Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2262-2273.doi: 10.3864/j.issn.0578-1752.2023.12.003

Previous Articles     Next Articles

Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions

GUO XinHu1(), MA Jing1, LI ZhongFeng1, CHU JinPeng1, XU HaiCheng2, JIA DianYong3, DAI XingLong1(), HE MingRong1()   

  1. 1 College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology/Key Laboratory of Crop Ecophysiology and Farming System, Ministry of Agriculture and Rural Affairs, Taian 271018, Shandong
    2 Weifang University of Science and Technology, Weifang 262799, Shandong
    3 Nanyang Normal University, Nanyang 473061, Henan
  • Received:2022-10-21 Accepted:2023-01-08 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】 From the 2009-2010 wheat growing season, four cultivation modes were designed and set up. The effects of cultivation modes on soil physical and chemical properties, nitrogen nutrition index of winter wheat, nitrogen supply and demand balance in wheat field, uptake and utilization of nitrogen and grain yield were investigated, in order to provide a theoretical guidance for further optimizing the soil-crop system integrated management mode.【Method】Four cultivation modes were designed: local farmer mode (T1), improvement mode based on farmers (T2), high-yield and higher-yield mode regardless of production cost (T3), and soil-crop system integrated management mode (T4).【Result】After 13 wheat-maize growing seasons, the soil bulk density of surface soil for T1, T2, T3 and T4 modes decreased by 6.21%, 9.80%, 12.25% and 13.56%, respectively; the content of organic matter for four modes increased by 21.88%, 26.80%, 32.05% and 36.39%, respectively; the corresponding increases were 34.16%, 12.38%, 39.60% and 20.79% for the contents of total nitrogen; 47.85%, 48.87%, 74.49% and 62.21% for the contents of alkali-hydrolysable nitrogen, respectively; 62.73%, 36.56%, 297.93% and 68.68% for the contents of available phosphorus; 14.36%, 40.00%, 221.20% and 59.60% for the contents of available potassium, respectively. The increases of 33.96%, 10.32%, 52.77% and 19.49% were observed in the inorganic nitrogen accumulation in the 0-100 cm soil layer, respectively. Correspondingly, the pH for T1, T2, T3 and T4 modes decreased from 7.50 to 6.28, 6.68, 5.35 and 6.64, respectively. There were significant differences in grain yield and nitrogen uptake and utilization among the four cultivation modes in 2020-2022 growing season. Compared with T1 mode, the grain yield of T2, T3 and T4 modes increased by 14.14%, 27.65% and 22.52%, respectively; the nitrogen use efficiency increased by 54.80%, 19.97% and 49.15%, respectively; the nitrogen recovery efficiency increased by 72.95%, 37.54% and 48.15%, respectively; the nitrogen surplus decreased by 49.76%, 11.62% and 44.14%, respectively; the nitrogen surplus rate decreased by 24.63%, 11.62% and 26.68%, respectively. The whole plant at anthesis stage and spikes at maturity stage under T4 mode were in nitrogen supply and demand balance.【Conclusion】After 13 wheat-maize growing seasons, the soil acidification trend of 0-20 cm was obvious, and the bulk density of surface soil decreased, but the contents of organic matter, total nitrogen and available nutrients such as nitrogen, phosphorus, potassium increased for the all four cultivation modes. Meanwhile, the accumulation of inorganic nitrogen in 0-100 cm soil layer increased accordingly. Compared with other three cultivation modes, a synergistic improvement was obtained under T4 mode in soil physicochemical properties, wheat grain yield and nitrogen use efficiency. However, the nitrogen use efficiency at present under T4 mode was not high enough and still needed to be further improved. As showed by present study, further synergistic optimization in grain yield and nitrogen use efficiency could not be achieved only by reducing nitrogen input.

