Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (17): 3302-3316.doi: 10.3864/j.issn.0578-1752.2023.17.006


Critical Lowest Temperature for the Safe Heading of Various Types of Late-Season Rice Cultivars and the Safe Dates for Their Full Heading in Different Double-Season Rice Cropping Regions of Hubei Province

LI Yi1(), LU JianXin2, CAO Peng3, ZHOU DengWen2, LIU JiMin4, TIAN PingPing5, CAI MingLi1, CAO CouGui1, YANG TeWu1()   

  1. 1College of Plant Science and Technology/Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070
    2Jingzhou Agricultural Technology Extension Center, Jingzhou 434020, Hubei
    3Hubei Agricultural Technology Extension Station, Wuhan 430070
    4Agricultural Technology Extension Center of Xiaochang County, Xiaogan 432900, Hubei
    5Agricultural Technology Service Center of Zhangtiansi Township, Gongan County, Jingzhou 434324, Hubei
  • Received:2022-12-25 Accepted:2023-02-15 Online:2023-09-01 Published:2023-09-08
  • Contact: YANG TeWu


【Objective】 The objective of this study is to determine the critical lowest temperature for the safe heading of various types of late-season rice cultivars and the dates for their safe full heading in different double-season rice production regions of Hubei Province, and to provide guidelines for the rational layout and scientific arrangement of double-season rice production in different regions. 【Method】 Different types of late-season rice cultivars including japonica, indica and indica-japonica hybrid those are suitable for different cropping methods in the double-season rice cropping regions of Hubei Province were used as materials and a multi-site field experiment with various sowing dates was conducted at Chibi City, Xianning, Gongan County, Jingzhou, Hongshan District, Wuhan, Tuanfeng County, Huanggang, and Xiaochang County, Xiaogan, Hubei Province, respectively, in 2020 and 2021. Meanwhile, simulated low-temperature treatment was imposed to the potted plants during booting and heading in a pot experiment. The grain-setting rate and grain yield per plant or hill were investigated and the relationship between grain-setting rate and air temperature prior to full heading was analyzed. The critical lowest temperature for their safe heading of various types of cultivars was determined using the temperature under that the grain-setting rate was reduced to 82% of that under the optimum temperature. Furthermore, the daily risk maps for the full heading of different cultivar types in September were drawn based on the meteorological data in the past 30 years in various double-season rice cropping regions of Hubei Province. The latest safe dates for full heading of various types of cultivars in different double-season rice cropping regions were determined as the injury from low temperature to their heading can be avoided in more than 80% of years. 【Result】 With the delay of sowing date, the heading date of various cultivars was delayed. The grain yield per plant or hill decreased significantly under late sowing conditions. Grain-setting rate, a determinant factor that affects the yield of individual plant or hill, was quadratically related to the mean daily temperature in the 4 days prior to full heading. The critical lowest temperature for the safe heading in the 4 days prior to full heading was 19.6 ℃ for japonica cultivars, which was 0.4 ℃ lower than the conventional standard; and 22.4 ℃ for indica cultivars, which was 0.4 ℃ higher than the conventional standard; and 22.2 ℃ for indica-japonica hybrid cultivars, which was close to that of indica cultivars. The latest safe date for the full heading of late-season japonica, indica and indica-japonica hybrid cultivars was September 25-28, 16-19 and 17-20 in southeastern Hubei; September 23-27, 13-19 and 14-20 in eastern Hubei; September 25-27, 10-17 and 10-18 in Jianghan Plain; September 22-26, 7-15 and 7-17 in northern Hubei, respectively. 【Conclusion】 The safe date of full heading for late-season rice differed much among various cultivar types and in different double-season rice cropping regions of Hubei Province. It showed a trend that became earlier from south to north in Hubei Province, and was earlier for indica cultivars than for japonica cultivars. The latest safe date of full heading for indica-japonica hybrid cultivars was close to that for indica cultivars. It is of importance to select suitable cultivars and arrange reasonable sowing dates according to the local climatic conditions and cultivar characteristics for the safe production of late-season rice. Plantation using japonica cultivars is helpful to combat the damage from low temperature during heading and flowering in the late-season rice production.

