Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3856-3868.doi: 10.3864/j.issn.0578-1752.2023.19.012

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Rhizodeposition on Straw Carbon and Nitrogen Sequestration in Soil Profile Under Different Fertilization Conditions

MEI XiuWen(), ZHU TengXiao, LI YuPing, LI ShuangYi, SUN LiangJie, AN TingTing(), WANG JingKuan   

  1. College of Land and Environment, Shenyang Agricultural University, Shenyang 110866
  • Received:2022-11-04 Accepted:2022-12-09 Online:2023-10-01 Published:2023-10-08
  • Contact: AN TingTing

Abstract:

【Objective】Straw returning is an important measure for protecting black soil in Northeast China. Straw and rhizodeposition coexisted in the practical agricultural production, while the sequestration characteristics of straw carbon (C) and nitrogen (N) in soils remained not very clear under this condition. The purpose of this study was to compare the differences in the content of soil organic C (SOC) derived from straw C (13C-SOC) and that of soil total N (TN) derived from straw N (15N-TN) among different soil layers, and to investigate the effects of rhizodeposition on straw C and N sequestration in soil profile under different fertilization conditions, so as to provide a basis for the protection and utilization of black soil in Northeast China. 【Method】Based on the long-term experimental station of Shenyang Agricultural University, the treatments of adding 13C15N double-labeled straw (S) and its combination with rhizodeposition (hereafter referred to as “rhizodeposition”) (SR) were designed under different fertilization plots (no fertilization, CK; single application of chemical fertilizer, NP), including four treatments: CK+S, CK+SR, NP+S, NP+SR. The contents of SOC and TN, and values of δ13C and δ15N at different soil layers were measured after the 50 and 150 days of in-situ experiment. 【Result】At the early stage of straw decomposition (the 50th day), fertilization, rhizodeposition and their interactions significantly affected (P<0.05) the contents of 13C-SOC and 15N-TN in the topsoil (0-20 cm). On the 50th day, compared with the CK+S treatment, the CK+SR treatment increased the contents of 13C-SOC and 15N-TN in the topsoil by 18.6% and 21.7% (P<0.05), respectively. The contribution percentage of 13C-SOC to SOC in the topsoil was, on average, 10.5% and 12.0% in the S (CK+S and NP+S) and SR (CK+SR and NP+SR) treatments under different fertilization, respectively. The contribution percentage of 15N-TN to TN in the topsoil was, on average, higher 27.6% (P<0.05) in the two treatments under CK (CK+S and CK+SR) than that in the corresponding treatments under NP (NP+S and NP+SR). On the 50th day, the contribution percentage of 13C-SOC to SOC and that of 15N-TN to TN at deep soil (20-50 cm) were 1.0%-2.2% and 0.5%-0.9%, respectively. At the later stage of straw decomposition (the 150th day), rhizodeposition and fertilization significantly affected (P<0.05) the contents of 13C-SOC and 15N-TN in the topsoil, respectively. On the 150th day, compared with the treatment of rhizodeposition, the treatment of straw addition increased the 13C-SOC content in the topsoil, on average, by 12.6% (P<0.05). The 15N-TN content in the topsoil was, on average, higher 22.0% (P<0.05) in the two treatments under CK than that in the corresponding treatments under NP. The contribution percentage of 15N-TN to TN in the topsoil in CK and NP treatments was 5.5% and 4.0%, respectively. On the 150th day, the contribution percentage of 13C-SOC to SOC and that of 15N-TN to TN at deep soil were 0.8%-3.2% and 0.7%-1.8%, respectively. 【Conclusion】Rhizodeposition had a negative feedback effect on the sequestration of straw C in topsoil during the later stage of straw decomposition. Straw derived C and N were constantly migrated and then accumulated from topsoil to deep soil, and their influences on the stabilities of soil organic C and N pools should be paid more attention.