Key words: soil physicochemical property, wheat grain yield, nitrogen use efficiency, nitrogen nutrition index, nitrogen balance

Table 1

The planting density, sowing date and fertilizer management under four cultivation modes"

模式
Mode
种植密度
Density
(×104·hm-2)
播期
Sowing date (M-D)
肥料
Fertilizer
总施肥量
Total fertilizer
rate (kg·hm-2)
基肥量
Base fertilizer
rate (kg·hm-2)
追肥量(时期)
Top dressing rates (stages)
(kg·hm-2)
T1 冬小麦
Winter wheat
225 10-05 N 315 189 126 (R)
P2O5 120 120 0
K2O 30 30 0
夏玉米
Summer maize
6.00 06-10 N 225 0 225 (J)
P2O5 45 0 45 (J)
K2O 75 0 75 (J)
T2 冬小麦
Winter wheat
300 10-13 N 210 105 105 (J)
P2O5 90 90 0
K2O 75 75 0
夏玉米
Summer maize
6.75 06-15 N 160.5 45 115.5 (J)
P2O5 45 45 0
K2O 75 45 30 (J)
T3 冬小麦
Winter wheat
375 10-10 N 315 126 189 (J)
P2O5 210 210 0
K2O 150 90 60 (J)
夏玉米
Summer maize
8.70 06-15 N 450 0 135 (J) + 225 (VT) + 90 (VT7)
P2O5 150 60 90 (J)
K2O 300 150 150 (J)
T4 冬小麦
Winter wheat
450 10-15 N 240 96 144 (J)
P2O5 120 120 0
K2O 75 45 30 (J)
夏玉米
Summer maize
7.50 06-15 N 184.5 30 90 (J) + 64.5 (VT)
P2O5 55.5 30 25.5 (J)
K2O 130.5 30 70.5 (J) + 30 (VT)

Table 2

Effects of cultivation mode on soil physicochemical properties in 0-20 cm soil layer before sowing of winter wheat"

年份
Year
处理
Treatment
容重
Bulk density
(g·cm-3)
酸碱度
pH
有机质
Organic matter
(g·kg-1)
全氮
Total N
(g·kg-1)
碱解氮
Alkali-hydrolysable
N (mg·kg-1)
速效磷
Available P
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
2009-2010 T1 1.53a 7.50a 15.90a 1.01a 65.70a 19.60a 69.65a
T2 1.53a 7.50a 15.90a 1.01a 65.70a 19.60a 69.65a
T3 1.53a 7.50a 15.90a 1.01a 65.70a 19.60a 69.65a
T4 1.53a 7.50a 15.90a 1.01a 65.70a 19.60a 69.65a
2020-2021 T1 1.44a 6.34b 19.09d 1.34a 98.33c 30.83b 81.51d
T2 1.38b 6.71c 19.84c 1.13c 100.71c 26.53c 102.06c
T3 1.35c 5.45a 20.72b 1.39a 115.48a 74.04a 237.87a
T4 1.33d 6.68c 21.32a 1.21b 108.54b 32.69b 113.18b
2021-2022 T1 1.43a 6.22b 19.67d 1.37a 95.95c 32.96b 77.80d
T2 1.38b 6.64c 20.48c 1.14c 94.90c 27.00c 92.96c
T3 1.34c 5.26a 21.27b 1.43a 113.80a 81.95a 209.56a
T4 1.32d 6.60c 22.05a 1.23b 104.60b 33.55b 109.14b

Fig. 1

Effects of cultivation modes on inorganic nitrogen accumulation in 0-100 cm soil layer before sowing of winter wheat The error bars represent standard deviation of four replicates. The different letters on the bars in the same year are significantly different at P<0.05 level as determined by the LSD test (n = 4)"

Table 3

Effects of cultivation mode on nitrogen nutrient index in winter wheat growth period from 2020 to 2022"

年份
Year
处理
Treatment
返青期
Revival
stage
拔节期
Jointing
stage
开花期a
Anthesis
stage a
开花期b
Anthesis
stage b
花后15 d
15 days post anthesis
花后25 d
25 days post anthesis
成熟期
Maturity
stage
2020-2021 T1 0.88a 1.14a 0.96c 0.69c 0.76c 0.83c 0.90d
T2 0.80c 0.90d 0.92d 0.69c 0.76c 0.84c 0.93c
T3 0.89a 1.05b 1.14a 0.77a 0.86a 0.96a 1.04a
T4 0.85b 0.94c 1.00b 0.72b 0.81b 0.90b 0.99b
2021-2022 T1 0.91a 1.08a 0.91c 0.68c 0.70d 0.76d 0.87d
T2 0.82c 0.86d 0.91d 0.68c 0.74c 0.81c 0.94c
T3 0.90a 0.98b 1.13a 0.79a 0.84a 0.93a 1.07a
T4 0.86b 0.91c 0.99b 0.71b 0.79b 0.87b 1.00b

