Scientia Agricultura Sinica ›› 2024, Vol. 57 ›› Issue (6): 1102-1116.doi: 10.3864/j.issn.0578-1752.2024.06.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effect and Mechanism of Phosphate-Solubilizing Bacterial on Activating of Low-Grade Phosphate Rock Powder in Red Paddy Soil

SONG YaRong1(), CHANG DanNa2, ZHOU GuoPeng3, GAO SongJuan4, DUAN TingYu1(), CAO WeiDong2()   

  1. 1 State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems/Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs/College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020
    2 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Beijing 100081
    3 College of Resources and Environment, Anhui Agricultural University, Hefei 230036
    4 College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095
  • Received:2023-04-30 Accepted:2023-07-27 Online:2024-03-25 Published:2024-03-25
  • Contact: DUAN TingYu, CAO WeiDong

Abstract:

【Objective】 The biological utilization of phosphorus (P) in low grade phosphate rock powder (PRP) is of great significance. The study explore the effect and mechanism of activating low-grade PRP by phosphate-solubilizing bacterial (PSB) which can provide basis for improving the fertilization effect of PRP on red soil paddy soil. 【Method】 PRP with different particle sizes (0.18, 0.10 and 0.05 mm) was added to the red paddy soil collected in Hunan Province. Three treatments were set up: inoculated with Acinetobacter calcoaceticus (P1), Acinetobacter pittii (P2) and no inoculation with PBS (P0) as control. Bottles were cultured in a dark incubator at 25 ℃ for 60 days, during which different forms of P and pH were dynamically monitored. On the 60th day, the activity of organic acid, acid and alkaline phosphatase (ACP, ALP) and alkaline phosphatase gene (phoD) were determined to study the activation effect and mechanism of PSB on PRP with different particle sizes. 【Result】 Both strains of PSB could activate insoluble P, but the activation effect was not significantly different. During the whole culture period, the average available P content of three particle sizes of PRP inoculated with PSB was 13.4-14.7 mg·kg-1, which was higher than that of P0 treatment and increased by 31.1%-53.1%; The average content of available P increased by 53.1% and 47.5% after inoculation with P1 and P2 bacteria (P<0.05), respectively. The average content of Resin-Pi and NaHCO3-Pi were 13.9-16.6 mg·kg-1 and 14.9-16.5 mg·kg-1, respectively, which were higher than those without inoculation, and increased by 36.4%-78.5% and 13.7%-25.0%, respectively; the increase of average content of Resin-Pi in 0.18 mm PRP was the most obvious, which was 78.5% and 49.5%, respectively (P<0.05). Compared with P0 treatment, the increase of active P in 0.18 mm PRP treatment was the most obvious, ranging from 28.4% to 46.7%, and the decrease of stable P was 2.1%-8.0%. Compared with the P0 treatment, inoculation of PSB significantly reduced pH value by 0.18-0.35 units (P<0.05) and increased acetic acid and propionic acid content by 5.2%-13.7% and 45.9%-127.5% (P<0.05), respectively. ALP content and phoD abundance under P1 treatment increased by 6.5%-13.4% and 24.0%-98.6% (P<0.05), respectively, and ACP in P2 treatment increased by 12.8%-17.2% (P<0.05), which indicated that P1 mainly secreted ALP, while P2 mainly secreted ACP. The results of correlation analysis showed that the two PSB strains dissolved insoluble Conc.HCl-Po, Conc.HCl-Pi and NaOH-Pi by secreting acetic acid and propionic acid, dissolved insoluble Conc.HCl-Po by secreting ACP and ALP, and converted into these insoluble P to Resin-Pi and NaHCO3-Pi which promoted the turnover of P pool. The structural equation model showed that the addition of small particle size PRP and the inoculation of PSB could directly increase the soil available P content, but the inoculation of PSB had a greater effect on available P. 【Conclusion】 Inoculation of phosphate- solubilizing bacterial can promote the activation of insoluble phosphorus in phosphate rock powder with the biggest increasement of available phosphorus for particle size of 0.05 mm, and biggest increasement of active phosphorus proportion for particle size of 0.18 mm. The two phosphate-solubilizing bacteria A. calcoaceticus and A. pittii mainly secreted organic acids and phosphatases, such as acetic acid and propionic acid, activated insoluble phosphorus, increased active phosphorus content, and improved the application effect of phosphate rock powder in red paddy soil.

