribution of solar and heat resources for double cropping system in the Yellow-Huaihe-Haihe Rivers plain. Acta Agronomica Sinica, 2021, 47(10): 1843-1853. (in Chinese)

doi: 10.3724/SP.J.1006.2021.13012
[37]
LIU M, MA Z Q, LIANG Q, ZHANG Y, YANG Y A, HOU H P, WU X D, GE J Z. Spring wheat-summer maize annual crop system grain yield and nitrogen utilization response to nitrogen application rate in the thermal-resource-limited region of the North China plain. Agronomy, 2023, 13(1): 155.

doi: 10.3390/agronomy13010155
[38]
陆桂荣, 郑美琴, 袁安芳, 滕丽峰. 日照市旱涝变化特征分析. 中国农业气象, 2009, 30(3): 436-439, 448.
LU G R, ZHENG M Q, YUAN A F, TENG L F. Characteristic of flood and drought changes in Rizhao city. Chinese Journal of Agrometeorology, 2009, 30(3): 436-439, 448. (in Chinese)
[39]
汤永禄, 吴晓丽, 吴元奇, 李朝苏, 吴春, 郭大明. 小麦籽粒灌浆参数的基因型差异及其稳定性分析. 中国农业大学学报, 2014, 19(1): 9-20.
TANG Y L, WU X L, WU Y Q, LI C S, WU C, GUO D M. Analysis of the genotypic variation and stability of grain filling parameters of wheat. Journal of China Agricultural University, 2014, 19(1): 9-20. (in Chinese)
[40]
曹玉军, 窦金刚, 高玉山, 魏雯雯, 吕艳杰, 姚凡云, 刘慧涛, 王永军. 施氮对不同种植密度玉米产量和子粒灌浆特性的影响. 玉米科学, 2015, 23(6): 136-141, 148.
CAO Y J, DOU J G, GAO Y S, WEI W W, Y J, YAO F Y, LIU H T, WANG Y J. Effect of nitrogen application on yield and grain filling characteristics under different densities of maize. Journal of Maize Sciences, 2015, 23(6): 136-141, 148. (in Chinese)
[41]
周卫霞, 董朋飞, 王秀萍, 李潮海. 弱光胁迫对不同基因型玉米籽粒发育和碳氮代谢的影响. 作物学报, 2013, 39(10): 1826-1834.

doi: 10.3724/SP.J.1006.2013.01826
ZHOU W X, DONG P F, WANG X P, LI C H. Effects of low-light stress on kernel setting, and metabolism of carbon and nitrogen in different maize (Zea mays L.) genotypes. Acta Agronomica Sinica, 2013, 39(10): 1826-1834. (in Chinese)
[42]
王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构、生理特性和产量的影响. 中国农业科学, 2020, 53(17): 3479-3495.

doi: 10.3864/j.issn.0578-1752.2020.17.006
WANG Q, ZHAO X Y, LIU D Y, YAN Z H, LI H P, DONG P F, LI C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress. Scientia Agricultura Sinica, 2020, 53(17): 3479-3495. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.17.006
[43]
武文明, 王世济, 陈洪俭, 魏凤珍, 李金才. 氮肥运筹对苗期受渍夏玉米子粒灌浆特性和产量的影响. 玉米科学, 2016, 24(6): 120-125.
WU W M, WANG S J, CHEN H J, WEI F Z, LI J C. Effects of nitrogen fertilization on grain filling characteristics in summer maize under waterlogging at the seedling stage. Journal of Maize Sciences, 2016, 24(6): 120-125. (in Chinese)
[44]
刘梦, 张垚, 葛均筑, 周宝元, 吴锡冬, 杨永安, 侯海鹏. 不同降雨年型施氮量与收获期对夏玉米产量及氮肥利用效率的影响. 作物学报, 2023, 49(2): 497-510.

doi: 10.3724/SP.J.1006.2023.23014
LIU M, ZHANG Y, GE J Z, ZHOU B Y, WU X D, YANG Y A, HOU H P. Effects of nitrogen application and harvest time on grain yield and nitrogen use efficiency of summer maize under different rainfall years. Acta Agronomica Sinica, 2023, 49(2): 497-510. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23014
[45]
申丽霞, 王璞, 张软斌. 施氮对不同种植密度下夏玉米产量及子粒灌浆的影响. 植物营养与肥料学报, 2005, 11(3): 314-319.
SHEN L X, WANG P, ZHANG R B. Effect of nitrogen supply on yield and grain filling in summer maize with different crop density. Journal of Plant Nutrition and Fertilizers, 2005, 11(3): 314-319. (in Chinese)
[46]
COSTA C, DWYER L M, ZHOU X M, DUTILLEUL P, HAMEL C, REID L M, SMITH D L. Root morphology of contrasting maize genotypes. Agronomy Journal, 2002, 94(1): 96.