Table 4

Effects of cultivation mode on grain yield and nitrogen uptake and utilization of winter wheat from 2020 to 2022"

年份
Year
处理
Treatment
籽粒产量
Grain yield (t·hm-2)
氮素利用率
Nitrogen use efficiency (kg·kg-1)
氮素吸收效率
Nitrogen uptake efficiency (%)
氮素内在利用效率
Nitrogen utilization efficiency (kg·kg-1)
氮肥利用率
Nitrogen recovery efficiency (%)
2020-2021 T1 7.26d 13.03d 37.86c 34.42b 23.64d
T2 8.29c 20.25a 54.77a 36.98a 38.96a
T3 9.22a 15.60c 48.23b 32.34c 31.46c
T4 8.86b 19.43b 55.16a 35.22b 33.87b
2021-2022 T1 7.17d 13.15d 38.39c 34.26c 19.99d
T2 8.18c 20.28a 54.40a 37.28a 36.50a
T3 9.20a 15.81c 47.79b 33.09d 28.55c
T4 8.82b 19.62b 54.57a 35.96b 30.77b

Table 5

Effects of cultivation mode on nitrogen supply and demand balance in winter wheat growth period from 2020 to 2022"

年份
Year
处理
Treatment
氮输入量 N input rate (kg·hm-2) 氮输出量 N output rate (kg·hm-2) 氮表观损失率
N surplus rate
(%)
施氮量
N application
起始量
Initial
净矿化量
Net mineralization
吸氮量
N uptake
残留量
Residual
表观损失量
Surplus
2020-2021 T1 315 242.27b 94.67d 210.97d 285.96b 155.01a 49.21a
T2 210 199.33d 107.89c 224.19c 215.82d 77.21d 36.77c
T3 315 276.39a 130.59a 285.20a 300.13a 136.65b 43.38b
T4 240 215.77c 122.63b 251.42b 241.42c 85.55c 35.65d
2021-2022 T1 315 230.40b 96.30c 209.36d 276.21b 156.13a 49.56a
T2 210 189.91d 100.52c 217.54c 203.79d 79.11d 37.67c
T3 315 262.62a 126.65a 276.05a 289.90a 138.32b 43.91b
T4 240 205.82c 119.29b 243.30b 233.56c 88.25c 36.77c
[1]
CHEN X P, CUI Z L, VITOUSEK P M, CASSMAN K G, MATSON P A, BAI J S, MENG Q F, HOU P, YUE S C, ROEMHELD V, ZHANG F S. Integrated soil-crop system management for food security. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6399-6404.
[2]
CHEN X P, CUI Z L, FAN M S, VITOUSEK P, ZHAO M, MA W Q, WANG Z L, ZHANG W J, YAN X Y, YANG J C, DENG X P, GAO Q, ZHANG Q, GUO S W, REN J, LI S Q, YE Y L, WANG Z H, HUANG J L, TANG Q Y, SUN Y X, PENG X L, ZHANG J W, HE M R, ZHU Y J, XUE J Q, WANG G L, WU L, AN N, WU L Q, MA L, ZHANG W F, ZHANG F S. Producing more grain with lower environmental costs. Nature, 2014, 514: 486-489.

doi: 10.1038/nature13609
[3]
CUI Z L, DOU Z, YING H, ZHANG F S. Producing more with less: Reducing environmental impacts through an integrated soil-crop system management approach. Frontiers of Agricultural Science and Engineering, 2020, 7(1): 14-20.

doi: 10.15302/J-FASE-2019295
[4]
王树丽, 贺明荣, 代兴龙, 周晓虎. 种植密度对冬小麦氮素吸收利用和分配的影响. 中国生态农业学报, 2012, 20(10): 1276-1281.
WANG S L, HE M R, DAI X L, ZHOU X H. Effect of planting density on nitrogen uptake, utilization and distribution in winter wheat. Chinese Journal Eco-Agriculture, 2012, 20(10): 1276-1281. (in Chinese)

doi: 10.3724/SP.J.1011.2012.01276
[5]
DAI X L, ZHOU X H, JIA D Y, XIAO L L, HE M R. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat. Field Crops Research, 2013, 154(3): 100-109.