Key words: red soil, paddy soil, phosphate rock powder, phosphate-solubilizing bacteria, phosphorus fraction

Fig. 1

Dynamic changes of soil available phosphorus content during cultivation of phosphate-solubilizing bacteria inoculated (a-L1; b-L2; c-L3; d-P0; e-P1; f-P2) P0 represents the uninoculated control, P1 represents A. calcoaceticus, P2 represents A. pittii; L1 is a particle size 0.18 mm phosphorus power, L2 is a particle size 0.10 mm phosphorus powder, and L3 is a particle size 0.05 mm phosphorus powder. The same as below"

Fig. 2

Dynamic changes of soil microbial biomass phosphorus content during cultivation of phosphate-solubilizing bacteria inoculated (a-L1; b-L2; c-L3; d-P0; e-P1; f-P2)"

Table 1

Changes of phosphorus pool content during cultivation of phosphate-solubilizing bacteria inoculated"

培养时间
Incubation time
磷矿粉
Phosphate rock
解磷细菌
Phosphate
solubilizing
bacteria
活性磷Labile-P(mg·kg-1 中等活性磷Mod.labile-P(mg·kg-1 稳定性磷Non.labile-P(mg·kg-1
树脂磷
Resin-Pi
碳酸氢钠提取
无机磷
NaHCO3-Pi
碳酸氢钠提取
有机磷
NaHCO3-Po
氢氧化钠提取
无机磷
NaOH-Pi
氢氧化钠提取
有机磷
NaOH-Po
稀盐酸提取
无机磷
Dil.HCl-Pi
浓盐酸提取
无机磷
Conc.HCl-Pi
浓盐酸提取
有机磷
Conc.HCl-Po
残渣态磷
Residual-P
1天
1 d
L1 P0 5.9±0.6c 12.4±1.1c 15.1±1.3bc 50.4±1.5b 69.2±2.8d 334.0±11.5c 334.8±5.1b 100.5±17.6ab 148.3±10.7a
P1 11.3±0.5a 15.4±1.3ab 18.1±1.5abc 54.6±2.1a 73.0±2.5bcd 404.0±4.2ab 362.0±1.3ab 88.0±11.9ab 136.4±2.6ab
P2 8.6±0.8b 12.9±1.1c 21.1±0.8a 54.3±1.4ab 84.4±3.5a 366.4±15.2bc 342.0±18.2ab 92.4±16.8ab 136.6±10.3ab
L2 P0 6.7±0.3c 12.3±0.6c 15.4±0.7bc 51.7±1.0ab 71.5±1.9cd 424.7±14.8a 349.0±11.0ab 108.6±5.2a 126.9±10.5ab
P1 11.5±0.8a 17.1±0.3a 14.9±1.9c 52.1±2.0ab 77.0±0.7abcd 420.5±20.4a 334.5±32.4b 75.8±9.5b 131.5±3.0ab
P2 11.3±0.9a 14.1±1.0bc 18.4±0.4ab 52.8±1.6ab 81.0±7.0ab 436.5±17.9a 371.5±0.5a 87.1±5.4ab 118.6±5.2b
L3 P0 6.5±0.2c 13.5±0.5bc 15.5±1.1bc 51.6±1.7ab 75.0±0.3bcd 412.0±6.2a 355.0±8.5ab 94.5±8.7ab 120.6±18.8ab
P1 11.4±0.5a 16.7±1.0a 16.5±0.3bc 53.2±2.6ab 76.9±1.5abcd 431.4±11.5a 345.5±14.5ab 79.6±5.9b 126.9±8.8ab
P2 10.2±0.1ab 13.7±0.4bc 18.3±1.1ab 53.0±0.7ab 79.8±4.4abc 420.2±20.5a 357.7±3.3ab 83.5±13.7ab 139.0±18.1ab
30天
30 d
L1 P0 8.0±0.3d 12.8±1.1cd 14.7±0.7ab 52.2±0.6ab 56.8±4.7b 302.5±18.2bf 353.2±10.8ab 86.8±2.7a 141.6±15.8a
P1 18.0±0.7a 14.3±0.4cd 16.7±0.2a 52.8±0.6ab 65.0±1.9ab 326.3±16.0ef 343.0±3.0b 84.2±10.6a 121.5±6.6a
P2 15.5±0.2b 14.7±0.7c 15.9±0.9ab 54.1±1.6a 68.6±0.1a 349.6±7.3de 339.0±0.9b 78.1±4.2a 128.6±6.7a
L2 P0 12.5±0.3c 12.0±0.8d 12.7±1.0b 47.8±2.4c 56.4±3.1b 390.6±3.9bc 363.0±10.0ab 94.6±5.2a 123.2±10.8a
P1 18.4±1.3a 17.6±0.6a 15.8±2.0ab 49.2±0.9bc 61.8±3.3ab 355.6±5.2cde 332.5±8.3b 77.6±3.3a 131.0±17.4a
P2 18.1±0.9a 17.4±0.3bc 15.5±1.1a 52.2±0.5abc 67.0±0.9ab 403.8±30.3bcd 345.8±7.8b 73.1±13.3a 137.9±9.8a
L3 P0 13.1±0.8c 13.2±0.3cd 16.0±0.7a 47.4±1.0c 59.4±5.7ab 437.3±7.8a 377.0±4.1a 97.3±6.0a 126.7±8.8a
P1 18.1±1.0a 15.1±0.8ab 17.9±1.2ab 50.4±0.9ab 64.2±2.1a 377.0±20.7ab 349.3±0.9ab 87.5±4.8a 134.3±10.6a
P2 17.6±0.6a 15.1±0.4bc 17.9±0.9a 51.0±1.2abc 62.7±2.8ab 390.7±8.9bc 339.5±12.1b 78.1±1.9a 118.8±4.8a
60天
60 d
L1 P0 14.1±0.2f 14.1±0.9c 10.8±1.4c 49.0±0.5c 63.0±2.6b 270.2±5.9c 360.8±1.9abc 84.5±3.9abc 147.7±2.1ab
P1 20.6±0.8a 17.3±0.3ab 18.9±0.4a 50.7±1.2c 64.2±2.2b 289.3±4.5c 332.0±10.0cd 58.8±2.6d 154.3±4.6a
P2 17.7±0.3cd 17.1±0.5ab 15.2±1.9a 51.8±0.8ab 67.4±2.8ab 251.9±19.3c 323.0±14.7d 74.9±4.8cd 150.2±9.0bcd
L2 P0 14.7±0.4ef 15.2±0.4bc 14.7±0.2b 55.1±1.3ab 64.3±3.0b 393.2±8.8ab 346.5±4.3abcd 107.2±14.3a 138.1±8.6abc
P1 18.4±0.6bc 14.0±0.6c 19.0±1.1a 57.7±1.2a 68.6±3.8ab 435.0±12.8a 347.0±4.4abcd 92.5±6.9ab 113.0±7.3cd
P2 19.8±0.3ab 13.9±1.0c 18.6±0.8a 58.3±0.8a 68.0±4.6ab 405.9±6.7ab 330.0±10.9cd 66.0±11.9cd 120.1±9.9bcd
L3 P0 15.9±0.3de 12.9±1.1c 14.0±1.1bc 52.0±2.2bc 60.9±4.3b 428.5±6.7ab 371.0±5.0a 86.1±4.3abc 98.8±2.0d
P1 20.1±1.1ab 17.7±1.4a 15.3±1.2b 49.7±0.7c 64.2±2.2b 423.1±4.7ab 364.0±1.3ab 79.6±8.5bcd 103.7±12.7d
P2 20.6±0.5a 17.7±1.5ab 16.7±1.9ab 48.2±2.4c 73.8±4.0a 411.7±8.4ab 337.0±18.7bcd 62.1±9.3cd 116.5±5.9cd