Key words: rhizodeposition, straw carbon, straw nitrogen, 13C15N double-labelling, black soil

Table 1

Basic soil properties (0-50 cm soil layer) under different fertilization treatments in 2021"

施肥处理
Fertilization treatment
土壤深度
Soil depth
(cm)
土壤有机碳
Soil organic carbon
(g·kg-1)
δ13C值
δ13C value
(‰)
全氮
Total nitrogen
(g.kg-1)
δ15N值
δ15N value
(‰)
碳氮比
C/N ratio
铵态氮
Ammonium nitrogen
(mg·kg-1)
硝态氮
Nitrate nitrogen
(mg·kg-1)
速效磷
Available phosphorus
(mg·kg-1)
CK 0—20 8.77±0.14Ab -18.08±0.12Aa 1.09±0.01Ab 6.45±0.28Ab 8.02±0.10Aa 4.52±0.06Ab 9.81±0.04Ab 7.43±0.72Bb
20—40 6.62±0.03Bb -18.95±0.04Ba 0.83±0.02Bb 6.36±0.09Aa 8.00±0.21Aa 4.15±0.21Bb 5.56±0.24Bb 9.21±0.42Ab
40—50 3.49±0.03Cb -19.83±0.04Cb 0.61±0.02Cb 6.64±0.12Aa 5.79±0.12Bb 4.74±0.10Aa 2.20±0.18Cb 3.95±0.08Cb
NP 0—20 9.73±0.24Aa -18.94±0.02Ab 1.33±0.06Aa 6.95±0.07Aa 7.62±0.08Ab 8.07±0.14Aa 71.23±1.42Aa 45.83±0.63Ba
20—40 7.28±0.12Ba -18.90±0.03Aa 1.18±0.01Ba 6.50±0.16Ba 6.19±0.11Bb 6.05±0.03Ba 58.99±1.03Ba 60.95±0.21Aa
40—50 4.22±0.04Ca -19.22±0.20Ba 0.68±0.00Ca 6.56±0.03Ba 6.25±0.04Ba 4.56±0.22Ca 18.65±0.47Ca 5.37±0.30Ca

Fig. 1

Content of soil organic carbon at different soil depths after 50 and 150 days of 13C15N-labeled straw addition CK+S and NP+S represent the soils added with 13C15N-labeled straw under no fertilization and single application of chemical fertilizer, respectively; CK+SR and NP+SR represent the soils combined 13C15N-labeled straw addition with rhizodeposition under no fertilization and single application of chemical fertilizer, respectively. Different uppercase letters show significant difference (P<0.05) among different soil layers within the same treatment; Different lowercase letters show significant difference (P<0.05) among different treatments at the same soil layer. The same below"

Table 2

Variance analysis (P values) for the effects of fertilization, rhizodeposition and their interaction on straw carbon and nitrogen retention in soil profile"

因变量
Variance
因子
Factor
50 d 150 d
0—20 cm 20—40 cm 40—50 cm 0—20 cm 20—40 cm 40—50 cm
SOC 施肥 Fertilization (F) P<0.01 0.174 P<0.05 P<0.01 P<0.01 P<0.01
根际沉积 Rhizodeposition (R) 0.167 P<0.05 0.083 0.337 P<0.01 P<0.01
F×R P<0.01 P<0.05 0.776 0.587 P<0.01 P<0.01
13C-SOC 施肥 Fertilization (F) P<0.01 P<0.01 P<0.01 0.085 P<0.01 P<0.01
根际沉积 Rhizodeposition (R) P<0.01 0.354 P<0.05 P<0.01 P<0.01 P<0.05
F×R P<0.01 0.279 0.205 0.920 P<0.01 P<0.01
fmc 施肥 Fertilization (F) 0.150 0.089 P<0.01 P<0.05 0.142 P<0.01
根际沉积 Rhizodeposition (R) P<0.01 0.127 P<0.05 P<0.01 0.359 P<0.01
F×R 0.906 P<0.05 0.138 0.924 P<0.01 P<0.01
TN 施肥 Fertilization (F) P<0.01 0.976 P<0.05 P<0.01 P<0.01 0.719
根际沉积 Rhizodeposition (R) 0.866 0.188 0.449 0.865 0.153 P<0.01
F×R 0.068 0.129 0.190 0.074 P<0.05 P<0.01
15N-TN 施肥 Fertilization (F) P<0.01 P<0.01 P<0.05 P<0.01 P<0.01 0.081
根际沉积 Rhizodeposition (R) P<0.01 P<0.01 0.141 0.219 P<0.01 P<0.01
F×R P<0.01 P<0.01 P<0.05 0.113 P<0.01 0.347
fmn 施肥 Fertilization (F) P<0.01 P<0.01 0.189 P<0.01 0.115 P<0.05
根际沉积 Rhizodeposition (R) P<0.01 P<0.05 0.065 0.150 P<0.01 P<0.05
F×R P<0.01 P<0.01 P<0.01 0.516 P<0.01 P<0.05

