Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (6): 1180-1188.doi: 10.3864/j.issn.0578-1752.2020.06.010

• SPECIAL FOCUS: SOIL ACTIVE ORGANIC CARBON • Previous Articles     Next Articles

The Response of Water-Soluble Organic Carbon to Organic Material Applications in Black Soil

Dan WEI1,4,ShanShan CAI2,3,Yan LI1,4,Liang JIN2,Wei WANG2,YuMei LI2,Yang BAI4,Yu HU4   

  1. 1 Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097
    2 Institute of Soil Fertilizer and Environmental Resources, Heilongjiang Academy of Agricultural Sciences, Harbin 150086
    3 College of Land and Environment, Shenyang Agricultural University, Shenyang 110866
    4 College of Resources and Environment, Northeast Agricultural University, Harbin 150030
  • Received:2019-07-02 Accepted:2019-10-17 Online:2020-03-16 Published:2020-04-09

Abstract:

【Objective】The change characteristics of water soluble organic carbon (WSOC) content and components in black soil with the addition of different organic materials were explored to provide a scientific basis for soil fertility improvement methods in black soil area.【Method】This study was based on experimental plots of returning organic materials to the field in Keshan County, Heilongjiang Province, and the experiment has lasted for seven years. The content and structure of WSOC treated with organic fertilizer, biochar, straw and single fertilizer treatment (CK) was analyzed by routine determination and fluorescence analysis.【Result】Compared with the single application of chemical fertilizer, the content of soil water-soluble organic carbon increased by 9.65%-20.30% and soil organic carbon increased by 6.63%-14.86% under the application of organic materials. The contents of tyrosine-like protein and tryptophan-like protein in WSOC decreased under the treatment of organic materials. The application of organic fertilizer increased the contents of metabolites of soluble microorganisms in WSOC, increased the contents of fulvic acid and humic acid in WSOC, and simplified their structures. Straw and biochar simplified the structure of fulvic acids and biochar complicates the structure of humic acids in WSOC.【Conclusion】Organic fertilizer, biochar and straw improved the content of soil water-soluble organic carbon, enhanced the decomposition and metabolism of soil microorganisms, increased the content and simplified the structure of fulvic acid component in water-soluble organic carbon. Organic fertilizer had the best effect.

Key words: black soil, organic material, water-soluble organic carbon, three-dimensional fluorescence spectra, PARAFAC analysis

Table 1

Physical and chemical characteristics of soil (0-20 cm)"

年份
Year
处理
Treatment
有机碳
TOC
(g·kg-1
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
全钾
Total K (g·kg-1)
碱解氮Available N
(mg·kg-1)
速效磷Available P
(mg·kg-1)
速效钾Available K (mg·kg-1) pH
2013 均值Mean 30.03 1.81 1.69 18.9 129.12 11.19 202.2 6.36
2019 NPK 27.76 1.81 1.16 18.30 85.7 27.69 172.4 6.19
MNPK 30.78 2.28 1.52 23.40 106.64 33.35 286.3 6.49
SNPK 30.45 2.04 1.30 22.10 97.48 20.86 234.7 6.69
BNPK 30.06 1.97 1.01 23.30 91.59 27.13 198.3 6.51

Table 2

Distribution of WSOC accounting for the proportion of total organic carbon in soil"

处理
Treatment
SOC
(g·kg-1)
WSOC
(mg·kg-1)
WSOC/SOC
(%)
NPK 28.10±0.69c 150.23±7.52b 0.53±0.10a
MNPK 32.28±0.66a 180.73±17.09a 0.56±0.06a
BNPK 30.29±0.73b 165.00±8.34ab 0.55±0.04a
SNPK 29.96±0.84b 164.73±4.19ab 0.55±0.02a

Table 3

Three-dimensional fluorescence region division"

