Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (20): 3996-4009.doi: 10.3864/j.issn.0578-1752.2023.20.006

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Spatial Differences and Driving Factors of Aboveground Nitrogen Uptake in Per Hundred Kilograms Grain of Maize in China

WANG DanDan(), CHEN HuanXuan, ZHANG Chong(), JU XiaoTang()   

  1. College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228
  • Received:2023-02-01 Accepted:2023-04-01 Online:2023-10-16 Published:2023-10-31
  • Contact: ZHANG Chong, JU XiaoTang

Abstract:

【Objective】 We aim to quantify aboveground nitrogen (N) uptake in per hundred kilograms grain (N100) of maize in different agro-ecological zones at different yield levels in China, and analyze the effects of climate, soil, variety and N fertilization on N100 of maize, thus to provide a scientific basis for determining rational N fertilizer rate. 【Method】 We divided Chinese cropland into six major regions, i.e., northeast, northwest, North China Plain, middle and lower Yangtze River, southwest, and southeast, and collected 349 peer-reviewed papers published during 1980-2022 to analyze the spatial variation of N100 and its changes at different yield levels, and compared the differences in calculated theoretical N rate between constant and region-specific N100. The effects of climate, soil and fertilization on N100 were analyzed using Pearson correlation coefficient, Random forest model and Meta-analysis, to reveal the causes of spatial variation in N100. 【Result】 Under the optimized N management, N100 of spring maize was significantly lower than that of summer maize which were 2.21 and 2.46, respectively; and there were significant differences in N100 of maize among different agro-ecological zones, which were 2.19 (Northeast spring maize), 2.12 (Northwest spring maize), 2.54 (Northwest summer maize), 2.45 (North China Plain summer maize), 2.77 (Middle and Lower Yangtze River spring maize), 2.38 (Middle and Lower Yangtze River summer maize), and 2.39 (Southwestern maize zone), respectively. The difference between calculated the theoretical N rate based on the national average N100 (2.34) and that based on regional-specific N100 was -22-31 kg N·hm-2. Aboveground N uptake, yield, and mean annual temperature were the most important factors affecting N100. The N100 showed a significant quadratic decrease with increasing yield (P<0.01), and grain yield was a good predictor of N100. Varieties significantly affected maize N100, the N100 of common Chinese maize varieties Zhengdan 958, Xianyu 335, and Denghai 605 are 2.42, 2.12, and 2.39, respectively. New varieties had a significant lower N100 than old varieties. The application of N fertilizer significantly increased the N100 of maize, and the greatest increase effect of N100 caused by N fertilizer application was observed at 200-300 kg N·hm-2. Once application of slow and controlled release fertilizer, deep placement, reduction of the ratio of basal N fertilization and increasing the frequency of N fertilizer application all significantly increased N100. 【Conclusion】 When calculate the rational N fertilization, we need to considerate the regional differences of N100, thus to obtain accurate fertilizer N rate, and the N100 of maize is mainly driven by variation in aboveground N uptake, yield and mean annual temperature.

Key words: maize, aboveground N uptake in per hundred kilograms grain, yield levels, rational N fertilization, agro-ecological zones

Fig. 1

Frequency distribution of maize grain yield, aboveground N uptake and N100 OP: Optimized N management; NOP: Non-optimized N management. M, SE and n denote the mean, standard errors and sample sizes, respectively. The curve is a Gaussian distribution fitted to frequency data and P<0.01 suit for the distribution. The same as below"

Fig. 2

Grain yield, aboveground N uptake and N100 of maize in different agro-ecological zones under optimized N management NEC: Northeast China; NWC: Northwest China; NCP: North China Plain; MLYR: Middle and Lower Yangtze River; SWC: Southwest China; SP: Spring maize; SU: Summer maize. The red and black lines in this figure indicate the mean and median, respectively. The box boundaries indicate the 75% and 25% quartiles. Upper case letters compare the differences between spring and summer maize in China, and lower-case letters compare the differences between spring/summer maize in different agro-ecological zones. Different uppercase/lowercase letters indicate significantly different (P<0.05). The numbers in brackets represent the number of samples. The same as below"

