Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 3960-3974.doi: 10.3864/j.issn.0578-1752.2023.20.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Investigation on Outcrossing Seed-Setting Characteristics of Machine- Transplanted Hybrid Rice Seed Production

HUANG BangChao1(), TAO YouFeng1, QIN Qin1,2, LI Hui1, ZHOU ZhongLin1, GUO JinYue1, DENG TianTian1, LEI XiaoLong1, SUN BoTeng1, ZHOU GaoZi1, JIA YuanLi1, REN WanJun1()   

  1. 1 College of Agronomy, Sichuan Agricultural University/State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/Key Laboratory of Crop Ecophysiology and Farming Systems in Southwest China, Ministry of Agriculture and Rural Affairs, Wenjiang 611130, Sichuan
    2 Chengdu Agricultural College, Wenjiang 611130, Sichuan
  • Received:2023-02-13 Accepted:2023-04-14 Online:2023-10-16 Published:2023-10-31
  • Contact: REN WanJun

Abstract:

【Objective】The objective of this research is to clarify the panicle seeding characteristics of sterile lines in machine- transplanted seed production and explore the reasons for the lower seed yield of hybrid rice in mechanized seed production mode. 【Method】Two combinations of Chenghui 727×Shu 21A and Yahui 2115×Yixiang 1A were selected as the materials, and the field experiment was conducted in Chongzhou from 2020 to 2021. Two methods of machine and hand-transplanted were utilized. During the heading to flowering stage, the state of flower synchronization was judged by the heading condition of restorer line and sterile line, and panicle seeding condition of sterile line was investigated at maturity stage. Statistical analysis of seeding characteristics of sterile line in different rows, panicle positions and different branches under two transplanting methods. 【Result】 (1) Under the condition of flower synchronization, the hand-transplanted restorer line and sterile line had a complete coincidence of flowering period with a flower synchronization index of 100%. On the other hand, the machine-transplanted restorer lines and sterile line had a flowering deviation of 3-4 days and 6-8 days, respectively, resulting in poor flower synchronization with a flower synchronization index of 33.33%-55.56%. (2) The overall setting rate was lower in the machine-transplanted group compared to the hand-transplanted group, with a 33.45% reduction in the setting rate of machine-transplanted. (3) The setting rate of panicles in rows 1-6 of sterile line showed a gradual decrease trend, and a higher setting rate was observed in the flower synchronization treatment in the same line. (4) The upper part panicles of the sterile line had a good pollination posture with a small shielding effect on the pollen. Under normal pollination conditions, the panicle setting rate of sterile line was significantly shown as upper> middle > lower part, while the empty grain rate was lower> middle > upper part. (5) The setting rate of primary branches of sterile line was significantly higher than that of secondary branches under different transplanting methods. The machine-transplanted treatment further reduced the setting rate of primary and secondary branches of sterile line. The primary and secondary branch ustilagomaydis grains of sterile line showed no significant difference under the machine-transplanted treatment, whereas the secondary branch ustilagomaydis grains were significantly higher than the primary branches under the hand-transplanted treatment. (6) The flower synchronization of the restorer line and sterile line was poor under the machine-transplanted treatment, resulting in lower actual seed production yield than the hand-transplanted group. The seed production yield decreased by 39.34% and 41.48% in two years. 【Conclusion】The flowering deviation of the sterile line was found to be 3-4 days longer than that of the restorer line, which resulted in poor flower synchronization. This is the primary reason for the lower setting rate of machine-transplanted compared to hand-transplanted. Additionally, the low setting rate of sterile line in the middle and lower parts of the panicle, as well as those further away from the restorer line, further contributes to the low overall setting rate in machine-transplanted. However, the effects of blighted and infected grains on the setting rate and yield were found to be relatively small. To improve the setting rate of hybrid rice in machine-transplanted seed production mode, we suggest the following measures. Arrange the sowing of machine-transplanted parents at different intervals during the full flowering stage to improve the degree of flower synchronization. Standardize the pollination operation to improve the effectiveness of pollination. Strengthen field management to reduce the occurrence of blighted and infected grains. By implementing these measures, we can improve the yield of hybrid rice in machine-transplanted seed production mode.