Key words: late-season rice, safe heading, low temperature, grain-setting rate, grain yield

Table 1

Rice cultivars and their types used in this experiment"

品种名称Cultivar name 品种类型Cultivar type 培育单位Breeding unit
淮稻5号Huaidao 5 (HD5) 常规粳型Conventional japonica 淮阴市农业科学院Huaiyin Academy of Agricultural Sciences
鄂晚17 Ewan 17 (EW17) 常规粳型Conventional japonica 湖北省农业技术推广总站Hubei Agricultural Technology Extension Station
鄂粳403 Ejing 403 (EG403) 常规粳型Conventional japonica 湖北省农业科学院Hubei Academy of Agricultural Sciences
甬优2640 Yongyou 2640 (YY2640) 籼粳杂交型Indica-japonica hybrid 宁波市种子有限公司Ningbo Seed Co. LTD
A优442 Ayou 442 (AY442) 杂交籼型Indica hybrid 黄冈市农业科学院Huanggang Academy of Agricultural Sciences
玺优447 Xiyou 447 (XY447) 杂交籼型Indica hybrid 黄冈市农业科学院Huanggang Academy of Agricultural Sciences

Table 2

Geographical location and altitude of experimental sites"

试验点Experimental site 北纬Latitude 东经Longitude 海拔Altitude (m)
咸宁赤壁市青云村Qingyun Village, Chibi City, Xianning 29°50′13.27″ 113°58′21.07″ 33.5
荆州公安县刻木村Kemu Village, Gongan County, Jingzhou 29°50′54.32″ 112°12′45.45″ 34.0
武汉华中农业大学试验农场Experimental farm, HZAU, Wuhan 30°28′25.78″ 114°21′17.46″ 35.0
黄冈团风县梅家墩村Meijiadun Village, Tuanfeng County, Huanggang 30°34′21.51″ 114°55′40.26″ 23.0
孝感孝昌县大庙村Damiao Village, Xiaochang County, Xiaogan 31°11′41.43″ 114°04′5.08″ 41.2

Fig. 1

Daily mean air temperature at different experimental sites in the 2 years"

Table 3

Temperature and treatment duration in the indoor pot experiment with simulated low temperature in 2021"

Treatment duration
Mean daily temperature (℃)
Mean daily minimum temperature
Mean daily maximum temperature
HD5 09-21—10-08 19.34 14.52 23.52
EW17 09-14—10-08 19.26 14.59 23.97
YY2640 09-14—10-08 19.26 14.59 23.97
AY442 09-30—10-08 19.81 14.28 24.14
XY447 09-14—10-08 19.26 14.59 23.97

Table 4

Full heading date of cultivars under various sowing dates at different sites"

Sowing date treatment
2020 (m-d) 2021 (m-d)
HD5 EW17 EG403 YY2640 HD5 EW17 YY2640 AY442 XY447
SD1 09-11 09-13 09-15 09-10 09-09 09-11 09-05 09-12 08-29
SD2 09-20 09-20 09-20 09-15 09-21 09-15 09-10 09-20 09-03
SD3 10-08 09-26 10-08 09-23 09-25 09-21 09-22 09-27 09-11
荆州公安县Gongan, jingzhou SD1 09-07 09-12 09-08 09-05 09-08 09-12 09-07 09-11 09-02
SD2 09-14 09-18 09-13 09-14 09-16 09-15 09-13 09-19 09-09
SD3 09-24 09-22 09-20 09-28 09-25 09-18 09-20 09-29 09-15
武汉洪山区Hongshan, Wuhan SD1 09-08 09-13 09-10 09-04 09-07 09-11 08-30 09-08 08-28
SD2 09-12 09-17 09-14 09-13 09-17 09-14 09-06 09-17 09-05
SD3 09-22 09-24 09-21 09-20 09-22 09-16 09-15 09-27 09-14
SD4 na na na na 09-27 09-22 09-25 10-12 09-22
黄冈团风县Tuanfeng, Huanggang SD1 09-06 09-14 09-10 09-03 09-08 09-10 09-03 09-07 08-29
SD2 09-11 09-16 09-14 09-12 09-17 09-15 09-09 09-17 09-06
SD3 09-18 09-25 09-24 09-19 10-05 09-18 09-15 10-02 09-15
孝感孝昌县Xiaochang, Xiaogan SD1 09-08 09-12 09-12 09-07 09-13 09-14 09-10 09-12 09-13
SD2 09-15 09-18 09-18 09-13 09-17 09-18 09-17 09-18 09-14
SD3 09-22 09-25 09-25 09-20 09-23 09-23 09-23 09-28 09-20