Fig. 3

Grain yield, aboveground N uptake and N100 of maize in different agro-ecological zones under non-optimized N management"

Fig. 4

Relationship between aboveground N uptake, N100 and grain yield"

Fig. 5

Theoretical N rate of maize in different agro-ecological zones based on different N100 N100=2.34: The average N100 of maize in China under optimized N management in this study; N100=2.12—2.77: The average N100 of maize in different agro-ecological zones under optimized N management in this study, China, China-SP, China-SU, NEC-SP, NWC-SP, NWC- SU, NCP-SU, MLYR-SP, MLYR-SU and SWCM are 2.34, 2.21, 2.46, 2.19, 2.12, 2.54, 2.45, 2.77, 2.38 and 2.39, respectively"

Fig. 6

Grain yield, aboveground N uptake and N100 of new and old varieties Old: Old variety; New: New variety"

Fig. 7

Grain yield, aboveground N uptake and N100 of different varieties ZD958: Zhengdan 958; XY335: Xianyu335; ZH505: Zhenghong505; SD609: Shaandan609; LP206: Longping206; LY99: Liangyu99; DH605: Denghai605; CD418: Chuandan418; The numbers in brackets represent the number of samples"

Fig. 8

Pearson's correlation analysis of grain yield, aboveground N uptake and N100 with different factors MAT: Mean annual temperature; MAP: Mean annual precipitation; SOC: Soil organic carbon content; TN: Soil total nitrogen content; pH: Soil pH; N rate: Nitrogen application rate; P2O5 rate: Phosphorus application rate; K2O rate: Potassium application rate; Yield: Grain yield; Nuptake: Aboveground N uptake; N100: Aboveground nitrogen uptake in per hundred kilograms grain. *, ** and *** indicate significant correlation at the levels of 0.05, 0.01 and 0.001, respectively. The same as below"

Fig. 9

Relative importance of different factors on grain yield, aboveground N uptake and N100"

Fig. 10

Effect of nitrogen rate on grain yield, aboveground N uptake and N100 Dots with error bars denote the percent change and 95% CI, respectively. The 95% CI that do not overlap zero line means significant difference between treatment and control. The numbers in brackets represent the number of samples. The same as below"

Fig. 11

Effect of different N fertilizer types on grain yield, aboveground N uptake and N100 U+NI: Urea with nitrification inhibitor; U+SCRF: Urea with Slow and controlled release fertilizer; SCRF: Slow and controlled release fertilizer; U+M: Urea with manure; M: Manure"

Fig. 12

Effect of different N application methods on grain yield, aboveground N uptake and N100"

[1]
LAI Z L, FAN J L, YANG R, XU X Y, LIU L J, LI S E, ZHANG F C, LI Z J. Interactive effects of plant density and nitrogen rate on grain yield, economic benefit, water productivity and nitrogen use efficiency of drip-fertigated maize in northwest China. Agricultural Water Management, 2022, 263: 107453.

doi: 10.1016/j.agwat.2021.107453
[2]
国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2021.
National Bureau of Statistics of the People′s Republic of China. China statistical yearbook. Beijing: China Statistics Press, 2021. (in Chinese)
[3]
LADHA J K, TIROL-PADRE A, REDDY C K, CASSMAN K G, VERMA S, POWLSON D S, VAN KESSEL C, DE B RICHTER D, CHAKRABORTY D, PATHAK H. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice and wheat production systems. Scientific Reports, 2016, 6(1): 1-9.