Key words: hybrid rice, mechanized seed production, sterile line, flowering, seed setting rate, yield

Table 1

Properties of tested combinations in this study"

品种
Variety
株高
Plant height (cm)
主茎叶数
Leaf number of main stems
播始历期
DSH (d)
穗粒数
No. of grains per ear
千粒重
1000-grain weight (g)
成恢727 Chenghui 727 110.0 16—17 110.0 130 29.5
蜀21A Shu 21A 90.0 14—15 85.0 120—150 27.0
雅恢2115 Yahui 2115 114.0 15—16 115.0 169 29.3
宜香1A Yixiang 1A 85.8 14—15 90.5 120 30.5

Table 2

Sowing and transplanting date and transplanting specification of parents in 2020-2021"

品种
Variety
播种时间Sowing date (M/D) 播种量
Seeding rate
(G/T)
移栽时间
Transplanting date (M/D)
移栽叶龄
Transplanting leaf age
行距
Row space (cm)
穴距
Colum space (cm)
穴苗数
Seedling number per hole
播期Ⅰ
Seeding age Ⅰ
播期Ⅱ
Seeding age Ⅱ
成恢727 Chenghui 727 3/21 3/28 3000 4/30 3.7 30 20 4
蜀21A Shu 21A 4/28 3700 5/28 3.1 30 12 5
雅恢2115 Yahui 2115 3/26 4/2 3000 5/5 3.6 30 20 4
宜香1A Yixiang 1A 4/21 3700 5/21 2.9 30 12 5

Fig. 1

Daily mean temperature and precipitation during the growth period of seed production parents"

Table 3

Heading characteristics of sterile line and restorer line under different treatments"

年份
Year
品种
Variety
处理
Treatment
始穗日期
Initial heading date (M/D)
齐穗日期
Full heading
date (M/D)
完穗日期
End heading
date (M/D)
播始历期
DSH
(d)
播种-盛穗历期
DSFH
(d)
盛穗历期
DFH
(d)
抽穗历期
Duration of
heading (d)
2020 成恢727
Chenghui 727
AT 7/17 7/22 7/26 118 123 5 9
MT 7/21 7/27 7/30 122 128 6 9
蜀21A
Shu 21A
AT 7/19 7/23 7/24 82 121 4 5
MT 7/27 7/31 8/1 90 126 4 5
雅恢2115
Yahui 2115
AT 7/21 7/27 7/28 117 88 6 7
MT 7/25 7/29 8/1 121 94 4 7
宜香1A
Yixiang 1A
AT 7/20 7/23 7/25 90 94 3 5
MT 7/28 8/1 8/2 98 102 4 5
2021 成恢727
Chenghui 727
AT 7/19 7/23 7/25 116 120 4 6
MT 7/22 7/25 7/28 119 122 3 6
蜀21A
Shu 21A
AT 7/18 7/22 7/24 79 83 4 6
MT 7/26 7/31 8/1 87 92 5 6
雅恢2115
Yahui 2115
AT 7/21 7/25 7/27 118 122 4 6
MT 7/24 7/28 7/30 121 125 4 6
宜香1A
Yixiang 1A
AT 7/20 7/24 7/26 88 92 4 6
MT 7/26 7/30 8/1 94 98 4 6

Table 4

Setting conditions of sterile line panicle under different treatments"

年份
Year
组合
Combination
处理
Treatment
花遇指数
Flower synchronization index (%)
结实率
Grain filling
rate (%)
空粒率
Grain empty
rate (%)
秕粒率
Grain blighted rate (%)
病粒率
Grain infected
rate (%)
2020 成恢727×蜀21A
Chenghui 727×Shu 21A
AT 100.00a 31.43a 55.71c 0.83a 12.04a
MT 43.75c 19.58b 69.81b 1.68a 8.93a
雅恢2115×宜香1A
Yahui 2115×Yixiang 1A
AT 100.00a 22.23b 74.62ab 0.36a 2.79b
MT 55.56b 19.80b 77.65a 0.49a 2.05b
2021
成恢727×蜀21A
Chenghui 727×Shu 21A
AT 100.00a 27.25a 57.51d 1.30b 13.93a
MT 33.33b 17.15c 63.82c 3.20a 15.83a
雅恢2115×宜香1A
Yahui 2115×Yixiang 1A
AT 100.00a 23.09b 69.44b 0.98b 6.49b
MT 36.36b 12.68d 79.07a 1.14b 7.11b