doi: 10.1016/j.fcr.2013.07.024
[6]
ZHANG Y, DAI X L, JIA D Y, LI H Y, WANG Y C, LI C X, XU H C, HE M R. Effects of plant density on grain yield, protein size distribution, and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. European Journal of Agronomy, 2016, 73: 1-10.

doi: 10.1016/j.eja.2015.11.015
[7]
DAI X L, WANG Y C, DONG X C, QIAN T F, YIN L J, DONG S X, CHU J P, HE M R. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 2017, 5(6): 541-552.

doi: 10.1016/j.cj.2017.05.003
[8]
YIN L J, DAI X L, HE M R. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research, 2018, 221: 90-97.

doi: 10.1016/j.fcr.2018.02.015
[9]
朱元刚, 初金鹏, 张秀, 钤太峰, 代兴龙, 贺明荣. 不同播期冬小麦氮素出籽效率与氮素利用及转运的相关性. 应用生态学报, 2019, 30(4): 1151-1160.

doi: 10.13287/j.1001-9332.201904.005
ZHU Y G, CHU J P, ZHANG X, QIAN T F, DAI X L, HE M R. Correlation between nitrogen fruiting efficiency and nitrogen utilization and remobilization in winter wheat at different sowing dates. Chinese Journal of Applied Ecology, 2019, 30(4): 1151-1160. (in Chinese)
[10]
郑飞娜, 初金鹏, 张秀, 费立伟, 代兴龙, 贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46(3): 423-431.

doi: 10.3724/SP.J.1006.2020.91046
ZHENG F N, CHU J P, ZHANG X, FEI L W, DAI X L, HE M R. Interactive effects of sowing pattern and planting density on grain yield and nitrogen use efficiency in large spike wheat cultivar. Acta Agronomica Sinica, 2020, 46(3): 423-431. (in Chinese)
[11]
刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响. 作物学报, 2022, 48(3): 716-725.

doi: 10.3724/SP.J.1006.2022.11012
LIU Y J, ZHENG F N, ZHANG X, CHU J P, YU H T, DAI X L, HE M R. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat. Acta Agronomica Sinica, 2022, 48(3): 716-725. (in Chinese)

doi: 10.3724/SP.J.1006.2022.11012
[12]
LI Z J, HU K L, LI B G, HE M R, ZHANG J W. Evaluation of water and nitrogen use efficiencies in a double cropping system under different integrated management practices based on a model approach. Agricultural Water Management, 2015, 159: 19-34.

doi: 10.1016/j.agwat.2015.05.010
[13]
王月超, 李传兴, 代兴龙, 周晓燕, 张宇, 李华英, 贺明荣. 栽培模式对冬小麦光能利用和产量的影响. 应用生态学报, 2015, 26(9): 2707-2713.
WANG Y C, LI C X, DAI X L, ZHOU X Y, ZHANG Y, LI H Y, HE M R. Effects of cultivation patterns on the radiation use and grain yield of winter wheat. Chinese Journal of Applied Ecology, 2015, 26(9): 2707-2713. (in Chinese)
[14]
马鑫, 代兴龙, 王晓婧, 董述鑫, 王月超, 徐海成, 朱元刚, 贺明荣. 冬小麦高产高效群体的年际间稳产性能. 应用生态学报, 2017, 28(12): 3926-3934.

doi: 10.13287/j.1001-9332.201712.025
MA X, DAI X L, WANG X J, DONG S X, WANG Y C, XU H C, ZHU Y G, HE M R. Stability of a winter wheat population with high yield and high resource use efficiency. Chinese Journal of Applied Ecology, 2017, 28(12): 3926-3934. (in Chinese)
[15]
XU H C, DAI X L, CHU J P, WANG Y C, YIN L J, MA X, DONG S X, HE M R. Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat. Journal of Integrative Agriculture, 2018, 17(2): 315-327.

doi: 10.1016/S2095-3119(17)61805-7
[16]
CHENG Y, DAI X L, FENG H, WANG Y C, LIU P, HE M R. Precision double cropping synergistically improves wheat and maize yields as well as resource efficiency. Agronomy Journal, 2020, 112(2): 1035-1048.

doi: 10.1002/agj2.v112.2
[17]
LIU Z, GAO J, GAO F, DONG S T, LIU P, ZHAO B, ZHANG J W. Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crops Research, 2018, 221: 196-206.