荧光区域 Fluorescence region 物质类型Types of substances Ex (nm) Em (nm)
类酪氨酸蛋白质物质 Tyrosine-like protein 200-250 250-330
类色氨酸蛋白质物质 Tryptophan-like protein 200-250 330-380
类富里酸物质 Fulvic acid-like 200-250 380-550
溶解性微生物代谢产物 Soluble microbial metabolites 250-490 250-380
类腐殖酸物质 Humic-like 250-490 380-550

Fig. 1

Three-dimensional fluorescence spectra of water-soluble organic carbon under different organic materials"

Table 4

Percentage of fluorescence region integral"

处理 Treatment
NPK 2.26±0.27a 3.49±0.17a 22.95±0.25a 7.00±0.04b 64.31±0.63a
MNPK 1.40±0.39b 3.37±0.14a 19.82±0.10c 11.04±0.27a 64.37±0.80a
BNPK 2.02±0.27ab 3.41±0.19a 22.37±0.16b 7.08±0.13b 65.11±0.67a
SNPK 2.23±0.09a 3.46±0.06a 22.76±0.15ab 6.80±0.23b 64.75±0.24a

Fig. 2

Fluorescent components of soil water-soluble organic carbon based on PARAFAC analysis method"

Fig. 3

Fmax of fluorescent components of water-soluble organic carbon"