Fig. 2

Setting conditions of each row panicle of Chenghui 727×Shu 21A combination sterile line GFR: Grain filling rate; GER: Grain empty rate; GBR: Grain blighted rate; GIR: Grain infected rate. ATF: Artificial transplanting in 2020; MTF: Mechanical transplanting in 2020; ATN: Artificial transplanting in 2021; MTN: Mechanical transplanting in 2021. The same as below"

Fig. 3

Setting conditions of each row panicle of Yahui 2115×Yixiang 1A combination sterile line"

Table 5

Setting conditions in different parts of panicle of sterile line"

年份
Year
处理
Treatment
穗位
Ear
结实率
Grain filling rate (%)
空粒率
Grain empty rate (%)
秕粒率
Grain blighted rate (%)
病粒率
Grain infected rate (%)
S Y S Y S Y S Y
2020 AT
上部Upper 34.40a 28.04a 54.00d 69.17d 0.68a 0.22b 10.91a 2.57ab
中部Middle 33.16a 23.53abc 54.47d 73.36bcd 0.86a 0.51ab 11.51a 2.60ab
下部Lower 24.56b 17.37de 60.22cd 79.36ab 1.00a 0.23b 14.22a 3.04a
MT
上部Upper 23.91b 24.15ab 64.73bc 72.98cd 1.48a 0.33ab 9.88a 2.54ab
中部Middle 18.93c 19.07cd 70.40ab 78.52abc 1.78a 0.40ab 8.89a 2.00b
下部Lower 12.38d 13.61ef 77.23a 83.76a 1.82a 0.82a 8.57a 1.81b
2021 AT
上部Upper 34.21a 25.84a 53.11d 66.64c 0.88c 1.16a 11.80b 6.36a
中部Middle 24.79b 22.78a 58.79c 68.17c 1.42c 0.94a 15.00a 8.12a
下部Lower 20.89b 17.48b 61.58bc 75.36b 1.85bc 0.86a 15.69a 6.30a
MT

上部Upper 21.35b 14.90bc 61.39bc 77.90b 2.25bc 0.81a 15.00a 6.38a
中部Middle 16.63c 11.44cd 63.67b 79.38ab 3.30ab 1.06a 16.40a 8.12a
下部Lower 9.96d 8.19d 68.77a 83.19a 4.85a 1.66a 16.42a 6.95a

Fig. 4

Spikelets distribution in panicle of Chenghui 727×Shu 21A combination sterile line (2020) F: Filled grain; E: Empty grain; B: Blighted grain; I: Infected grain. ATS: Chenghui 727×Shu 21A combination artificial transplanting; MTS: Chenghui 727×Shu 21A combination mechanical transplanting. 1-6 represents the sterile line in the first to sixth line close to the restorer line. The same as below"

Fig. 5

Spikelets distribution in panicle of Yahui 2115×Yixiang 1A combination sterile line (2020) ATY: Yahui 2115×Yixiang 1A combination artificial transplanting; MTY: Yahui 2115×Yixiang 1A combination mechanical transplanting"

Table 6

Seed production yield and yield components under different transplanting treatments"

组合
Combination
年份
Year
处理
Treatment
单穴有效穗
Effective panicles per hole
单穗颖花数
Spikelets per panicle
千粒重
1000-grain weight (g)
实际产量
Actual yield (kg·hm-2)
成恢727×蜀21A
Chenghui 727×Shu 21A
2020 AT 9.83b 177.48a 26.61a 1510.62b
MT 10.78ab 146.24c 22.23c 804.25d
2021 AT 10.41ab 168.98b 26.00a 1814.48a
MT 11.06a 136.05d 25.03b 1153.25c
雅恢2115×宜香1A
Yahui 2115×Yixiang 1A
2020 AT 10.17a 138.29a 28.53a 1129.51b
MT 10.89a 113.03c 26.66b 797.16d
2021 AT 10.71a 141.77a 28.63a 1969.49a
MT 10.73a 124.93b 26.36b 1060.95c
[1]
SONG S H, TIAN D M, ZHANG Z, HU S N, YU J. Rice genomics: Over the past two decades and into the future. Genomics, Proteomics & Bioinformatics, 2018, 16(6): 397-404.
[2]
唐文帮, 张桂莲, 邓化冰. 杂交水稻机械化制种的技术探索与实践. 中国水稻科学, 2020, 34(2): 95-103.