doi: 10.1038/s41598-016-0001-8
[4]
巨晓棠. 理论施氮量的改进及验证: 兼论确定作物氮肥推荐量的方法. 土壤学报, 2015, 52(2): 249-261.
JU X T. Improvement and validation of theoretical N rate (TNR): Discussing the methods for N fertilizer recommendation. Acta Pedologica Sinica, 2015, 52(2): 249-261. (in Chinese)
[5]
巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1): 1-13.
JU X T, ZHANG C. The principles and indicators of rational N fertilization. Acta Pedologica Sinica, 2021, 58(1): 1-13. (in Chinese)
[6]
朱兆良. 推荐氮肥适宜施用量的方法论刍议. 植物营养与肥料学报, 2006, 12(1): 1-4.
ZHU Z L. On the methodology of recommendation for the application rate of chemical fertilizer nitrogen to crops. Plant Nutrition and Fertilizer Science, 2006, 12(1): 1-4. (in Chinese)
[7]
彭显龙, 王伟, 周娜, 刘海洋, 李鹏飞, 刘智蕾, 于彩莲. 基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析. 中国农业科学, 2019, 52(12): 2092-2100.

doi: 10.3864/j.issn.0578-1752.2019.12.007
PENG X L, WANG W, ZHOU N, LIU H Y, LI P F, LIU Z L, YU C L. Analysis of fertilizer application and its reduction potential in paddy fields of Heilongjiang Province. Scientia Agricultura Sinica, 2019, 52(12): 2092-2100. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.12.007
[8]
王寅, 高强, 冯国忠, 焉莉, 李翠兰, 宋立新, 刘振刚, 房杰. 吉林春玉米氮磷钾养分需求与利用效率研究. 植物营养与肥料学报, 2018, 24(2): 306-315.
WANG Y, GAO Q, FENG G Z, YAN L, LI C L, SONG L X, LIU Z G, FANG J. N, P and K requirement and fertilizer use efficiencies of spring maize in Jilin Province. Plant Nutrition and Fertilizer Science, 2018, 24(2): 306-315. (in Chinese)
[9]
ZHANG C, JU X T, POWLSON D, OENEMA O, SMITH P. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China. Environmental Science & Technology, 2019, 53(12): 6678-6687.

doi: 10.1021/acs.est.8b06383
[10]
国家粮食和物资储备局. 粮油标准:GB 1353- 2018. 北京: 中国标准出版社, 2018.
National Food andStrategic Reserves Administration. Standards for cereals and oils:GB 1353- 2018. Beijing: Standards Press of China, 2018. (in Chinese)
[11]
中华人民共和国农业农村部.农业部发布实施16个优势农产品区域布局规划. (2009-02-18) [2023-03-09].
Ministry of Agriculture and Rural Affairs of the People's Republic of China. The Ministry of Agriculture released the implementation of the regional layout plan of 16 advantageous agricultural products. (2009- 02-18) [2023-03-09]. in Chinese)
[12]
HEDGES L V, GUREVITCH J, CURTIS P S. The meta‐analysis of response ratios in experimental ecology. Ecology, 1999, 80(4): 1150-1156.

doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
[13]
VAN GROENIGEN K J, OSENBERG C W, HUNGATE B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 2011, 475(7355): 214-216.

doi: 10.1038/nature10176
[14]
ADAMS D C, GUREVITCH J, ROSENBERG M S. Resampling tests for meta-analysis of ecological data. Ecology, 1997, 78(4): 1277-1283.

doi: 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2
[15]
Rosenberg M S. MetaWin: Statistical software for meta-analysis: version 2. Sinauer, 2000.
[16]
SPINELI L M, PANDIS N. Fixed-effect versus random-effects model in meta-regression analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 2020, 158(5): 770-772.

doi: 10.1016/j.ajodo.2020.07.016 pmid: 33131567
[17]
XIA L L, LAM S K, YAN X Y, CHEN D L. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance? Environmental Science & Technology, 2017, 51(13): 7450-7457.
[18]
LIAW A, WIENER M. Classification and regression by randomForest. R news, 2002, 2(3): 18-22.
[19]
REN F L, SUN N, MISSELBROOK T, WU L H, XU M G, ZHANG F S, XU W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China's main crops: A meta-analysis. Science of The Total Environment, 2022, 850: 158064.