doi: 10.2134/agronj2002.9600
[47]
王楷, 王克如, 王永宏, 赵健, 赵如浪, 王喜梅, 李健, 梁明晰, 李少昆.密度对玉米产量(>15000kg·hm-2) 及其产量构成因子的影响. 中国农业科学, 2012, 45(16): 3437-3445.

doi: 10.3864/j.issn.0578-1752.2012.16.025
WANG K, WANG K R, WANG Y H, ZHAO J, ZHAO R L, WANG X M, LI J, LIANG M X, LI S K. Effects of density on maize yield and yield components. Scientia Agricultura Sinica, 2012, 45(16): 3437-3445. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2012.16.025
[48]
肖珊珊, 张翼飞, 杨克军, 明立伟, 杜嘉瑞, 徐荣琼, 孙逸珊, 李伟庆, 李桂彬, 李泽松, 李佳宇. 不同熟期品种间作对春玉米籽粒灌浆、脱水特性及产量的影响. 中国农业科学, 2022, 55(12): 2294-2310.

doi: 10.3864/j.issn.0578-1752.2022.12.003
XIAO S S, ZHANG Y F, YANG K J, MING L W, DU J R, XU R Q, SUN Y S, LI W Q, LI G B, LI Z S, LI J Y. Effects of intercropping with different maturity varieties on grain filling, dehydration characteristics and yield of spring maize. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2022.12.003
[49]
王荣焕, 徐田军, 陈传永, 王元东, 吕天放, 刘月娥, 蔡万涛, 刘秀芝, 赵久然. 不同熟期类型玉米品种籽粒灌浆和脱水特性. 作物学报, 2021, 47(1): 149-158.

doi: 10.3724/SP.J.1006.2021.93008
WANG R H, XU T J, CHEN C Y, WANG Y D, T F, LIU Y E, CAI W T, LIU X Z, ZHAO J R. Grain filling and dehydrating characteristics of maize hybrids with different maturity. Acta Agronomica Sinica, 2021, 47(1): 149-158. (in Chinese)

doi: 10.3724/SP.J.1006.2021.93008
[50]
张先宇, 杨帆, 张嘉月, 韩笑, 周羽, 张林, 曾兴, 王振华, 邸宏. 脱水速率和灌浆速率对玉米收获期子粒含水量的影响. 玉米科学, 2020, 28(4): 74-78.
ZHANG X Y, YANG F, ZHANG J Y, HAN X, ZHOU Y, ZHANG L, ZENG X, WANG Z H, DI H. Dynamic changes of grain moisture content and filling rate of maize hybrids and parental inbred lines. Journal of Maize Sciences, 2020, 28(4): 74-78. (in Chinese)
[51]
梁效贵, 赵雪, 吴巩, 陈先敏, 高震, 申思, 林珊, 周顺利. 推迟收获对华北夏玉米籽粒脱水和力学特性的影响及其品种差异. 中国农业大学学报, 2019, 24(5): 1-9.
LIANG X G, ZHAO X, WU G, CHEN X M, GAO Z, SHEN S, LIN S, ZHOU S L. Grain dehydration and mechanical characteristics of different summer maize hybrids and their responses to delayed harvest in the North China plain. Journal of China Agricultural University, 2019, 24(5): 1-9. (in Chinese)
[52]
LI Q, DU L J, FENG D J, REN Y, LI Z X, KONG F L, YUAN J C. Grain-filling characteristics and yield differences of maize cultivars with contrasting nitrogen efficiencies. The Crop Journal, 2020, 8(6): 990-1001.

doi: 10.1016/j.cj.2020.04.001
[53]
赵丽晓, 张萍, 王若男, 王璞, 陶洪斌. 花后前期高温对玉米强弱势籽粒生长发育的影响. 作物学报, 2014, 40(10): 1839-1845.