doi: 10.16819/j.1001-7216.2020.9130
TANG W B, ZHANG G L, DENG H B. Technology exploration and practice of hybrid rice mechanized seed production. Chinese Journal of Rice Science, 2020, 34(2): 95-103. (in Chinese)

doi: 10.16819/j.1001-7216.2020.9130
[3]
蒋开锋, 郑家奎, 赵甘霖, 朱永川, 万先齐, 丁国祥. 杂交水稻产量性状稳定性及其相关性研究. 中国水稻科学, 2001, 15(1): 67-69.
JIANG K F, ZHENG J K, ZHAO G L, ZHU Y C, WAN X Q, DING G X. Stability of grain yield traits and their correlation in hybrid rice. Chinese Journal of Rice Science, 2001, 15(1): 67-69. (in Chinese)
[4]
王晓敏, 李波, 徐小健, 陈其敏, 唐启源. 影响杂交水稻制种母本异交结实率的因素. 作物研究, 2015, 29(3): 317-320.
WANG X M, LI B, XU X J, CHEN Q M, TANG Q Y. Factors affecting outcrossing seed setting rate of female parents in hybrid rice seed production. Crop Research, 2015, 29(3): 317-320. (in Chinese)
[5]
阳峰萍, 欧阳辉峰, 杨启生. 坚守的种业涅槃的种业: 记萍乡杂交水稻制种业改革开放发展的40年. 中国种业, 2019(1): 18-19.
YANG F P, OUYANG H F, YANG Q S. Adhering to the seed industry: 40 years of reform and opening-up of Pingxiang hybrid rice seed industry. China Seed Industry, 2019(1): 18-19. (in Chinese)
[6]
徐庆国, 黄丰. 杂交水稻机械化种子生产技术的研究进展. 农业工程学报, 2010, 26(S1): 37-41.
XU Q G, HUANG F. Studies and progress on seed production mechanization technology in hybrid rice. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 37-41. (in Chinese)
[7]
崔贵梅, 牛天堂, 张福耀, 袁爱萍, 孙毅.谷子(Setaria italica Beauv.)高异交结实雄性不育系“81-16 ”的柱头性状观察. 作物学报, 2007, 33(1): 149-153.
CUI G M, NIU T T, ZHANG F Y, YUAN A P, SUN Y.The stigma observation on foxtail millet (Seteria italica Beauv.) male-sterile line“81-16 ” with high outcross seed setting. Acta Agronomica Sinica, 2007, 33(1): 149-153. (in Chinese)
[8]
李朝勇. 提高杂交水稻制种异交结实率技术. 种子世界, 2017(7): 47-48.
LI C Y. Techniques for improving outcrossing seed setting rate in hybrid rice seed production. Seed World, 2017(7): 47-48. (in Chinese)
[9]
林建荣, 宋昕蔚, 吴明国, 程式华. 籼粳超级杂交稻育种技术创新与品种培育. 中国农业科学, 2016, 49(2): 207-218.