doi: 10.1016/j.fcr.2018.03.001
[18]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
LU R K. Soil Agrochemical Analysis Methods. Beijing: China Agricultural Science and Technology Publishers, 2000. (in Chinese)
[19]
刘学军, 赵紫娟, 巨晓棠, 张福锁. 基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响. 生态学报, 2002, 22(7): 1122-1128.
LIU X J, ZHAO Z J, JU X T, ZHANG F S. Effect of N application as basal fertilizer on grain yield of winter wheat, fertilizer N recovery and N balance. Acta Ecologica Sinica, 2002, 22(7): 1122-1128. (in Chinese)
[20]
初金鹏, 朱文美, 尹立俊, 石玉华, 邓淑珍, 张良, 贺明荣, 代兴龙. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018, 29(8): 2517-2524.

doi: 10.13287/j.1001-9332.201808.027
CHU J P, ZHU W M, YIN L J, SHI Y H, DENG S Z, ZHANG L, HE M R, DAI X L. Effects of wide-range planting on the yield and nitrogen use efficiency of winter wheat cultivar Tainong 18. Chinese Journal of Applied Ecology, 2018, 29(8): 2517-2524. (in Chinese)
[21]
LEMAIRE G, JEUFFROY M H, GASTAL F. Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 2008, 28(4): 614-624.

doi: 10.1016/j.eja.2008.01.005
[22]
JUSTES E, MARY B, MEYNARD J M, MACHET J M, THELIER- HUCHE L. Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 1994, 74: 397-407.

doi: 10.1006/anbo.1994.1133
[23]
ZHAO B, NIU X L, ATA-UL-KARIM S T, WANG L G, DUAN A W, LIU Z D, LEMAIRE G. Determination of the post-anthesis nitrogen status using ear critical nitrogen dilution curve and its implications for nitrogen management in maize and wheat. European Journal of Agronomy, 2020, 113: 125967.

doi: 10.1016/j.eja.2019.125967
[24]
林治安, 赵秉强, 袁亮, HWAT B S. 长期定位施肥对土壤养分与作物产量的影响. 中国农业科学, 2009, 42(8): 2809-2819.
LIN Z A, ZHAO B Q, YUAN L, HWAT B S. Effects of organic manure and fertilizers long-term located application on soil fertility and crop yield. Scientia Agricultura Sinica, 2009, 42(8): 2809-2819. (in Chinese)
[25]
魏猛, 张爱君, 诸葛玉平, 李洪民, 唐忠厚, 陈晓光. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响. 植物营养与肥料学报, 2017, 23(2): 304-312.
WEI M, ZHANG A J, ZHUGE Y P, LI H M, TANG Z H, CHEN X G. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area. Journal of Plant Nutrition and Fertilizers, 2017, 23(2): 304-312. (in Chinese)
[26]
THAKUR A, SHARMA R P, SANKHYAN N K, SEPEHYA S. Effect of 46 years’ application of fertilizers, FYM and lime on physical, chemical and biological properties of soil under maize-wheat system in an acid Alfisol of northwest Himalayas. Soil Use and Management, 2023, 39: 357-367.

doi: 10.1111/sum.v39.1
[27]
LIU C, LU M, CUI J, LI B, FANG C M. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis. Global Change Biology, 2014, 20: 1366-1381.

doi: 10.1111/gcb.12517 pmid: 24395454
[28]
韩上, 武际, 李敏, 陈峰, 王允青, 程文龙, 唐杉, 王慧, 郭熙盛, 卢昌艾. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质. 植物营养与肥料学报, 2020, 26(2): 276-284.
HAN S, WU J, LI M, CHEN F, WANG Y Q, CHENG W L, TANG S, WANG H, GUO X S, LU C A. Deep tillage with straw returning increase crop yield and improve soil physicochemical properties under topsoil thinning treatment. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 276-284. (in Chinese)
[29]
CUI H X, LUO Y L, CHEN J, JIN M, LI Y, WANG Z L. Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system. European Journal of Agronomy, 2022, 133: 126436.