Fig. 2

Grain yield per plant or hill of different cultivars on average at 5 experimental sites under various sowing dates Different letters in lowercase indicate significant difference between various sowing date treatments in the same cultivar at P<0.05 level"

Table 5

Yield components per plant or hill on average at 5 sites under various sowing dates of different cultivars"

Sowing date treatment
Effective panicles per plant or hill
Total spikelets per panicle
Filled grains per panicle
Grain-setting rate (%)
1000-grain weight
2020 HD5 SD1 4.3±0.4a 81.7±2.0a 61.3±1.3a 75.3±1.4a 28.1±0.2a
SD2 3.9±0.3a 84.5±2.0a 59.7±1.6a 70.9±1.7a 27.1±0.1b
SD3 4.1±0.2a 65.2±2.1b 41.1±1.7b 63.4±2.0b 26.7±0.1b
EW17 SD1 10.2±0.4a 126.0±2.5a 89.7±1.2a 71.5±1.2a 20.3±0.1b
SD2 11.0±0.2a 122.4±3.1ab 89.4±2.2a 73.3±1.3a 20.9±0.1a
SD3 9.1±0.3b 118.3±1.9b 79.1±1.8b 66.8±0.9b 20.1±0.1b
EG403 SD1 10.0±0.7a 130.3±3.6a 79.9±3.3a 61.1±1.1ab 26.0±0.3a
SD2 10.8±0.5a 119.8±3.4b 77.9±2.4ab 65.2±1.5a 26.1±0.2a
SD3 11.0±0.6a 120.0±2.1b 71.3±2.8b 59.4±1.8b 25.3±0.3a
YY2640 SD1 8.6±0.3a 245.2±3.0b 170.4±5.1a 67.4±0.8a 24.2±0.2a
SD2 8.5±0.3a 261.8±5.8a 164.5±4.6a 62.8±0.9b 23.7±0.1b
SD3 7.3±0.2b 224.4±4.8c 133.7±5.3b 57.8±0.8c 23.3±0.1c
2021 HD5 SD1 3.8±0.2a 94.1±2.3a 83.8±2.0a 89.1±0.3a 27.9±0.0a
SD2 3.5±0.3a 96.1±1.9a 80.9±1.6a 84.3±0.8b 26.9±0.3b
SD3 4.4±0.3a 85.9±1.6b 68.6±2.3b 79.3±1.5c 26.6±0.1b
SD4 4.0±0.0a 86.8±2.1b 59.7±2.9c 68.9±2.4d 25.5±0.1c
EW17 SD1 11.7±0.5ab 107.2±2.4a 90.6±2.3a 84.3±0.7a 21.5±0.1a
SD2 12.5±0.4a 105.6±1.5a 84.1±1.6ab 79.7±1.1b 21.0±0.1b
SD3 12.1±0.4a 102.7±2.5a 77.4±1.9b 75.6±1.1c 20.5±0.1c
SD4 10.3±0.2b 107.0±4.2a 65.2±3.0c 60.9±1.2d 21.2±0.1ab
YY2640 SD1 8.6±0.3a 234.7±4.6b 198.3±3.8a 84.6±0.8a 25.1±0.2a
SD2 7.7±0.3ab 211.9±3.5c 169.1±2.6b 79.9±0.8b 25.1±0.2a
SD3 7.7±0.3ab 210.4±6.5c 143.0±3.4c 68.3±1.2c 23.9±0.2b
SD4 7.0±0.0b 283.2±5.6a 148.7±4.0c 52.4±1.2d 22.4±0.1c
AY442 SD1 2.9±0.2c 144.3±2.1b 122.7±2.0a 85.1±0.8a 28.3±0.2a
SD2 3.0±0.2bc 149.9±3.9ab 111.1±2.9b 74.2±0.7b 27.3±0.2b
SD3 3.7±0.2ab 154.6±5.3ab 96.0±3.1c 62.3±0.8c 25.1±0.2c
SD4 3.8±0.2a 161.2±3.7a 62.3±2.6d 38.5±0.8d na
XY447 SD1 9.0±0.3a 159.5±3.9b 132.0±3.1a 82.8±0.4a 27.5±0.1a
SD2 8.2±0.3ab 155.1±2.5b 123.6±2.0ab 79.7±0.6b 27.4±0.1a
SD3 8.8±0.3a 151.7±6.6b 108.0±4.9bc 71.1±1.0c 26.4±0.1b
SD4 7.0±0.0b 209.8±4.5a 118.2±2.6c 56.5±1.4d 25.1±0.1c