[1] 李增强, 张贤, 王建红, 曹凯, 徐昌旭, 曹卫东 . 化肥减施对紫云英还田土壤活性有机碳和碳转化酶活性的影响. 植物营养与肥料学报, 2019,25(4):1-10.
LI Z Q, ZHANG X, WANG J H, CAO K, XU C X, CAO W D . Effects of fertilizer reduction on active organic carbon and carbon converting enzyme activities in soil of Ziyunyin returning to field. Journal of Plant Nutrition and Fertilizer, 2019,25(4):1-10. (in Chinese)
[2] 俞有志, 王清奎, 于小军, 郑文辉 . 施氮磷肥对杉木人工林土壤活性有机碳的影响. 生态学杂志, 2018,37(10):3053-3060.
YU Y Z, WANG Q K, YU X J, ZHENG W H . Effects of nitrogen and phosphorus fertilizers on active organic carbon in soil of Cunninghamia lanceolata plantation. Chinese Journal of Ecology, 2018,37(10):3053-3060. (in Chinese)
[3] 张璐, 张文菊, 徐明岗, 蔡泽江, 彭畅, 王伯仁, 刘骅 . 长期施肥对中国3种典型农田土壤活性有机碳库变化的影响. 中国农业科学. 2009,42(5):1646-1655.
ZHANG L, ZHANG W J, XU M G, CAI Z J, PENG C, WANG B R, LIU H . Effects of long-term fertilization on changes of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica, 2009,42(5):1646-1655. (in Chinese)
[4] SUN Y N, HUANG S, YU X C, ZHANG W J . Stability and saturation of soil organic carbon in rice fields: evidence from a long-term fertilization experiment in subtropical China. Journal of Soils and Sediments, 2013,13(8):1327-1334.
[5] MITCHELL P J, SIMPSON A J, SOONG R, SIMPSON M J . Shifts in microbial community and water extractable organic matte composition with biochar amendment in a temperate forest soil. Soil Biology and Biochemistry, 2015,81:244-254.
[6] 于维水, 王碧胜, 王士超, 孟繁华, 卢昌艾 . 长期不同施肥下我国4种典型土壤活性有机碳及碳库管理指数的变化特征. 中国土壤与肥料, 2018(2):29-34.
YU W S, WANG B S, WANG S C, MENG F H, LU C A . Changes of active organic carbon and carbon stock management index of four typical soils in China under long-term different fertilization. Soil and Fertilizer Sciences in China, 2018(2):29-34. (in Chinese)
[7] 何翠翠, 王立刚, 王迎春, 张文, 杨晓辉 . 长期施肥下黑土活性有机质和碳库管理指数研究. 土壤学报, 2015,52(1):194-202.
HE C C, WANG L G, WANG Y C, ZHANG W, YANG X H . Study on Active organic matter and carbon pool management index of black soil under long-term fertilization. Acta Pedologica Sinica, 2015,52(1):194-202. (in Chinese)
[8] 魏丹, 匡恩俊, 迟凤琴, 张久明, 郭文义 . 东北黑土资源现状与保护策略. 黑龙江农业科学. 2016,16(1):158-161.
WEI D, KUANG E J, CHI F Q, ZHANG J M, GUO W Y . The present situation and protection strategy of black soil resources in Northeast China. Heilongjiang Agricultural Sciences, 2016,16(1):158-161. (in Chinese)
[9] 韩晓增, 李娜 . 中国东北黑土地研究进展与展望. 地理科学, 2018,38(7):1032-1041.
HAN X Z, LI N . Research progress and prospect of black land in Northeast China. Scientia Geographica Sinica, 2018,38(7):1032-1041. (in Chinese)
[10] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社 2000.
BAO S D . Soil Agrochemical Analysis. Beijing: China Agricultural Press, 2000. (in Chinese)
[11] CHEN W, WESTERHOFF P, LEENHEER J A, BOOKSH K . Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 2003,37(24):5701-5710.
[12] 范春辉, 张颖超, 贺磊, 王家宏 . 秸秆还田对旱田黄土可溶性有机质三维荧光光谱的影响. 光谱学与光谱分析, 2013,33(7):1820-1823.
FAN C H, ZHANG Y C, HE L, WANG J H . Effects of straw returning on three-dimensional fluorescence spectra of soluble organic matter in loess. Spectroscopy and Spectral Analysis, 2013,33(7):1820-1823. (in Chinese)
[13] 李明堂, 王继红, 赵兰坡 . 大豆与玉米根部土壤水溶性有机物的荧光特性比较研究. 水土保持学报, 2013,27(2):140-144.
LI M T, WANG J H, ZHAO L P . Comparative study on fluorescence characteristics of water-soluble organic compounds in soybean and maize roots. Journal of Soil and Water Conservation, 2013,27(2):140-144. (in Chinese)
[14] HE X S, XI B D, WEI Z M, JIANG Y H, YANG Y, AN D, CAO J L, LIU H L . Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates. Journal of Hazardous Materials, 2011,190(1/3):293-301.