doi: 10.1016/j.eja.2021.126436
[30]
李冬初, 黄晶, 马常宝, 薛彦东, 高菊生, 王伯仁, 张杨珠, 柳开楼, 韩天富, 张会民. 中国农耕区土壤有机质含量及其与酸碱度和容重关系. 水土保持学报, 2020, 34(6): 252-258.
LI D C, HUANG J, MA C B, XUE Y D, GAO J S, WANG B R, ZHANG Y Z, LIU K L, HAN T F, ZHANG H M. Soil organic matter content and its relationship with pH and bulk density in agricultural areas of China. Journal of Soil and Water Conservation, 2020, 34(6): 252-258. (in Chinese)
[31]
XU X, PANG D W, CHEN J, LUO Y L, ZHENG M J, YIN Y P, LI Y X, LI Y, WANG Z L. Straw return accompany with low nitrogen moderately promoted deep root. Field Crops Research, 2018, 221: 71-80.

doi: 10.1016/j.fcr.2018.02.009
[32]
GUAN D H, ZHANG Y S, AL-KAISI M M, WANG Q Y, ZHANG M C, LI Z H. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil and Tillage Research, 2015, 146: 286-295.

doi: 10.1016/j.still.2014.09.016
[33]
MEURER K H E, HADDAWAY N R, BOLINDER M A, KÄTTERER T. Tillage intensity affects total SOC stocks in boreo- temperate regions only in the topsoil—A systematic review using an ESM approach. Earth-Science Reviews, 2018, 177: 613-622.

doi: 10.1016/j.earscirev.2017.12.015
[34]
ZHAO J H, LIU Z, LAI H J, YANG D Q, LI X D. Optimizing residue and tillage management practices to improve soil carbon sequestration in a wheat-peanut rotation system. Journal of Environmental Management, 2022, 306: 114468.

doi: 10.1016/j.jenvman.2022.114468
[35]
YANG X Y, REN W D, SUN B H, ZHANG S L. Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma, 2012, 177/178: 49-56.

doi: 10.1016/j.geoderma.2012.01.033
[36]
ZHANG S X, LI Q, XIAO X P, WEI K, CHEN L J, LIANG W J. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research, 2012, 124: 196-202.

doi: 10.1016/j.still.2012.06.007
[37]
LI Z, LI D, LEI M, YU Y, ZHAO B, ZHANG J. Effects of straw management and nitrogen application rate on soil organic matter fractions and microbial properties in North China Plain. Journal of Soils and Sediments, 2019, 19: 618-628.

doi: 10.1007/s11368-018-2102-4
[38]
HAO X X, HAN X Z, WANG S Y, LI L J. Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research, 2022, 215: 105221.

doi: 10.1016/j.still.2021.105221
[39]
CAO B B, QU C Y, GUO Y Y, LIU C H, LIANG Z Y, JIAO Y P, SHI J L, TIAN X H. Long-term nitrogen and straw application improves wheat production and soil organic carbon sequestration. Journal of Soil Science and Plant Nutrition, 2022, 22: 3364-3376.

doi: 10.1007/s42729-022-00892-y
[40]
ZHAO H L, SHAR A G, LI S, CHEN Y L, SHI J L, ZHANG X Y, TIAN X H. Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system. Soil and Tillage Research, 2018, 175: 178-186.

doi: 10.1016/j.still.2017.09.012
[41]
ZHU L Q, HU N J, ZHANG Z W, XU J L, TAO B, MENG Y L. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system. Catena, 2015, 135: 283-289.

doi: 10.1016/j.catena.2015.08.008
[42]
LU M, ZHOU X H, LUO Y Q, YANG Y H, FANG C M, CHEN J K, LI B. Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems and Environment, 2011, 140(1): 234-244.

doi: 10.1016/j.agee.2010.12.010
[43]
杨苏, 刘耀武, 章欢, 李辉信, 张永春, 艾玉春, 汪吉东. 土壤不同形态碳氮含量和酶活性对培养时间及外源碳投入的响应. 水土保持学报, 2020, 34(4): 340-346.
YANG S, LIU Y W, ZHANG H, LI H X, ZHANG Y C, AI Y C, WANG J D. Responses of different forms of soil carbon and nitrogen contents and enzyme activities to cultivation time and exogenous carbon input. Journal of Soil and Water Conservation, 2020, 34(4): 340-346. (in Chinese)
[44]
DAI X L, ZHOU W, LIU G R, LIANG G Q, HE P, LIU Z B. Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderma, 2019, 337: 1116-1125.

doi: 10.1016/j.geoderma.2018.11.023
[45]
ZHANG H Y, NIU L A, HU K L, HAO J M, LI F, WANG X, CHEN H. Long-term effects of nitrogen and phosphorus fertilization on soil aggregate stability and aggregate-associated carbon and nitrogen in the North China Plain. Soil Science Society of America Journal, 2021, 85(3): 732-745.