Fig. 3

Proportion of phosphorus pool during cultivation of phosphate-solubilizing bacteria inoculated (a-L1; b-L2; c-L3)"

Fig. 4

Relative change ratio of phosphorus pool during cultivation of phosphate-solubilizing bacteria inoculated (a-L1; b-L2; c-L3)"

Fig. 5

Dynamic changes of soil pH during cultivation of phosphate-solubilizing bacteria inoculated (a-L1; b-L2; c-L3; d-P0; e-P1; f-P2)"

Fig. 6

Effect of 60 days inoculation of phosphate-solubilizing bacteria on acetic acid (a), oxalic acid (b), butyric acid (c), and propionic acid (d) contents in soil"

Fig. 7

Effect of 60 days inoculation of phosphate-solubilizing bacteria on alkaline phosphatase (a) and acid phosphatase (b) activities in soil"

Fig. 8

Effects of phosphate-solubilizing bacteria inoculation on phoD gene abundance"

Fig. 9

Correlation analysis of phosphorus pool components with organic acid (a) and phosphatase (b)"

Fig. 10

Structural equation model of phosphate solubilizing bacteria and particle size of phosphate rock powder affecting available phosphorus content (a) and total standardized effect of available phosphorus (b) The numbers within boxes show the explained percentages of the variance by the predictor variables. The solid and dashed arrows indicate significant and nonsignificant relationships, respectively. The grey and black arrows indicate positive and negative relationships, respectively. The numbers above the arrows denote the standardized path coefficients (*P<0.05, **P<0.01, ***P<0.001), the magnitudes of which are proportional to the thickness of the arrows. AP: Available phosphorus, PRP: Phosphate powder particle size, PSB: Phosphorus solublying bacteria, OA: Organic acids, Enzyme: Phosphatase, SP: Soil physicochemical properties, Labile-P: Labile phosphorus, Mod.labile-P: Moderately labile phosphorus, Non.labile-P: Stable phosphorus"