Fig. 2

Content of soil organic carbon derived from straw (13C-SOC) at different soil depths after 50 and 150 days of 13C15N-labeled straw addition"

Fig. 3

Contribution percentage of soil organic carbon derived from straw (13C-SOC) to soil organic carbon (SOC) at different soil depths after 50 and 150 days of 13C15N-labeled straw addition"

Fig. 4

Content of total nitrogen at different soil depths after 50 and 150 days of 13C15N-labeled straw addition"

Fig. 5

Content of total nitrogen derived from straw (15N-TN) at different soil depths after 50 and 150 days of 13C15N-labeled straw addition"

Fig. 6

Contribution percentage of total nitrogen derived from straw (15N-TN) to soil total nitrogen (TN) at different soil depths after 50 and 150 days of 13C15N-labeled straw addition"

Table 3

Residual percentage of straw carbon and nitrogen in soils after 50 and 150 days of 13C15N-labeled straw addition"

处理
Treatment
秸秆碳的残留率
Residual percentage of straw carbon, Rmc (%)
秸秆氮的残留率
Residual percentage of straw nitrogen, Rmn (%)
50 d 150 d 50 d 150 d
CK+S 38.1±1.2c 44.6±0.4a 66.8±0.0d 88.4±2.6a
CK+SR 47.5±1.9a 37.4±0.3 c 81.9±0.9a 74.7±1.7b
NP+S 42.8±1.0b 42.1±2.0b 71.7±0.1b 69.8±1.8c
NP+SR 44.2±1.9b 41.3±0.2b 68.7±0.8c 74.4±0.7b
施肥 Fertilization (F) 0.429 0.266 P<0.01 P<0.01
根际沉积 Rhizodeposition (R) P<0.01 P<0.01 P<0.01 P<0.01
F×R P<0.01 P<0.01 P<0.01 P<0.01
[1]
JOBBÁGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000, 10(2): 423-436.

doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
[2]
BOBBINK R, HICKS K, GALLOWAY J, SPRANGER T, ALKEMADE R, ASHMORE M, BUSTAMANTE M, CINDERBY S, DAVIDSON E, DENTENER F, EMMETT B, ERISMAN J W, FENN M, GILLIAM F, NORDIN A, PARDO L, DE VRIES W. Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 2010, 20(1): 30-59.

pmid: 20349829
[3]
IBRAHIM M H, JAAFAR H Z E, RAHMAT A, RAHMAN Z A. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of Kacip Fatimah (Labisia pumila Blume). International Journal of Molecular Sciences, 2011, 12(8): 5238-5254.

doi: 10.3390/ijms12085238
[4]
汪景宽, 徐香茹, 裴久渤, 李双异. 东北黑土地区耕地质量现状与面临的机遇和挑战. 土壤通报, 2021, 52(3): 695-701.
WANG J K, XU X R, PEI J B, LI S Y. Current situations of black soil quality and facing opportunities and challenges in northeast China. Chinese Journal of Soil Science, 2021, 52(3): 695-701. (in Chinese)
[5]
张佳宝, 孙波, 朱教君, 汪景宽, 潘喜才, 高添. 黑土地保护利用与山水林田湖草沙系统的协调及生态屏障建设战略. 中国科学院院刊, 2021, 36(10): 1155-1164.
ZHANG J B, SUN B, ZHU J J, WANG J K, PAN X C, GAO T. Black soil protection and utilization based on harmonization of mountain- river-forest-farmland-lake-grassland-sandy land ecosystems and strategic construction of ecological barrier. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1155-1164. (in Chinese)
[6]
ZHAO S C, QIU S J, XU X P, CIAMPITTI L A, ZHANG S Q, HE P. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Applied Soil Ecology, 2019, 138: 123-133.

doi: 10.1016/j.apsoil.2019.02.018
[7]
ZHAO Y C, WANG M Y, HU S J, ZHANG X D, OUYANG Z, ZHANG G L, HUANG B, ZHAO S W, WU J S, XIE D T, ZHU B, YU D S, PAN X Z, XU S X, SHI X Z. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(16): 4045-4050.
[8]
AN T T, SCHAEFFER S, ZHUANG J, RADOSEVICH M, LI S Y, LI H, PEI J B, WANG J K. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China. Biology and Fertility of Soils, 2015, 51(5): 605-613.