doi: 10.1002/saj2.v85.3
[46]
GUO J H, LIU X J, ZHANG Y, SHEN J L, HAN W X, ZHANG W F, CHRISTIE P, GOULDING K, VITOUSEK P M, ZHANG F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008-1010.

doi: 10.1126/science.1182570 pmid: 20150447
[47]
HUANG P, ZHANG J B, XIN X L, ZHU A N, ZHANG C Z, MA D H, ZHU Q G, YANG S, WU S J. Proton accumulation accelerated by heavy chemical nitrogen fertilization and its long-term impact on acidifying rate in a typical arable soil in the Huang-Huai-Hai Plain. Journal of Integrative Agriculture, 2015, 14(1): 148-157.

doi: 10.1016/S2095-3119(14)60750-4
[48]
LI J G, WAN X, LIU X X, CHEN Y, SLAUGHTER L C, WEINDORF D C, DONG Y H. Changes in soil physical and chemical characteristics in intensively cultivated greenhouse vegetable fields in North China. Soil and Tillage Research, 2019, 195: 104366.

doi: 10.1016/j.still.2019.104366
[49]
ŠIMANSKÝ V, JONCZAK J, HORVÁTHOVÁ J, IGAZ D, AYDIN E, KOVÁČIK P. Does long-term application of mineral fertilizers improve physical properties and nutrient regime of sandy soils?. Soil and Tillage Research, 2022, 215: 105224.

doi: 10.1016/j.still.2021.105224
[50]
HE M Q, XIN X L, MENG L, YAN X Y, ZHAO C, CAI Z C, ZHU A N, ZHANG J B, MÜLLER C. Long-term appropriate N management can continuously enhance gross N mineralization rates and crop yields in a maize-wheat rotation system. Biology and Fertility of Soils, 2021, doi: 10.1007/s00374-021-01595-9.

doi: 10.1007/s00374-021-01595-9
[51]
王东, 于振文, 于文明, 石玉, 周忠新. 施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响. 应用生态学报, 2006, 17(9): 1593-1598.
WANG D, YU Z W, YU W M, SHI Y, ZHOU Z X. Effect of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field. Chinese Journal of Applied Ecology, 2006, 17(9): 1593-1598. (in Chinese)
[52]
马兴华, 于振文, 梁晓芳, 颜红, 史桂萍. 施氮量和底追比例对小麦氮素利用和土壤硝态氮含量的影响. 水土保持学报, 2006, 20(5): 95-98.
MA X H, YU Z W, LIANG X F, YAN H, SHI G P. Effects of nitrogen application rate and ratio of base and topdressing on nitrogen utilization and soil NO3-N content in winter wheat. Journal of Soil and Water Conservation, 2006, 20(5): 95-98. (in Chinese)
[53]
崔振岭, 陈新平, 张福锁, 徐久飞, 石立委, 李俊良. 华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量. 应用生态学报, 2007, 18(10): 2227-2232.
CUI Z L, CHEN X P, ZHANG F S, XU J F, SHI L W, LI J L. Appropriate soil nitrate N content for a winter wheat/summer maize rotation system in North China Plain. Chinese Journal of Applied Ecology, 2007, 18(10): 2227-2232. (in Chinese)
[54]
DHILLON J, EICKHOFF E, AULA L, OMARA P, WEYMEYER G, NAMBI E, OYEBIYI F, CARPENTER T, RAUN W. Nitrogen management impact on winter wheat grain yield and estimated plant nitrogen loss. Agronomy Journal, 2020, 112(1): 564-577.

doi: 10.1002/agj2.v112.1
[55]
郭天财, 宋晓, 冯伟, 马冬云, 谢迎新, 王永华. 高产麦田氮素利用、氮平衡及适宜施氮量. 作物学报, 2008, 34(5): 886-892.
GUO T C, SONG X, FENG W, MA D Y, XIE Y X, WANG Y H. Utilization and balance of nitrogen and proper application amount of nitrogen fertilizer in winter wheat in high-yielding regions. Acta Agronomica Sinica, 2008, 34(5): 886-892. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00886
[56]
SHI Z L, LI D D, JING Q, CAI J, JIANG D, CAO W X, DAI T B. Effects of nitrogen applications on soil nitrogen balance and nitrogen utilization of winter wheat in a rice-wheat rotation. Field Crops Research, 2012, 127: 241-247.