Table 6

Correlation coefficients between grain yield of individual plant or hill and grain-setting rate of different cultivars"

HD5 EW17 EG403 YY2640 AY442 XY447
n 31 31 15 31 16 16
r 0.491 0.683 0.706 0.754 0.697 0.672
P 0.005 <0.001 0.003 <0.001 0.003 0.004

Fig. 3

Relationship of grain-setting rates of different types of cultivars and mean daily temperature in the 4 days prior to full heading"

Table 7

Optimum and critical lowest mean daily temperatures for safe heading in the 4 days prior to full heading and grain-setting rates under the optimum temperature of different types of cultivars"

Cultivar type
Optimum temperature
Grain-setting rate under optimum temperature (%)
<BOLD>C</BOLD>ritical lowest temperature for safe full heading (℃)
粳稻Japonica 24.5 78.8 19.6
籼粳交Indica-japonica hybrid 26.4 77.7 22.2
籼稻Indica 26.8 77.6 22.4

Fig. 4

Risk maps for the safe full heading of various late-season rice cultivar types in different counties, cities or districts in the double-season rice cropping regions of Hubei Province"

李勇, 杨晓光, 叶清, 陈阜. 全球气候变暖对中国种植制度可能影响 Ⅸ. 长江中下游地区单双季稻高低温灾害风险及其产量影响. 中国农业科学, 2013, 46(19): 3997-4006. doi: 10.3864/j.issn.0578-1752.2013.19.005.

doi: 10.3864/j.issn.0578-1752.2013.19.005
LI Y, YANG X G, YE Q, CHEN F. The possible effects of global warming on cropping systems in China Ⅸ. The risk of high and low temperature disasters for single and double rice and its impacts on rice yield in the middle-lower Yangtze Plain. Scientia Agricultura Sinica, 2013, 46(19): 3997-4006. doi: 10.3864/j.issn.0578-1752.2013.19.005. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.19.005
章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中国粮食安全和水稻生产. 农业现代化研究, 2005, 26(2): 85-88.
ZHANG X F, WANG D Y, FANG F P, ZENG Y K, LIAO X Y. Food safety and rice production in China. Research of Agricultural Modernization, 2005, 26(2): 85-88. (in Chinese)
CAI H, CHEN Q. Rice production in China in the early 21st century. Chinese Rice Research Newsletter, 2000, 8(2): 14-16.
CASSMAN K G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 5952-5959.
LOBELL D B, CASSMAN K G, FIELD C B. Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 2009, 34: 179-204.

doi: 10.1146/energy.2009.34.issue-1
彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014, 44(8): 845-850.
PENG S B. Reflection on China’s rice production strategies during the transition period. Scientia Sinica Vitae, 2014, 44(8): 845-850. (in Chinese)

doi: 10.1360/052014-98
杨罗浩, 彭福燕, 高俊阳, 翁玉林, 姚璇, 涂军明, 杨特武. 不同种植密度和施肥水平下湖北二季晚粳群体物质生产特征及其与产量形成的关系. 华中农业大学学报, 2020, 39(5): 76-84.
YANG L H, PENG F Y, GAO J Y, WENG Y L, YAO X, TU J M, YANG T W. Matter production characteristics of two-season late japonica populations with different planting densities and fertilizer levels in Hubei Province and their relationships with yield. Journal of Huazhong Agricultural University, 2020, 39(5): 76-84. (in Chinese)
曹鹏, 张建设, 蔡鑫, 罗昆. 关于推进湖北水稻产业高质量发展的思考. 中国稻米, 2019, 25(6): 24-27.