doi: 10.1016/j.scitotenv.2022.158064
[20]
XU X P, HE P, ZHANG J J, PAMPOLINO M F, JOHNSTON A M, ZHOU W. Spatial variation of attainable yield and fertilizer requirements for maize at the regional scale in China. Field Crops Research, 2017, 203: 8-15.

doi: 10.1016/j.fcr.2016.11.013
[21]
吴良泉. 基于“大配方、小调整”的中国三大粮食作物区域配肥技术研究[D]. 北京: 中国农业大学, 2014.
WU L Q. Fertilizer recommendations for three major cereal crops based on regional fertilizer formula and site specific and justment in China[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[22]
岳善超. 小麦玉米高产体系的氮肥优化管理[D]. 北京: 中国农业大学, 2013.
YUE S C. Optimum nitrogen management for high-yielding wheat and maize cropping system[D]. Beijing: China Agricultural University, 2013. (in Chinese)
[23]
戴明宏, 赵久然, 杨国航, 王荣焕. 不同生态区玉米产量及农艺性状比较. 中国农学通报, 2010, 26(11): 127-131.
DAI M H, ZHAO J R, YANG G H, WANG R H. Comparison between different ecological regions on maize yield and agronomic characters. Chinese Agricultural Science Bulletin, 2010, 26(11): 127-131. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2009-2795
[24]
武良. 基于总量控制的中国农业氮肥需求及温室气体减排潜力研究[D]. 北京: 中国农业大学, 2014.
WU L. Nitrogen fertilizer demand and greenhouse gas mitigation potential under nitrogen limiting conditions for Chinese agriculture production[D]. Beijing: China Agricultural University, 2014. (in Chinese)
[25]
陈国平, 高聚林, 赵明, 董树亭, 李少昆, 杨祁峰, 刘永红, 王立春, 薛吉全, 柳京国, 李潮海, 王永宏, 王友德, 宋慧欣, 赵久然. 近年我国玉米超高产田的分布、产量构成及关键技术. 作物学报, 2012, 38(1): 80-85.
CHEN G P, GAO J L, ZHAO M, DONG S T, LI S K, YANG Q F, LIU Y H, WANG L C, XUE J Q, LIU J G, LI C H, WANG Y H, WANG Y D, SONG H X, ZHAO J R. Distribution, yield structure, and key cultural techniques of maize superhigh yield plots in recent years. Acta Agronomica Sinica, 2012, 38(1): 80-85. (in Chinese)

doi: 10.3724/SP.J.1006.2012.00080
[26]
XU X P, HE P, PAMPOLINO M F, CHUAN L M, JOHNSTON A M, QIU S J, ZHAO S C, ZHOU W. Nutrient requirements for maize in China based on QUEFTS analysis. Field Crops Research, 2013, 150: 115-125.

doi: 10.1016/j.fcr.2013.06.006
[27]
LIU M Q, YU Z R, LIU Y H, KONIJN N T. Fertilizer requirements for wheat and maize in China: the QUEFTS approach. Nutrient Cycling in Agroecosystems, 2006, 74(3): 245-258.

doi: 10.1007/s10705-006-9002-5
[28]
CIAMPITTI I A, VYN T J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 2012, 133: 48-67.

doi: 10.1016/j.fcr.2012.03.008
[29]
HOU P, GAO Q, XIE R Z, LI S K, MENG Q F, KIRKBY E A, RÖMHELD V, MÜLLER T, ZHANG F S, CUI Z L, CHEN X P. Grain yields in relation to N requirement: Optimizing nitrogen management for spring maize grown in China. Field Crops Research, 2012, 129: 1-6.

doi: 10.1016/j.fcr.2012.01.006
[30]
赵亚南, 徐霞, 黄玉芳, 孙笑梅, 叶优良. 河南省小麦、 玉米氮肥需求及节氮潜力. 中国农业科学, 2018, 51(14): 2747-2757.