[15] PARLANTI E, WÖRZ E, GEOFFROY L, LAMOTTE M . Dissolved organic matter fluorescence spectroscopy as a tool of estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 2000,31:1765-1781.
[16] LI W T, CHEN S Y, XU Z X, LI Y, HSHUANG C D, LI A M . Characterization of dissolved organic matter in municipal wastewater using fluorescence PARAFAC analysis and chromatography multi-excitation/emission scan: A comparative study. Environmental Science & Technology, 2014,48(5):2603-2609.
[17] STEDMON C A, BRO R . Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography-Methods, 2008,6:572-579.
[18] 李帅东, 姜泉良, 黎烨, 吴亚林, 江俊武, 黄涛, 杨浩, 黄昌春 . 环滇池土壤溶解性有机质(DOM)的光谱特征及来源分析. 光谱学与光谱分析, 2017,37(5):1448-1454.
LI S D, JIANG Q L, LI Y, WU Y L, JIANG J W, HUANG T, YANG H, HAUNG C C . Spectral characteristics and source analysis of dissolved organic matter (DOM) in soil around Dianchi Lake. Spectral and Spectral Analysis, 2017,37(5):1448-1454. (in Chinese)
[19] 何俐蓉 . 土壤水溶性有机碳研究概述. 山东工业技术, 2019(15):246.
HE L R . Summary of soil water soluble organic carbon research. Shandong Industrial Technology, 2019(15):246. (in Chinese)
[20] 倪进治, 徐建民, 谢正苗, 王德建 . 不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究. 土壤学报, 2003,40(5):724-730.
NI J Z, XU J M, XIE Z M, WANG D J . Study on the content and composition characteristics of soil water-soluble organic carbon under different fertilizer treatments. Acta Pedologica Sinica, 2003,40(5):724-730. (in Chinese)
[21] QI R M, LI J, LIN Z A, LI Z J, LI Y T, YANG X D, ZHANG J J, ZHAO B Q . Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 2016,102:36-45.
[22] 李森, 张世熔, 罗洪华, 周玲, 王贵胤, 沈乂畅 . 不同施肥处理土壤水溶性有机碳含量特征及动态变化. 农业环境科学学报, 2013,32(2):314-319.
LI S, ZHANG S R, LUO H H, ZHOU L, WANG G Y, SHEN Y C . Characteristics and dynamic changes of water-soluble organic carbon content in soil treated with different fertilizers. Journal of Agro-Environment Science, 2013,32(2):314-319. (in Chinese)
[23] 王玉涛, 石辉, 刘雄飞, 昝利, 武云飞, 郑纪勇 . 黄土丘陵区不同植被下土壤可溶性有机物的荧光特征研究. 植物营养与肥料学报, 2016,2(1):171-79.
WANG Y T, SHI H, LIU X F, JIU L, WU Y F, ZHENG J Y . Fluorescence characteristics of soluble organic matter in soil under different vegetation in Loess Hilly region. Journal of Plant Nutrition and Fertilizer, 2016,2(1):171-79. (in Chinese)
[24] 石坤, 夏昕, 关强, 沈方圆, 黄欠如, 李大明, 刘满强, 李辉信, 胡锋, 焦加国 . 基于荧光分析的不同有机碳水平水稻土添加外源有机物培养对DOC的影响. 水土保持学报, 2016,30(3):227-233.
SHI K, XIA X, GUAN Q, SHEN F Y, HUANG Q R, LI D M, LIU M Q, LI H X, HU F, JIAO J G . Effects of exogenous organic matter on DOC in paddy soils with different organic carbon levels based on fluorescence analysis. Journal of Soil and Water Conservation, 2016,30(3):227-233. (in Chinese)
[25] YU G H, WU M J, WEI G R, LUO Y H, RAN W, WANG B R, ZHANG J C, SHEN Q R . Binding of organic ligands with Al(Ⅲ)in dissolved organic matter from soil: implications for soil organic carbon storage. Environmental Science & Technology, 2012,46(11):7102-7109.
[26] CHEN Y, SHINOGI Y, TAIRA M . Influence of biochar use on sugarcane growth, soil parameters, and groundwater quality. Australian Journal of Soil Research, 2010,48(7):526-530.
[27] 王盛勇 . 贫营养条件下微生物代谢产物和生物多样性的研究[D]. 天津: 天津大学, 2009.
WANG S Y . Studies on microbial metabolites and biodiversity under poor nutrition conditions[D]. Tianjin: Tianjin University, 2009. (in Chinese)
[28] 李明堂, 王继红, 赵兰坡 . 玉米高产田土壤水溶性有机物组成和结构特征. 东北林业大学学报, 2013,41(6):88-92.
LI M T, WANG J H, ZHAO L P . Composition and structural characteristics of water-soluble organic compounds in soil of maize high yield field. Journal of Northeast Forestry University, 2013,41(6):88-92. (in Chinese)