doi: 10.1007/s00374-015-1006-3
[9]
XU X R, AN T T, ZHANG J M, SUN Z H, SCHAEFFER S, WANG J K. Transformation and stabilization of straw residue carbon in soil affected by soil types, maize straw addition and fertilized levels of soil. Geoderma, 2019, 337: 622-629.

doi: 10.1016/j.geoderma.2018.08.018
[10]
徐英德, 丁雪丽, 李双异, 孙良杰, 高晓丹, 谢柠桧, 金鑫鑫, 白树彬, 孙海岩, 汪景宽. 不同肥力棕壤全氮和微生物量氮对外源玉米残体氮的响应. 生态学报, 2017, 37(20): 6818-6826.
XU Y D, DING X L, LI S Y, SUN L J, GAO X D, XIE N H, JIN X X, BAI S B, SUN H Y, WANG J K. Effect of maize-derived nitrogen supplementation on the total and microbial biomass nitrogen of brown earths with different fertility levels. Acta Ecologica Sinica, 2017, 37(20): 6818-6826. (in Chinese)
[11]
JOHN B, LUDWIG B, FLESSA H. Carbon dynamics determined by natural 13C abundance in microcosm experiments with soils from long-term maize and rye monocultures. Soil Biology and Biochemistry, 2003, 35(9): 1193-1202.

doi: 10.1016/S0038-0717(03)00180-9
[12]
王淑颖, 李小红, 程娜, 付时丰, 李双异, 孙良杰, 安婷婷, 汪景宽. 地膜覆盖与施肥对秸秆碳氮在土壤中固存的影响. 中国农业科学, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010.
WANG S Y, LI X H, CHENG N, FU S F, LI S Y, SUN L J, AN T T, WANG J K. Effects of plastic film mulching and fertilization on the sequestration of carbon and nitrogen from straw in soil. Scientia Agricultura Sinica, 2021, 54(2): 345-356. doi: 10.3864/j.issn.0578-1752.2021.02.010. (in Chinese)
[13]
胡国庆, 刘肖, 何红波, 张旭东. 免耕覆盖还田下玉米秸秆氮素的去向研究. 土壤学报, 2016, 53(4): 963-971.
HU G Q, LIU X, HE H B, ZHANG X D. Fate of nitrogen contained in maize stalk mulch in no-tillage system. Acta Pedologica Sinica, 2016, 53(4): 963-971. (in Chinese)
[14]
盛明. 不同秸秆添加方式对农田黑土有机碳及矿化过程的影响[D]. 长春: 中国科学院东北地理与农业生态研究所, 2020.
SHENG M. Effects of different straw returning on soil organic carbon and its mineralization processes of an arable mollisol[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2020. (in Chinese)
[15]
曾莉, 张鑫, 张水清, 王秀斌, 梁国庆, 周卫, 艾超, 张跃强. 不同施氮量下潮土中小麦秸秆腐解特性及其养分释放和结构变化特征. 植物营养与肥料学报, 2020, 26(9): 1565-1577.
ZENG L, ZHANG X, ZHANG S Q, WANG X B, LIANG G Q, ZHOU W, AI C, ZHANG Y Q. Characteristics of decomposition, nutrient release and structure change of wheat straw in a fluvo-aquic soil under different nitrogen application rates. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1565-1577. (in Chinese)
[16]
王士超, 闫志浩, 王瑾瑜, 槐圣昌, 武红亮, 邢婷婷, 叶洪龄, 卢昌艾. 秸秆还田配施氮肥对稻田土壤活性碳氮动态变化的影响. 中国农业科学, 2020, 53(4): 782-794. doi: 10.3864/j.issn.0578-1752.2020.04.010.
WANG S C, YAN Z H, WANG J Y, HUAI S C, WU H L, XING T T, YE H L, LU C A. Nitrogen fertilizer and its combination with straw affect soil labile carbon and nitrogen fractions in paddy fields. Scientia Agricultura Sinica, 2020, 53(4): 782-794. doi: 10.3864/j.issn.0578-1752.2020.04.010. (in Chinese)
[17]
M, XIE J S, UKONMAANAHO L, JIANG M H, LI Y Q, CHEN Y, YANG Z J, ZHOU Y X, LIN W S, YANG Y S. Land use change exerts a strong impact on deep soil C stabilization in subtropical forests. Journal of Soils and Sediments, 2017, 17(9): 2305-2317.