doi: 10.3969/j.issn.1006-8082.2019.06.007
CAO P, ZHANG J S, CAI X, LUO K. Thinking on promoting high-quality development of rice industry in Hubei Province. China Rice, 2019, 25(6): 24-27. (in Chinese)

doi: 10.3969/j.issn.1006-8082.2019.06.007
游艾青, 陈亿毅, 陈志军. 湖北省双季稻生产的现状及发展对策. 湖北农业科学, 2009, 48(12): 3190-3193.
YOU A Q, CHEN Y Y, CHEN Z J. Current status and development strategies of double cropping rice production in Hubei Province. Hubei Agricultural Sciences, 2009, 48(12): 3190-3193. (in Chinese)
XIA F, WANG W, WENG Y, ALI I, ZHAO J, NIE Z, LI X, YAO X, YANG T. Productivity and water use of ratoon rice cropping systems with water-saving, drought-resistant rice. Agronomy Journal, 2022, 114: 2352-2363.

doi: 10.1002/agj2.v114.4
王嫚嫚, 刘颖, 高奇正, 刘大鹏. 湖北省水稻种植模式结构和比较优势时空变化. 经济地理, 2017, 37(8): 137-144.
WANG M M, LIU Y, GAO Q Z, LIU D P. The spatial and temporal analysis of the comparative advantage of different rice planting patterns in Hubei Province. Economic Geography, 2017, 37(8): 137-144. (in Chinese)
IMIN N, KERIM T, ROLFE B G, WEINMAN J J. Effect of early cold stress on the maturation of rice anthers. Proteomics, 2004, 4(7): 1873-1882.

doi: 10.1002/pmic.200300738 pmid: 15221744
冯明, 陈正洪, 刘可群, 吴义城, 毛飞, 黄永平. 湖北省主要农业气象灾害变化分析. 中国农业气象, 2006, 27(4): 343-348.
FENG M, CHEN Z H, LIU K Q, WU Y C, MAO F, HUANG Y P. Analysis on variation of main agrometeorological disasters in Hubei Province. Chinese Journal of Agrometeorology, 2006, 27(4): 343-348. (in Chinese)
张洪熙, 张祖建, 王才林, 杨建昌, 赵步洪, 秦德荣, 陈新红, 王建平, 孙菊英, 季红娟, 宋云生, 朱庆森. 江苏不同熟期粳稻品种的齐穗期和安全播期预测. 作物学报, 2013, 39(8): 1416-1424.
ZHANG H X, ZHANG Z J, WANG C L, YANG J C, ZHAO B H, QIN D R, CHEN X H, WANG J P, SUN J Y, JI H J, SONG Y S, ZHU Q S. Studies on full heading and safe sowing date for different maturing-type japonica rice cultivars of Jiangsu Province. Acta Agronomica Sinica, 2013, 39(8): 1416-1424. (in Chinese)

doi: 10.3724/SP.J.1006.2013.01416
艾治勇, 郭夏宇, 刘文祥, 马国辉, 青先国. 长江中游地区双季稻安全生产日期的变化. 作物学报, 2014, 40(7): 1320-1329.
AI Z Y, GUO X Y, LIU W X, MA G H, QING X G. Changes of safe production dates of double-season rice in the middle reaches of the Yangtze River. Acta Agronomica Sinica, 2014, 40(7): 1320-1329. (in Chinese)

doi: 10.3724/SP.J.1006.2014.01320
张祖建, 张洪熙, 杨建昌, 宋云生, 赵步洪, 季红娟, 朱庆森. 江苏近50年粳稻安全齐穗期的变化. 作物学报, 2011, 37(1): 146-151.
ZHANG Z J, ZHANG H X, YANG J C, SONG Y S, ZHAO B H, JI H J, ZHU Q S. Changes of safe dates for full heading in japonica rice over past 50 years in Jiangsu Province. Acta Agronomica Sinica, 2011, 37(1): 146-151. (in Chinese)