doi: 10.3864/j.issn.0578-1752.2016.02.002
LIN J R, SONG X W, WU M G, CHENG S H. Breeding technology innovation of indica-japonica super hybrid rice and varietal breeding. Scientia Agricultura Sinica, 2016, 49(2): 207-218. (in Chinese)
[10]
田大成. 水稻异交栽培学:杂交水稻高产制种原理与技术. 成都: 四川科学技术出版社, 1991.
TIAN D C. Rice Outcrossing Cultivation:Principles and Techniques of High-Yield Seed Production of Hybrid Rice. Chengdu: Sichuan Scientific and Technical Press, 1991. (in Chinese)
[11]
谢留杰, 段敏, 曾国应, 黄善军, 潘晓飚, 刘庆龙. 8个籼型两用核不育系育性及开花习性研究. 杂交水稻, 2016, 31(6): 32-35, 41.
XIE L J, DUAN M, ZENG G Y, HUANG S J, PAN X B, LIU Q L. Study on fertility and flowering habit of eight indica dual-purpose genic male sterile lines. Hybrid Rice, 2016, 31(6): 32-35, 41. (in Chinese)
[12]
田大成, 黄三奎, 段永国, 王友红. 水稻不育系花时和受粉时间与异交结实率的关系. 杂交水稻, 2004, 19(3): 50-54.
TIAN D C, HUANG S K, DUAN Y G, WANG Y H. The relationship between flowering and pollination time and outcrossing rate of male sterile lines in hybrid rice seed production. Hybrid Rice, 2004, 19(3): 50-54. (in Chinese)
[13]
MAHMOUD G, HASSAN H, ATIF B, HESHAM A, SHARIF A, ISMAIL I A, MD S I, AYMAN E S. Flowering synchronization in hybrid rice parental lines at different sowing dates. Sustainability, 2021, 13(6): 3229.

doi: 10.3390/su13063229
[14]
GUPTA R, SUTRADHAR H, CHAKRABARTY S K, ANSARI M W, SINGH Y. Stigmatic receptivity determines the seed set in Indian mustard, rice and wheat crops. Communicative & Integrative Biology, 2015, 8(5): e1042630.
[15]
HASAN M J, KULSUM M U, PAUL A K, BISWAS P L, RAHMAN M H, ANSARI A, AKTER A, LIPI L F, MOHIUDDIN S J, ZAHID AL RAFIQ M. Assessment of variability for floral characteristics and out-crossing rate in CMS lines of hybrid rice. Bangladesh Rice Journal, 2019, 22(2): 31-39.

doi: 10.3329/brj.v22i2.44040
[16]
MA X, ZHENG Z, LIN F S, GE T T, SUN H M. Genetic analysis and gene mapping of a low stigma exposed mutant gene by high- throughput sequencing. PLoS ONE, 2018, 13(1): e0186942.

doi: 10.1371/journal.pone.0186942
[17]
EL-NAMAKY R. The genetic variability of floral and agronomic characteristics of newly-bred cytoplasmic male sterile rice. Agriculture, 2018, 8(5): 68.

doi: 10.3390/agriculture8050068
[18]
秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性. 作物学报, 2022, 48(4): 988-1004.

doi: 10.3724/SP.J.1006.2022.12020
QIN Q, TAO Y F, HUANG B C, LI H, GAO Y T, ZHONG X Y, ZHOU Z L, ZHU L, LEI X L, FENG S Q, WANG X, REN W J. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production. Acta Agronomica Sinica, 2022, 48(4): 988-1004. (in Chinese)

doi: 10.3724/SP.J.1006.2022.12020
[19]
林俊城, 田小海, 殷桂香, 汤吉洪, 杨志刚. 人工调节籼型杂交水稻不育系花时的研究. 中国农业科学, 2008, 41(8): 2474-2479.
LIN J C, TIAN X H, YIN G X, TANG J H, YANG Z G. Artificial regulation of the flowering time of CMS lines in indica hybrid rice seed production. Scientia Agricultura Sinica, 2008, 41(8): 2474-2479. (in Chinese)
[20]
徐梦, 文建成, 杨莲莲, 黄大军, 李伟华, 金寿林, 陈丽娟, 谭学林. 滇1型粳稻不育系和保持系的花时特性研究. 杂交水稻, 2012, 27(4): 65-71.
XU M, WEN J C, YANG L L, HUANG D J, LI W H, JIN S L, CHEN L J, TAN X L. Studies on flowering time traits of characteristics of japonica CMS-D1 lines and their maintainer lines in rice. Hybrid Rice, 2012, 27(4): 65-71. (in Chinese)
[21]
刘爱民, 张海清, 廖翠猛, 张青, 肖层林, 何菊英, 张健勇, 何研, 李继宇, 罗锡文. 单旋翼农用无人机辅助杂交水稻制种授粉效果研究. 杂交水稻, 2016, 31(6): 19-23.
LIU A M, ZHANG H Q, LIAO C M, ZHANG Q, XIAO C L, HE J Y, ZHANG J Y, HE Y, LI J Y, LUO X W. Study on pollination effect of hybrid rice seed production assisted by single-rotor agricultural drone. Hybrid Rice, 2016, 31(6): 19-23. (in Chinese)
[22]
高继平, 隋阳辉, 张文忠, 姚晨, 高明超, 赵明辉, 徐正进. 水稻灌浆期冠层温度对植株生理性状及稻米品质的影响. 中国水稻科学, 2015, 29(5): 501-510.