[29] 李朕, 尚丽萍, 邓琥, 职统兴 . 色氨酸和酪氨酸的三维荧光光谱特征参量提取. 光谱与光谱分析, 2009,29(29):1925-1928.
LI Z, SHANG L P, DENG H, ZHI T X . Extraction of characteristic parameters of three-dimensional fluorescence spectra of tryptophan and tyrosine. Spectrum and Spectral Analysis, 2009,29(29):1925-1928. (in Chinese)
[30] CORVASCE M, ZSOLNAY A, ORAZIO V D, LOPEZ R, MIANO T M . Characterization of water extractable organic matter in a deep soil profile. Chemosphere, 2006,62:1583-1590.
[31] ANDRILLI J D, FOREMAN C M, MARSHALL A J, MCKNIGHT D M . Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Organic Geochemistry, 2013,65:19.
[32] 谷思玉, 李悦, 蔡越桐, 郭兴军, 朱玉伟, 于雪薇, 杨艳, 张会慧 . 基于荧光光谱特性的水热条件对农田黑土富里酸结构的影响研究. 光谱学与光谱分析, 2018,38(2):488-493.
GU S Y, LI Y, CAI Y T, GUO X J, ZHU Y W, YU X W, YANG Y, ZHANG H H . Effect of hydrothermal conditions based on fluorescence spectra on the structure of fulvic acid in black soil of farmland. Spectroscopy and Spectral Analysis, 2008,38(2):488-493. (in Chinese)
[1] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[2] ZHANG XueLin, WU Mei, HE TangQing, ZHANG ChenXi, TIAN MingHui, LI XiaoLi, HOU XiaoPan, HAO XiaoFeng, YANG QingHua, LI ChaoHai. Effects of Crop Residue Decomposition on Soil Inorganic Nitrogen and Greenhouse Gas Emissions from Fluvo-Aquic Soil and Shajiang Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(4): 729-742.
[3] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[4] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[5] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[6] MA Yuan,CHI MeiJing,ZHANG YuLing,FAN QingFeng,YU Na,ZOU HongTao. Change Characteristics of Organic Carbon and Total Nitrogen in Water-Stable Aggregate After Conversion from Upland to Paddy Field in Black Soil [J]. Scientia Agricultura Sinica, 2020, 53(8): 1594-1605.
[7] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[8] GAO HongJun,PENG Chang,ZHANG XiuZhi,LI Qiang,ZHU Ping,WANG LiChun. Effects of Corn Straw Returning Amounts on Carbon Sequestration Efficiency and Organic Carbon Change of Soil and Aggregate in the Black Soil Area [J]. Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.
[9] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[10] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[11] WANG Qiong,ZHAN XiaoYing,ZHANG ShuXiang,PENG Chang,GAO HongJun,ZHANG XiuZhi,ZHU Ping,GILLES Colinet. Phosphorus Adsorption and Desorption Characteristics and Its Response to Soil Properties of Black Soil Under Long-Term Different Fertilization [J]. Scientia Agricultura Sinica, 2019, 52(21): 3866-3877.
[12] SONG ZiRong,E ShengZhe,YUAN JinHua,JIA WuXia,ZENG XiBai,SU ShiMing,BAI LingYu. Heavy Metal Accumulation in Irrigated Desert Soils and Their Crop Effect After Applying Different Organic Materials [J]. Scientia Agricultura Sinica, 2019, 52(19): 3367-3379.
[13] QIU ShaoJun, LI Ning, HE Ping, WEI Dan, JIN Liang, ZHAO ShiCheng, XU XinPeng, ZHOU Wei. Nutrients Use Efficiency Change of Chemical Fertilizers for Spring Maize in a Typical Black Soil [J]. Scientia Agricultura Sinica, 2019, 52(16): 2824-2834.
[14] ZHANG XueLin, ZHOU YaNan, LI XiaoLi, HOU XiaoPan, AN TingTing, WANG Qun. Effects of Nitrogen Fertilizer on Crop Residue Decomposition and Nutrient Release Under Lab Incubation and Field Conditions [J]. Scientia Agricultura Sinica, 2019, 52(10): 1746-1760.
[15] WANG HuiYing, XU MingGang, ZHOU BaoKu, MA Xiang, DUAN YingHua. Response and Driving Factors of Bacterial and Fungal Community to Long-Term Fertilization in Black Soil [J]. Scientia Agricultura Sinica, 2018, 51(5): 914-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!