doi: 10.3724/SP.J.1006.2011.00146
房玉伟, 张育慧, 舒素芳, 薛占奎, 胡谷琅. 近45年金华市晚稻安全齐穗期的变化分析. 浙江农业学报, 2014, 26(4): 851-855.
FANG Y W, ZHANG Y H, SHU S F, XUE Z K, HU G L. Changes of safe full-heading date in late rice over past 45 years in Jinhua City, Zhejiang. Acta Agriculturae Zhejiangensis, 2014, 26(4): 851-855. (in Chinese)
徐莎莎, 杨沈斌, 石春林, 陈德, 于庚康, 高苹. 基于模型的长江中下游一季稻安全齐穗期推算. 江苏农业科学, 2017, 45(7): 47-52.
XU S S, YANG S B, SHI C L, CHEN D, YU G K, GAO P. Calculation of safe heading date of single cropping rice in middle and lower reaches of Yangtze River based on model. Jiangsu Agricultural Sciences, 2017, 45(7): 47-52. (in Chinese)
吕川根, 王才林, 宗寿余, 赵凌, 邹江石. 温度对水稻亚种间杂种育性及结实率的影响. 作物学报, 2002, 28(4): 499-504.
C G, WANG C L, ZONG S Y, ZHAO L, ZOU J S. Effects of temperature on fertility and seed set in intersubspecific hybrid rice (Oryza sativa L.). Acta Agronomica Sinica, 2002, 28(4): 499-504. (in Chinese)
娄伟平, 孙永飞, 吴利红, 毛裕定. 孕穗期气象条件对水稻每穗总粒数和结实率的影响. 中国农业气象, 2007, 28(3): 296-299.
LOU W P, SUN Y F, WU L H, MAO Y D. Influence of meteorological conditions during spike formation stage on number of grain per spike and setting percentage of rice. Chinese Journal of Agrometeorology, 2007, 28(3): 296-299. (in Chinese)
谢远玉, 黄淑娥, 田俊, 王钰, 叶清. 长江中下游热量资源时空演变特征及其对双季稻种植的影响. 应用生态学报, 2016, 27(9): 2950-2958.

doi: 10.13287/j.1001-9332.201609.013
XIE Y Y, HUANG S E, TIAN J, WANG Y, YE Q. Spatial-temporal characteristics of thermal resources and its influence on the growth of double cropping rice in the middle and lower reaches of the Yangtze River, China. Chinese Journal of Applied Ecology, 2016, 27(9): 2950-2958. (in Chinese)
ARSHAD M S, FAROOQ M, ASCH F, KRISHNA J S V, VARA PRASAD P V, SIDDIQUE K H M. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiology and Biochemistry, 2017, 115: 57-72.

doi: S0981-9428(17)30105-5 pmid: 28324683
项洪涛, 齐德强, 李琬, 郑殿峰, 王月溪, 王彤彤, 王立志, 曾宪楠, 杨纯杰, 周行, 赵海东. 低温胁迫下外源ABA对开花期水稻叶鞘激素含量及抗寒生理的影响. 草业学报, 2019, 28(4): 81-94.

doi: 10.11686/cyxb2018225
XIANG H T, QI D Q, LI W, ZHENG D F, WANG Y X, WANG T T, WANG L Z, ZENG X N, YANG C J, ZHOU H, ZHAO H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress. Acta Prataculturae Sinica, 2019, 28(4): 81-94. (in Chinese)
彭福燕, 杨罗浩, 高俊阳, 夏方招, 曹志刚, 陈杰, 姚璇, 杨特武. 播期及秧龄对湖北二季晚粳产量和品质的影响. 华中农业大学学报, 2021, 40(3): 105-112.
PENG F Y, YANG L H, GAO J Y, XIA F Z, CAO Z G, CHEN J, YAO X, YANG T W. Effects of sowing date and seedling age on the yield and quality of two-season late japonica rice in Hubei Province. Journal of Huazhong Agricultural University, 2021, 40(3): 105-112. (in Chinese)
ZHANG J, HOU J, ZHANG H, MENG C, ZHANG X, WEI C. Low soil temperature inhibits yield of rice under drip irrigation. Journal of Soil Science and Plant Nutrition, 2019, 19: 228-236.