doi: 10.1016/j.fcr.2011.11.025
[57]
赵营, 刘晓彤, 罗健航, 赵天成, 张学军. 缓/控释肥条施对春玉米产量、吸氮量与氮平衡的影响. 中国土壤与肥料, 2020(5): 34-39.
ZHAO Y, LIU X T, LUO J H, ZHAO T C, ZHANG X J. Yield, N uptake, and apparent N balance in spring maize as affected by side bar application of slow/controlled release fertilizers. Soils and Fertilizers Sciences in China, 2020(5): 34-39. (in Chinese)
[58]
李玮, 乔玉强, 陈欢, 曹承富, 杜世州, 赵竹. 玉米秸秆还田配施氮肥对冬小麦土壤氮素表观盈亏及产量的影响. 植物营养与肥料学报, 2015, 21(3): 561-570.
LI W, QIAO Y Q, CHEN H, CAO C F, DU S Z, ZHAO Z. Effects of combined maize straw and N application on soil nitrogen surplus amount and yield of winter wheat. Journal of Plant Nutrition and Fertilizer, 2015, 21(3): 561-570. (in Chinese)
[59]
王新媛, 赵思达, 郑险峰, 王朝辉, 何刚. 秸秆还田和氮肥用量对冬小麦产量和氮素利用的影响. 中国农业科学, 2021, 54(23): 5043-5053.

doi: 10.3864/j.issn.0578-1752.2021.23.010
WANG X Y, ZHAO S D, ZHENG X F, WANG Z H, HE G. Effects of straw returning and nitrogen application rate on grain yield and nitrogen utilization of winter wheat. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2021.23.010
[60]
杨宪龙, 路永莉, 同延安, 林文, 梁婷. 长期施氮和秸秆还田对小麦-玉米轮作体系土壤氮素平衡的影响. 植物营养与肥料学报, 2013, 19(1): 65-73.
YANG X L, LU Y L, TONG Y A, LIN W, LIANG T. Effects of long-term N application and straw returning on N budget under wheat-maize rotation system. Journal of Plant Nutrition and Fertilizer, 2013, 19(1): 65-73. (in Chinese)
[1] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[2] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[3] LIU Miao,LIU PengZhao,SHI ZuJiao,WANG XiaoLi,WANG Rui,LI Jun. Critical Nitrogen Dilution Curve and Nitrogen Nutrition Diagnosis of Summer Maize Under Different Nitrogen and Phosphorus Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(5): 932-947.
[4] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[5] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[6] ZHAO XiaoHui,ZHANG YanYan,RONG YaSi,DUAN JianZhao,HE Li,LIU WanDai,GUO TianCai,FENG Wei. Study on Critical Nitrogen Dilution Model of Winter Wheat Spike Organs Under Different Water and Nitrogen Conditions [J]. Scientia Agricultura Sinica, 2022, 55(17): 3321-3333.
[7] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[10] XU HaoCong,YAO Bo,WANG Quan,CHEN TingTing,ZHU TieZhong,HE HaiBing,KE Jian,YOU CuiCui,WU XiaoWen,GUO ShuangShuang,WU LiQuan. Determination of Suitable Band Width for Estimating Rice Nitrogen Nutrition Index Based on Leaf Reflectance Spectra [J]. Scientia Agricultura Sinica, 2021, 54(21): 4525-4538.
[11] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[12] DING XiangPeng,LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354.
[13] ZOU WenXiu,HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun. Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize [J]. Scientia Agricultura Sinica, 2020, 53(20): 4237-4247.
[14] XUE Liang,MA ZhongMing,DU ShaoPing,FENG ShouJiang,RAN ShengBin. Effects of Application of Nitrogen on Melon Yield, Nitrogen Balance and Soil Nitrogen Accumulation Under Plastic Mulching with Drip Irrigation [J]. Scientia Agricultura Sinica, 2019, 52(4): 690-700.
[15] SiYang REN,QingSong ZHANG,TingYu LI,FuSuo ZHANG. Spatiotemporal Variation of Winter Wheat Yield and Nitrogen Management in Five Provinces of North China Plain [J]. Scientia Agricultura Sinica, 2019, 52(24): 4527-4539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!