doi: 10.3969/j.issn.1001G7216.2015.05.007
GAO J P, SUI Y H, ZHANG W Z, YAO C, GAO M C, ZHAO M H, XU Z J. Effect of canopy temperature on physiological characteristic and grain quality at filling stage in rice. Chinese Journal of Rice Science, 2015, 29(5): 501-510. (in Chinese)
[23]
王爱军, 殷得所, 富蓉, 盘林秀, 顾思思, 江波, 郑爱萍. 78个水稻不育系对稻粒黑粉病的抗性评价. 植物病理学报, 2018, 48(2): 207-212.
WANG A J, YIN D S, FU R, PAN L X, GU S S, JIANG B, ZHENG A P. Evaluation of resistance to rice kernel smut in seventy-eight species of rice sterile lines. Acta Phytopathologica Sinica, 2018, 48(2): 207-212. (in Chinese)
[24]
WANG N, AI P, TANG Y F, ZHANG J, DAI X J, LI P, ZHENG A P. Draft genome sequence of the rice kernel smut Tilletia horrida strain QB-1. Genome Announcements, 2015, 3(3): e00621-e00615.
[25]
韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40(12): 2160-2168.

doi: 10.3724/SP.J.1006.2014.02160
WEI H H, LI C, ZHANG H C, SUN Y H, MA R R, WANG X Y, YANG J W, DAI Q G, HUO Z Y, XU K, WEI H Y, GUO B W. Plant type characteristics in populations with different yield of Yongyou 12. Acta Agronomica Sinica, 2014, 40(12): 2160-2168. (in Chinese)

doi: 10.3724/SP.J.1006.2014.02160
[26]
李杰, 张洪程, 董洋阳, 倪晓诚, 杨波, 龚金龙, 常勇, 戴其根, 霍中洋, 许轲, 魏海燕. 不同生态区栽培方式对水稻产量、生育期及温光利用的影响. 中国农业科学, 2011, 44(13): 2661-2672.

doi: 10.3864/j.issn.0578-1752.2011.13.004
LI J, ZHANG H C, DONG Y Y, NI X C, YANG B, GONG J L, CHANG Y, DAI Q G, HUO Z Y, XU K, WEI H Y. Effects of cultivation methods on yield, growth stage and utilization of temperature and illumination of rice in different ecological regions. Scientia Agricultura Sinica, 2011, 44(13): 2661-2672. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2011.13.004
[27]
刘奇华, 吴修, 陈博聪, 马加清, 高洁, 张士永, 陈峰. 长秧龄机插稻氮素利用特性及其与环境温度的相关性. 农业工程学报, 2013, 29(22): 23-31.
LIU Q H, WU X, CHEN B C, MA J Q, GAO J, ZHANG S Y, CHEN F. Nitrogen utilization in mechanical transplanted rice with long seedling age and its correlation with environmental temperatures. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(22): 23-31. (in Chinese)
[28]
MATSUI T, KOBAYASI K, YOSHIMOTO M, HASEGAWA T, TIAN X H. Dependence of pollination and fertilization in rice (Oryza sativa L.) on floret height within the canopy. Field Crops Research, 2020, 249: 107741.

doi: 10.1016/j.fcr.2020.107741
[29]
WIN A, TANAKA T S T, MATSUI T. Panicle inclination influences pollination stability of rice (Oryza sativa L.). Plant Production Science, 2020, 23(1): 60-68.