doi: 10.3864/j.issn.0578-1752.2018.14.012
ZHAO Y N, XU X, HUANG Y F, SUN X M, YE Y L. Nitrogen requirement and saving potential for wheat and maize in Henan Province. Scientia Agricultura Sinica, 2018, 51(14): 2747-2757. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.14.012
[31]
ZHANG Y, HOU P, GAO Q, CHEN X P, ZHANG F S, CUI Z L. On-farm estimation of nutrient requirements for spring corn in North China. Agronomy Journal, 2012, 104(5): 1436-1442.

doi: 10.2134/agronj2012.0125
[32]
侯鹏. 黑龙江春玉米高产高效潜力与实现途径[D]. 北京: 中国农业大学, 2012.
HOU P. The approaches for high yield and high efficiency of maize (Zea mays L.) in Heilongjiang Province[D]. Beijing: China Agricultural University, 2012. (in Chinese)
[33]
佟玉欣, 李玉影, 刘双全, 姬景红, 王伟, 郑雨. 黑龙江春玉米籽粒产量与氮素吸收变化特征. 植物营养与肥料学报, 2014, 20(5): 1094-1102.
TONG Y X, LI Y Y, LIU S Q, JI J H, WANG W, ZHENG Y. Variations of the grain yields and N absorption of spring maize in Heilongjiang Province. Journal of Plant Nutrition and Fertilizers, 2014, 20(5): 1094-1102. (in Chinese)
[34]
车升国, 袁亮, 李燕婷, 林治安, 沈兵, 胡树文, 赵秉强. 我国主要麦区小麦氮素吸收及其产量效应. 植物营养与肥料学报, 2016, 22(2): 287-295.
CHE S G, YUAN L, LI Y T, LIN Z A, SHEN B, HU S W, ZHAO B Q. N uptake and yield response of wheat in main wheat production regions of China. Plant Nutrition and Fertilizer Science, 2016, 22(2): 287-295. (in Chinese)
[35]
张毅. 长江流域水稻资源型功能肥料的设计与验证[D]. 北京: 中国农业大学, 2013.
ZHANG Y. Design and field evaluation of high-efficiency and multi-function formula fertilizer for irrigated lowland rice (Oryza sativa L.) in Yangtze River Reaches[D]. Beijing: China Agricultural University, 2013. (in Chinese)
[36]
BOGARD M, ALLARD V, BRANCOURT-HULMEL M, HEUMEZ E, MACHET J M, JEUFFROY M H, GATE P, MARTRE P, LE GOUIS J. Deviation from the grain protein concentration-grain yield negative relationship is highly correlated to post-anthesis N uptake in winter wheat. Journal of Experimental Botany, 2010, 61(15): 4303-4312.

doi: 10.1093/jxb/erq238 pmid: 20679251
[37]
POWLSON D, NORSE D, LU Y L. Agricultural Development in China—Environmental Impacts, Sustainability Issues and Policy Implications Assessed through China-UK Projects under SAIN (UK- China Sustainable Agriculture Innovation Network), 2008-2017[R]. SAIN Working Paper, 2018.
[38]
郭金金, 张富仓, 闫世程, 郑静, 强生才, 陈东峰, 李志军. 缓释氮肥与尿素掺混对玉米生理特性和氮素吸收的影响. 植物营养与肥料学报, 2018, 24(5): 1194-1204.
GUO J J, ZHANG F C, YAN S C, ZHENG J, QIANG S C, CHEN D F, LI Z J. Effects of blending of slow-release nitrogen fertilizer and urea on maize physiological characteristics and nitrogen uptake. Plant Nutrition and Fertilizer Science, 2018, 24(5): 1194-1204. (in Chinese)
[39]
王寅, 冯国忠, 张天山, 茹铁军, 袁勇, 高强. 控释氮肥与尿素混施对连作春玉米产量、氮素吸收和氮素平衡的影响. 中国农业科学, 2016, 49(3): 518-528.