doi: 10.3724/SP.J.1006.2014.01839
ZHAO L X, ZHANG P, WANG R N, WANG P, TAO H B. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 2014, 40(10): 1839-1845. (in Chinese)

doi: 10.3724/SP.J.1006.2014.01839
[54]
万泽花, 任佰朝, 赵斌, 刘鹏, 张吉旺. 不同熟期夏玉米品种籽粒灌浆脱水特性和激素含量变化. 作物学报, 2019, 45(9): 1446-1453.

doi: 10.3724/SP.J.1006.2019.83078
WAN Z H, REN B Z, ZHAO B, LIU P, ZHANG J W. Grain filling, dehydration characteristics and changes of endogenous hormones of summer maize hybrids differing in maturities. Acta Agronomica Sinica, 2019, 45(9): 1446-1453. (in Chinese)
[55]
杜红霞, 吴普特, 冯浩, 王百群, 马军勇. 氮施用量对夏玉米土壤水氮动态及水肥利用效率的影响. 中国水土保持科学, 2009, 7(4): 82-87.
DU H X, WU P T, FENG H, WANG B Q, MA J Y. Influence of nitrogen application on soil moisture-nitrogen dynamics and water-fertilizer use efficiency of Zea mays. Science of Soil and Water Conservation, 2009, 7(4): 82-87. (in Chinese)
[56]
潘家荣, 巨晓棠, 刘学军, 陈新平, 张福锁, 毛达如. 水氮优化条件下在华北平原冬小麦/夏玉米轮作中化肥氮的去向. 核农学报, 2009, 23(2): 334-340, 307.

doi: 10.11869/hnxb.2009.02.0334
PAN J R, JU X T, LIU X J, CHEN X P, ZHANG F S, MAO D R. Fate of fertilizer nitrogen for winter wheat/summer maize rotation in North China Plain under optimization of irrigation and fertilization. Journal of Nuclear Agricultural Sciences, 2009, 23(2): 334-340, 307. (in Chinese)
[57]
CÁRCOVA J, URIBELARREA M, BORRÁS L, OTEGUI M E, WESTGATE M E. Synchronous pollination within and between ears improves kernel set in maize. Crop Science, 2000, 40(4): 1056-1061.

doi: 10.2135/cropsci2000.4041056x
[58]
余垚颖, 莫太相, 刘金丹, 郭应菊, 陈代容, 王明富. 四川山地、 丘陵玉米N、P、K需肥特性及肥料利用率研究. 西南农业学报, 2021, 34(2): 326-333.
YU Y Y, MO T X, LIU J D, GUO Y J, CHEN D R, WANG M F. N, P, K demand characteristics and fertilizer use efficiency of maize in mountain and hilly Sichuan. Southwest China Journal of Agricultural Sciences, 2021, 34(2): 326-333. (in Chinese)
[1] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[2] YU HaoDong, CHU ZhenYu, WANG ShunYuan, GUO YanQing, REN BaiZhao, ZHANG JiWang. Effects of Different Controlled Nitrogen Ratios on Leaf Senescence and Grain Filling Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3511-3529.
[3] MU HaiMeng, SUN LiFang, WANG ZhuangZhuang, WANG Yu, SONG YiFan, ZHANG Rong, DUAN JianZhao, XIE YingXin, KANG GuoZhang, WANG YongHua, GUO TianCai. Effect of Nitrogen Application Rate and Planting Density on the Lodging Resistance and Grain Yield of Two Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2023, 56(15): 2863-2879.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] FENG XiangQian, YIN Min, WANG MengJia, MA HengYu, CHU Guang, LIU YuanHui, XU ChunMei, ZHANG XiuFu, ZHANG YunBo, WANG DanYing, CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[6] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[7] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[8] FANG MengYing, LU Lin, WANG QingYan, DONG XueRui, YAN Peng, DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[9] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[10] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
[11] GENG WenJie, LI Bin, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Regulation Mechanism of Planting Density and Spraying Ethephon on Lignin Metabolism and Lodging Resistance of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(2): 307-319.
[12] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[13] XiaoFan LI, JingYi SHAO, WeiZhen YU, Peng LIU, Bin ZHAO, JiWang ZHANG, BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[14] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[15] XIAO ShanShan, ZHANG YiFei, YANG KeJun, MING LiWei, DU JiaRui, XU RongQiong, SUN YiShan, LI WeiQing, LI GuiBin, LI ZeSong, LI JiaYu. Effects of Intercropping with Different Maturity Varieties on Grain Filling, Dehydration Characteristics and Yield of Spring Maize [J]. Scientia Agricultura Sinica, 2022, 55(12): 2294-2310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!