doi: 10.1080/1343943X.2019.1698971
[30]
李继宇, 周志艳, 兰玉彬, 胡炼, 臧英, 刘爱民, 罗锡文, 张铁民. 旋翼式无人机授粉作业冠层风场分布规律. 农业工程学报, 2015, 31(3): 77-86.
LI J Y, ZHOU Z Y, LAN Y B, HU L, ZANG Y, LIU A M, LUO X W, ZHANG T M. Distribution of canopy wind field produced by rotor unmanned aerial vehicle pollination operation. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 77-86. (in Chinese)
[31]
董明辉, 谢裕林, 乔中英, 刘晓斌, 吴翔宙, 赵步洪, 杨建昌. 水稻不同粒位籽粒淀粉与蛋白质累积动态差异. 中国水稻科学, 2011, 25(3): 297-306.

doi: 10.3969/j.issn.1001-7216.2011.03.011
DONG M H, XIE Y L, QIAO Z Y, LIU X B, WU X Z, ZHAO B H, YANG J C. Variation in carbohydrate and protein accumulation between spikelets at different positions within a rice panicle during grain filling. Chinese Journal of Rice Science, 2011, 25(3): 297-306. (in Chinese)
[32]
程旺大, 张国平, 姚海根, 吴伟, 王润屹. 密穗型水稻品种的籽粒灌浆特性研究. 作物学报, 2003, 29(6): 841-846.
CHENG W D, ZHANG G P, YAO H G, WU W, WANG R Y. Studies on the grain-filling properties of compact panicle type of rice. Acta Agronomica Sinica, 2003, 29(6): 841-846. (in Chinese)
[33]
杨建昌. 水稻弱势粒灌浆机理与调控途径. 作物学报, 2010, 36(12): 2011-2019.

doi: 10.3724/SP.J.1006.2010.02011
YANG J C. Mechanism and regulation in the filling of inferior spikelets of rice. Acta Agronomica Sinica, 2010, 36(12): 2011-2019. (in Chinese)
[34]
胡达明. 不同授粉方式的花粉密度分布与结实效应研究. 杂交水稻, 1996, 11(6): 19-21.
HU D M. Distribution of pollen density and seed setting efficacy under different pollinating methods. Hybrid Rice, 1996, 11(6): 19-21. (in Chinese)
[35]
刘爱民, 佘雪晴, 易图华, 周武承, 雷建文, 张健勇. 杂交水稻母本机插秧制种技术研究初报. 杂交水稻, 2012, 27(1): 31-33.
LIU A M, SHE X Q, YI T H, ZHOU W C, LEI J W, ZHANG J Y. A preliminary report on research of techniques of mechanized transplanting of female parents in hybrid rice seed production. Hybrid Rice, 2012, 27(1): 31-33. (in Chinese)
[36]
张凤龙, 谢必武, 晏承兴. 杂交水稻制种机插秧苗生长特性及其产量的相关和通径分析. 西南农业学报, 2013, 26(6): 2235-2240.
ZHANG F L, XIE B W, YAN C X. Correlation and path analysis of yield components of seed production of hybrid rice machine inserted and its growth characteristics. Southwest China Journal of Agricultural Sciences, 2013, 26(6): 2235-2240. (in Chinese)
[37]
张琳, 黄庭旭, 张数标, 张水金, 程雪华, 吴志源, 吴家清, 艾火隆, 陈代尧. 杂交水稻制种母本机插主要技术措施总结. 杂交水稻, 2013, 28(3): 21-23.
ZHANG L, HUANG T X, ZHANG S B, ZHANG S J, CHENG X H, WU Z Y, WU J Q, AI H L, CHEN D Y. Summary of main technical measures for mechanical transplanting of female parent in hybrid rice seed production. Hybrid Rice, 2013, 28(3): 21-23. (in Chinese)
[38]
陈勇, 张海清, 刘爱民, 杨永标, 唐荣, 刘烨, 庞嘉. 杂交水稻制种父本机插秧与施肥方式对其群体生长发育的影响. 作物研究, 2017, 31(4): 355-359, 376.
CHEN Y, ZHANG H Q, LIU A M, YANG Y B, TANG R, LIU Y, PANG J. Effects of mechanized transplanting and fertilization mode on the population growth and development of male parent in hybrid rice seed production. Crop Research, 2017, 31(4): 355-359, 376. (in Chinese)
[39]
李应洪, 王海月, 吕腾飞, 张绍文, 蒋明金, 何巧林, 孙永健, 马均. 不同秧龄下机插方式与密度对杂交稻光合生产及产量的影响. 中国水稻科学, 2017, 31(3): 265-277.