doi: 10.3864/j.issn.0578-1752.2016.03.010
WANG Y, FENG G Z, ZHANG T S, RU T J, YUAN Y, GAO Q. Effects of mixed application of controlled-release N fertilizer and common urea on grain yield, N uptake and soil N balance in continuous spring maize production. Scientia Agricultura Sinica, 2016, 49(3): 518-528. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2016.03.010
[40]
侯云鹏, 孔丽丽, 李前, 尹彩侠, 秦裕波, 于雷, 王立春, 王蒙. 覆膜滴灌条件下氮肥运筹对玉米氮素吸收利用和土壤无机氮含量的影响. 中国生态农业学报, 2018, 26(9): 1378-1387.
HOU Y P, KONG L L, LI Q, YIN C X, QIN Y B, YU L, WANG L C, WANG M. Effects of nitrogen fertilizer management on nitrogen absorption, utilization and soil inorganic nitrogen content under film mulch drip irrigation of maize. Chinese Journal of Eco-Agriculture, 2018, 26(9): 1378-1387. (in Chinese)
[41]
尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018, 51(20): 3941-3950.

doi: 10.3864/j.issn.0578-1752.2018.20.012
YIN C X, LI Q, KONG L L, QIN Y B, WANG M, YU L, LIU C G, WANG L C, HOU Y P. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Scientia Agricultura Sinica, 2018, 51(20): 3941-3950. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2018.20.012
[42]
丁相鹏, 李广浩, 张吉旺, 刘鹏, 任佰朝, 赵斌. 控释尿素基施深度对夏玉米产量和氮素利用的影响. 中国农业科学, 2020, 53(21): 4342-4354.

doi: 10.3864/j.issn.0578-1752.2020.21.004
DING X P, LI G H, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of base application depths of controlled release urea on yield and nitrogen utilization of summer maize. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.21.004
[43]
CHENG Y, WANG H Q, LIU P, DONG S T, ZHANG J W, ZHAO B, REN B Z. Nitrogen placement at sowing affects root growth, grain yield formation, N use efficiency in maize. Plant and Soil, 2020, 457(1): 355-373.

doi: 10.1007/s11104-020-04747-2
[44]
WU P, LIU F, LI H, CAI T, ZHANG P, JIA Z K. Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Science of the Total Environment, 2021, 781: 146787.

doi: 10.1016/j.scitotenv.2021.146787
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] LIU Meng, ZHANG Yao, GE JunZhu, YANG YongAn, WU XiDong, HOU HaiPeng. Effects of Nitrogen Application on Delayed Harvest Summer Maize Grain Yield, Superior and Inferior Grains Morphology and Weight Under Different Rainfall Years [J]. Scientia Agricultura Sinica, 2023, 56(20): 3975-3995.
[13] HOU LiangYu, ZHANG ZhenTao, HUANG ZhaoFu, LI LuLu, GUO YaNan, MING Bo, XIE RuiZhi, HOU Peng, XUE Jun, WANG KeRu, LI ShaoKun. Reforming the Cropping System to Achieve Maize Mechanical Grain Harvesting in Northern Huang-Huai-Hai Area of China [J]. Scientia Agricultura Sinica, 2023, 56(19): 3788-3798.
[14] ZHANG LingFei, MA Lei, LI YuDong, ZHENG FuLi, WEI JianLin, TAN DeShui, CUI XiuMin, LI Yan. Effects of Long-Term Synergistic Application of Organic Materials and Chemical Fertilizers on Bacterial Community and Enzyme Activity in Wheat-Maize Rotation Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2023, 56(19): 3843-3855.
[15] YU HaoDong, CHU ZhenYu, WANG ShunYuan, GUO YanQing, REN BaiZhao, ZHANG JiWang. Effects of Different Controlled Nitrogen Ratios on Leaf Senescence and Grain Filling Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2023, 56(18): 3511-3529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!