doi: 10.1007/s11368-016-1428-z
[18]
郑聚锋, 程琨, 潘根兴. 生物质炭施用对深层土壤碳库的影响. 南京农业大学学报, 2020, 43(4): 589-593.
ZHENG J F, CHENG K, PAN G X. Impact of biochar application on deep soil organic carbon pool. Journal of Nanjing Agricultural University, 2020, 43(4): 589-593. (in Chinese)
[19]
温延臣, 李海燕, 袁亮, 徐久凯, 马荣辉, 林治安, 赵秉强. 长期定位施肥对潮土剖面养分分布的影响. 中国农业科学, 2020, 53(21): 4460-4469. doi: 10.3864/j.issn.0578-1752.2020.21.014.
WEN Y C, LI H Y, YUAN L, XU J K, MA R H, LIN Z A, ZHAO B Q. Effect of long-term fertilization on nutrient distribution of fluvo- aquic soil profile. Scientia Agricultura Sinica, 2020, 53(21): 4460- 4469. doi: 10.3864/j.issn.0578-1752.2020.21.014. (in Chinese)
[20]
宋佳丽, 王鸿雁, 张淑香, 彭畅, 鲁彩艳, 迟光宇, 陈欣. 施肥和秸秆还田对黑土农田土壤剖面养分分布的影响. 生态学杂志, 2022, 41(1): 108-115.
SONG J L, WANG H Y, ZHANG S X, PENG C, LU C Y, CHI G Y, CHEN X. Effects of fertilization and straw return on nutrient distribution along soil profile in black soil croplands. Chinese Journal of Ecology, 2022, 41(1): 108-115. (in Chinese)
[21]
万连杰, 何满, 田洋, 郑永强, 吕强, 谢让金, 马岩岩, 邓烈, 易时来, 李建. 有机肥替代化肥比例对椪柑生长发育、产量和土壤生物学特性的影响. 植物营养与肥料学报, 2022, 28(4): 675-687.
WAN L J, HE M, TIAN Y, ZHENG Y Q, Q, XIE R J, MA Y Y, DENG L, YI S L, LI J. Effects of partial substitution of chemical fertilizer with organic fertilizer on Ponkan growth and yield and soil biological properties. Journal of Plant Nutrition and Fertilizers, 2022, 28(4): 675-687. (in Chinese)
[22]
祝贞科, 沈冰洁, 葛体达, 王久荣, 袁红朝, 吴金水. 农田作物同化碳输入与周转的生物地球化学过程. 生态学报, 2016, 36(19): 5987-5997.
ZHU Z K, SHEN B J, GE T D, WANG J R, YUAN H C, WU J S. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems. Acta Ecologica Sinica, 2016, 36(19): 5987-5997. (in Chinese)
[23]
FINZI A C, ABRAMOFF R Z, SPILLER K S, BRZOSTEK E R, DARBY B A, KRAMER M A, PHILLIPS R P. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 2015, 21(5): 2082-2094.

doi: 10.1111/gcb.12816 pmid: 25421798
[24]
LIU Y L, GE T D, ZHU Z K, LIU S L, LUO Y, LI Y, WANG P, GAVRICHKOVA O, XU X L, XU J K, WU J S, GUGGENBERGER G, KUZYAKOV Y. Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry, 2019, 133: 97-107.

doi: 10.1016/j.soilbio.2019.02.019
[25]
孟猛, 徐永艳. 植物光合碳在不同器官-土壤系统的动态分布特征13C示踪. 水土保持研究, 2021, 28(1): 331-336, 344.
MENG M, XU Y Y. 13C traces the dynamic distribution characteristics of photosynthetic carbon of different plants in different organ-soil systems. Research of Soil and Water Conservation, 2021, 28(1): 331-336, 344. (in Chinese)
[26]
GE T D, YUAN H Z, ZHU H H, WU X H, NIE S A, LIU C, TONG C L, WU J S, BROOKES P. Biological carbon assimilation and dynamics in a flooded rice-soil. Soil Biology and Biochemistry, 2012, 48: 39-46.