doi: 10.16819/j.1001-7216.2017.6091 265
LI Y H, WANG H Y, T F, ZHANG S W, JIANG M J, HE Q L, SUN Y J, MA J. Effects of mechanically-transplanted modes and density on photosynthetic production and yield in hybrid rice at different seedling-ages. Chinese Journal of Rice Science, 2017, 31(3): 265-277. (in Chinese)

doi: 10.16819/j.1001-7216.2017.6091 265
[40]
李继宇, 兰玉彬, 王建伟, 陈盛德, 姚伟祥, 黄聪, 刘琪, 梁秋萍. 基于小型无人机风场的水稻花粉分布规律. 中国农业文摘-农业工程, 2018, 30(2): 13-19.
LI J Y, LAN Y B, WANG J W, CHEN S D, YAO W X, HUANG C, LIU Q, LIANG Q P. Distribution of rice pollen based on wind field of small UAV. Agricultural Science and Engineering in China, 2018, 30(2): 13-19. (in Chinese)
[41]
丁获蛟, 蔡壮夫. 水稻发育特性与制种花期相遇的关系. 杂交水稻, 2001, 16(1): 12-14.
DING H J, CAI Z F. Relationship between development characteristics of rice and flowering meeting of seed production. Hybrid Rice, 2001, 16(1): 12-14. (in Chinese)
[42]
肖层林, 刘爱民, 张海清, 肖晓, 佘雪晴. 中国杂交水稻制种技术的进步与发展方向. 杂交水稻, 2010, 25(S1): 46-50.
XIAO C L, LIU A M, ZHANG H Q, XIAO X, SHE X Q. Progress and development direction of hybrid rice seed production technology in China. Hybrid Rice, 2010, 25(S1): 46-50. (in Chinese)
[43]
汪沛, 胡炼, 周志艳, 杨维顺, 刘爱民, 罗锡文, 薛新宇, 何杰, 严乙桉. 无人油动力直升机用于水稻制种辅助授粉的田间风场测量. 农业工程学报, 2013, 29(3): 54-61, 294.
WANG P, HU L, ZHOU Z Y, YANG W S, LIU A M, LUO X W, XUE X Y, HE J, YAN Y A. Wind field measurement for supplementary pollination in hybrid rice breeding using unmanned gasoline engine single-rotor helicopter. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 54-61, 294. (in Chinese)
[44]
康艳琼, 李勇, 李开平. 稻粒黑粉病在杂交水稻制种上的发生特点与防治对策. 云南农业科技, 2010(2): 42-44.
KANG Y Q, LI Y, LI K P. Occurrence and control of rice kernel smut in seed production of hybrid rice. Yunnan Agricultural Science and Technology, 2010(2): 42-44. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[3] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[4] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[5] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[6] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[7] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[8] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[9] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[10] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] ZHAO JianTao, YANG KaiXin, WANG XuZhe, MA ChunHui, ZHANG QianBing. Effect of Phosphorus Application on Physiological Parameters and Antioxidant Capacity in Alfalfa Leaves [J]. Scientia Agricultura Sinica, 2023, 56(3): 453-465.
[13] LIU MingHui, TIAN HongYu, LIU ZhiGuang, GONG Biao. Effects of Urea Slow-Release Functional Fertilizer Containing Melatonin on Growth, Yield and Phosphorus Use Efficiency of Tomato Under Reduced Phosphorus Application Conditions [J]. Scientia Agricultura Sinica, 2023, 56(3): 519-528.
[14] YIN ZiHe, YANG ChengCheng, ZHAO YuHui, ZHAO Li, LÜ XiuRong, YANG ZhenChao, WU YongJun. Sequencing and Functional Analysis of Tomato circRNA During Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(21): 4288-4303.
[15] WANG DanDan, CHEN HuanXuan, ZHANG Chong, JU XiaoTang. Spatial Differences and Driving Factors of Aboveground Nitrogen Uptake in Per Hundred Kilograms Grain of Maize in China [J]. Scientia Agricultura Sinica, 2023, 56(20): 3996-4009.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!