doi: 10.1007/s42729-019-0008-x
张洪程, 张军, 龚金龙, 常勇, 李敏, 高辉, 戴其根, 霍中洋, 许轲, 魏海燕. “籼改粳”的生产优势及其形成机理. 中国农业科学, 2013, 46(4): 686-704. doi: 10.3864/j.issn.0578-1752.2013.04.004.

doi: 10.3864/j.issn.0578-1752.2013.04.004
ZHANG H C, ZHANG J, GONG J L, CHANG Y, LI M, GAO H, DAI Q G, HUO Z Y, XU K, WEI H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”. Scientia Agricultura Sinica, 2013, 46(4): 686-704. doi: 10.3864/j.issn.0578-1752.2013.04.004. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2013.04.004
郭小弟, 朱寿燕. 秋季低温对杂交稻结实率的影响. 杂交水稻, 1998, 14(1): 38-39.
GUO X D, ZHU S Y. Effects of autumn low temperature on seed set of hybrid rice. Hybrid Rice, 1998, 14(1): 38-39. (in Chinese)
高亮之, 郭鹏, 张立中, 林武. 中国水稻的光温资源与生产力. 中国农业科学, 1984, 17(1): 17-23.
GAO L Z, GUO P, ZHANG L Z, LIN W. Light and heat resources and potential productivity of rice in China. Scientia Agricultura Sinica, 1984, 17(1): 17-23. (in Chinese)
ZHANG J, DONG P, ZHANG H, MENG C, ZHANG X, HOU J, WEI C. Low soil temperature reducing the yield of drip irrigated rice in arid area by influencing anther development and pollination. Journal of Arid Land, 2019, 11(3): 419-430.

doi: 10.1007/s40333-019-0103-9
许正文, 张彩霞, 曹建勇, 彭正文. 寒露风对杂交晚稻生产的影响及预防对策. 湖南农业科学, 2000(6): 11-12.
XU Z W, ZHANG C X, CAO J Y, PENG Z W. Effect of cold dew wind on hybrid late-season rice production and preventive measures. Hunan Agricultural Sciences, 2000(6): 11-12. (in Chinese)
AN J, ALMASAUD R A, BOUZAYEN M, ZOUINE M, CHERVIN C. Auxin and ethylene regulation of fruit set. Plant Science, 2020, 292: 110381.

doi: 10.1016/j.plantsci.2019.110381
[1] ZHANG WenXia, LI Pan, YIN Wen, CHEN GuiPing, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei. Effects of Multiple Green Manure After Wheat Combined with Different Levels of Nitrogen Fertilization on Wheat Yield, Grain Quality, and Nitrogen Utilization [J]. Scientia Agricultura Sinica, 2023, 56(17): 3317-3330.
[2] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
[3] LIU DeShuai, FENG Mei, SUN YuTong, WANG Ye, CHI JingNan, YAO WenKong. Analysis of the Interaction Between VvGAI1 and VvJAZ9 Proteins in Grape and Its Expression Pattern Under Low Temperature [J]. Scientia Agricultura Sinica, 2023, 56(15): 2977-2994.
[4] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
[5] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[8] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[9] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[10] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[11] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[12] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[13] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[14] MA Yue,TIAN Yi,MU WenYan,ZHANG XueMei,ZHANG LuLu,YU Jie,LI YongHua,WANG HaoLin,HE Gang,SHI Mei,WANG ZhaoHui,QIU WeiHong. Response of Wheat Yield and Grain Nitrogen, Phosphorus and Potassium Concentrations to Test-Integrated Potassium Application and Soil Available Potassium in Northern Wheat Production Regions of China [J]. Scientia Agricultura Sinica, 2022, 55(16): 3155-3169.
[15] GAO RenCai,CHEN SongHe,MA HongLiang,MO Piao,LIU WeiWei,XIAO Yun,ZHANG Xue,FAN GaoQiong. Straw Mulching from Autumn Fallow and Reducing Nitrogen Application Improved Grain Yield, Water and Nitrogen Use Efficiencies of Winter Wheat by Optimizing Root Distribution [J]. Scientia Agricultura Sinica, 2022, 55(14): 2709-2725.
Full text



No Suggested Reading articles found!