doi: 10.1016/j.soilbio.2012.01.009
[27]
艾超, 孙静文, 王秀斌, 梁国庆, 何萍, 周卫. 植物根际沉积与土壤微生物关系研究进展. 植物营养与肥料学报, 2015, 21(5): 1343-1351.
AI C, SUN J W, WANG X B, LIANG G Q, HE P, ZHOU W. Advances in the study of the relationship between plant rhizodeposition and soil microorganism. Journal of Plant Nutrition and Fertilizers, 2015, 21(5): 1343-1351. (in Chinese)
[28]
MEIER I C, FINZI A C, PHILLIPS R P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 2017, 106: 119-128.

doi: 10.1016/j.soilbio.2016.12.004
[29]
YIN H J, LI Y F, XIAO J, XU Z F, CHENG X Y, LIU Q. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 2013, 19(7): 2158-2167.

doi: 10.1111/gcb.12161 pmid: 23504744
[30]
QIU H S, LIU J Y, CHEN X B, HU Y J, SU Y R, GE T D, LI D, WU J S. Rice straw carbon mineralization is affected by the timing of exogenous glucose addition in flooded paddy soil. Applied Soil Ecology, 2022, 173: 104374.

doi: 10.1016/j.apsoil.2021.104374
[31]
汪景宽, 李丛, 于树, 李双异. 不同肥力棕壤溶解性有机碳、氮生物降解特性. 生态学报, 2008, 28(12): 6165-6171.
WANG J K, LI C, YU S, LI S Y. The biodegradation of dissolved organic carbon and nitrogen in brown earth with different fertility levels. Acta Ecologica Sinica, 2008, 28(12): 6165-6171. (in Chinese)
[32]
安婷婷, 汪景宽, 李双异, 付时丰, 裴久渤, 李慧. 用13C脉冲标记方法研究施肥与地膜覆盖对玉米光合碳分配的影响. 土壤学报, 2013, 50(5): 948-955.
AN T T, WANG J K, LI S Y, FU S F, PEI J B, LI H. Effect of fertilization and plastic film mulching on distribution of photosynthetically fixed carbon in maize: explored with13C pulse labeling technique. Acta Pedologica Sinica, 2013, 50(5): 948-955. (in Chinese)
[33]
BLAUD A, LERCH T Z, CHEVALLIER T, NUNAN N, CHENU C, BRAUMAN A. Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw. Applied Soil Ecology, 2012, 53: 1-9.

doi: 10.1016/j.apsoil.2011.11.005
[34]
TROYER I D, AMERY F, MOORLECHEM C V, SMOLDERS E, MERCKX R. Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study. Soil Biology and Biochemistry, 2011, 43(3): 513-519.

doi: 10.1016/j.soilbio.2010.11.016
[35]
CONRAD R, KLOSE M, YUAN Q, LU Y H, CHIDTHAISONG A. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter. Soil Biology and Biochemistry, 2012, 49: 193-199.

doi: 10.1016/j.soilbio.2012.02.030
[36]
谢柠桧, 安婷婷, 李双异, 孙良杰, 裴久渤, 丁凡, 徐英德, 付时丰, 高晓丹, 汪景宽. 外源新碳在不同肥力土壤中的分配与固定. 土壤学报, 2016, 53(4): 942-950.
XIE N H, AN T T, LI S Y, SUN L J, PEI J B, DING F, XU Y D, FU S F, GAO X D, WANG J K. Distribution and sequestration of exogenous new carbon in soils different in fertility. Acta Pedologica Sinica, 2016, 53(4): 942-950. (in Chinese)
[37]
安婷婷. 利用13C标记方法研究光合碳在植物—土壤系统的分配及其微生物的固定[D]. 沈阳: 沈阳农业大学, 2015.
AN T T. Allocation and microbial immobilization of photosynthetically fixed carbon in plant-soil system with 13C labeling technique[D]. Shenyang: Shenyang Agricultural University, 2015. (in Chinese)
[38]
CHEN Z Y, KUMAR A, BROOKES P C, KUZYAKOV Y, LUO Y, XU J M. Three source-partitioning of CO2 fluxes based on a dual-isotope approach to investigate interactions between soil organic carbon, glucose and straw. Science of the Total Environment, 2022, 811: 152163.

doi: 10.1016/j.scitotenv.2021.152163
[39]
MAARASTAWI S A, FRINDTE K, GEER R, KROEBER E, KNIEF C. Temporal dynamics and compartment specific rice straw degradation in bulk soil and the rhizosphere of maize. Soil Biology and Biochemistry, 2018, 127: 200-212.

doi: 10.1016/j.soilbio.2018.09.028
[40]
FU Y Y, LUO Y, TANG C X, LI Y, GUGGENBERGER G, XU J M. Succession of the soil bacterial community as resource utilization shifts from plant residues to rhizodeposits. Soil Biology and Biochemistry, 2022, 173: 108785.

doi: 10.1016/j.soilbio.2022.108785
[41]
凌宁, 荀卫兵, 沈其荣. 根际沉积碳与秸秆碳共存下作物与微生物氮素竞争机制及其调控. 南京农业大学学报, 2018, 41(4): 589-597.
LING N, XUN W B, SHEN Q R. Plant-microbial competition for nitrogen in rhizosphere under straw returning regime: Mechanisms and manipulation. Journal of Nanjing Agricultural University, 2018, 41(4): 589-597. (in Chinese)
[42]
艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D]. 北京: 中国农业科学院, 2015.
AI C. Carbon and nitrogen transformations and microbial diversity in the rhizosphere soil under long-term fertilization practices[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[43]
莫朝阳. 根际激发效应对两种农田土壤中碳氮转化的影响及机制研究[D]. 杭州: 浙江大学, 2021.
MO C Y. Research on the effect and mechanism of rhizosphere priming effects on carbon and nitrogen transformation in two farmland soils[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
[44]
赵宽, 周葆华, 马万征, 羊礼敏. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48(2): 235-240.
ZHAO K, ZHOU B H, MA W Z, YANG L M. The influence of different environmental stresses on root-exuded organic acids: A review. Soils, 2016, 48(2): 235-240. (in Chinese)
[45]
徐英德. 基于保护性农业的土壤固碳过程研究进展. 中国生态农业学报(中英文), 2022, 30(4): 658-670.
XU Y D. Conservation agriculture-mediated soil carbon sequestration: A review. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658-670. (in Chinese)
[46]
LUO Z K, LUO Y Q, WANG G C, XIA J Y, PENG C H. Warming- induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 2020, 26(12): 7242-7254.

doi: 10.1111/gcb.v26.12
[1] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[2] YANG JianJun, GAI Hao, ZHANG MengXuan, CAI YuRong, WANG LiYan, WANG LiGang. Effect of Subsoiling Combined with Straw Returning Measure on Pore Structure of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(5): 892-906.
[3] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[4] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[5] SUN Tao, FENG XiaoMin, GAO XinHao, DENG AiXing, ZHENG ChengYan, SONG ZhenWei, ZHANG WeiJian. Effects of Diversified Cropping on the Soil Aggregate Composition and Organic Carbon and Total Nitrogen Content [J]. Scientia Agricultura Sinica, 2023, 56(15): 2929-2940.
[6] ZHENG ChunYu, SHA ShanYi, ZHU Lin, WANG ShaoJie, FENG GuoZhong, GAO Qiang, WANG Yin. Optimizing Nitrogen Fertilizer Rate for High-Yield Maize in Black Soil Region Based on Ecological and Social Benefits [J]. Scientia Agricultura Sinica, 2023, 56(11): 2129-2140.
[7] GAO JiaRui, FANG ShengZhi, ZHANG YuLing, AN Jing, YU Na, ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[8] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[9] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[10] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[11] WANG ShuYing,LI XiaoHong,CHENG Na,FU ShiFeng,LI ShuangYi,SUN LiangJie,AN TingTing,WANG JingKuan. Effects of Plastic Film Mulching and Fertilization on the Sequestration of Carbon and Nitrogen from Straw in Soil [J]. Scientia Agricultura Sinica, 2021, 54(2): 345-356.
[12] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[13] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[14] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[15] Dan WEI,ShanShan CAI,Yan LI,Liang JIN,Wei WANG,YuMei LI,Yang BAI,Yu HU. The Response of Water-Soluble Organic Carbon to Organic Material Applications in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1180-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!