[1]
王一锟, 蔡泽江, 冯固. 不同磷肥调控措施下红壤磷素有效性和利用率的变化. 土壤学报, 2023, 60(1): 235-246.
WANG Y K, CAI Z J, FENG G. Effects of different phosphorus application techniques on phosphorus availability in a rape system in a red soil. Acta Pedologica Sinica, 2023, 60(1): 235-246. (in Chinese)
[2]
房娜娜, 刘国栋, 杨泽, 依艳丽, 戴慧敏, 肖红叶. 中、低品位磷矿的机械化学活化技术及效果研究进展. 土壤通报, 2021, 52(5): 1236-1243.
FANG N N, LIU G D, YANG Z, YI Y L, DAI H M, XIAO H Y. Research progress on mechanochemical activation of medium and low-grade phosphorite. Chinese Journal of Soil Science, 2021, 52(5): 1236-1243. (in Chinese)
[3]
TAN Y X. Process simulation of the influence of phosphate rock impurities on the production index of superphosphate. IOP Conference Series: Earth and Environmental Science, 2021, 772(1): 012047.
[4]
房娜娜. 机械活化磷矿粉的磷释放特征及其机理研究[D]. 沈阳: 沈阳农业大学, 2020.
FANG N N. Study on phosphorus release characteristics and mechanism of mechanically activated phosphate rock powder[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese)
[5]
樊蕾, 方晓峰. 我国中低品位磷矿利用技术现状及前景展望. 化工矿物与加工, 2015, 44(8): 42-46.
FAN L, FANG X F. Status and prospect of medium and low grade phosphate rock utilization technology in China. Industrial Minerals & Processing, 2015, 44(8): 42-46. (in Chinese)
[6]
陶俊法. 云南磷肥工业展望. 磷肥与复肥, 2004, 19(5): 1-3, 7.
TAO J F. Outlook for the phosphate fertilizer industry of Yunnan Province. Phosphate & Compound Fertilizer, 2004, 19(5): 1-3, 7. (in Chinese)
[7]
薛亚男, 万亚珍, 梅丹丹, 付文杰, 张文辉. 不同类型解磷剂对施入磷矿粉土壤有效磷含量的影响. 西南农业学报, 2021, 34(5): 1029-1032.
XUE Y N, WAN Y Z, MEI D D, FU W J, ZHANG W H. Effect of different types of phosphorus dissolving agent on content of available phosphorus in soil applied phosphate rock. Southwest China Journal of Agricultural Sciences, 2021, 34(5): 1029-1032. (in Chinese)
[8]
李雪梅, 石元亮. 普通磷矿粉与超细磷矿粉在不同有机酸中的溶解特性. 吉林农业科学, 2014, 39(5): 58-61, 89.
LI X M, SHI Y L. Dissolution characteristic of ordinary and ultra-fine ground phosphate rock in different organic acids. Journal of Jilin Agricultural Sciences, 2014, 39(5): 58-61, 89. (in Chinese)
[9]
王晨, 高宏, 应媛芳, 叶峰. 机械化学法活化磷矿的机理研究. 硅酸盐通报, 2018, 37(12): 4007-4011.
WANG C, GAO H, YING Y F, YE F. Study on the mechanism of mechanochemical activited phosphate. Bulletin of the Chinese Ceramic Society, 2018, 37(12): 4007-4011. (in Chinese)
[10]
EVANS J, PRICE A. Influence of rates of reactive phosphate rock and sulphur on potentially available phosphorous in organically managed soils in the south-eastern near-Mediterranean cropping region of Australia. Nutrient Cycling in Agroecosystems, 2009, 84(2): 105-118.

doi: 10.1007/s10705-008-9230-y
[11]
赵鑫, 蔡慢弟, 董倩倩, 李云驹, 申建波. 中低品位磷矿资源高效利用机制与途径研究进展. 植物营养与肥料学报, 2018, 24(4): 1121-1130.
ZHAO X, CAI M D, DONG Q Q, LI Y J, SHEN J B. Advances of mechanisms and technology pathway of efficient utilization of medium-low grade phosphate rock resources. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1121-1130. (in Chinese)
[12]
王光华, 赵英, 周德瑞, 杨谦. 解磷菌的研究现状与展望. 生态环境, 2003, 12(1): 96-101.
WANG G H, ZHAO Y, ZHOU D R, YANG Q. Review of phosphate-solubilizing microorganisms. Ecology and Environmental Sciences, 2003, 12(1): 96-101. (in Chinese)
[13]
赵为容. 小麦亲和性根际解磷菌解磷机理及促生效果研究[D]. 合肥: 安徽农业大学, 2018.
ZHAO W R. Study on phosphate-solubilizing mechanism and growth- promoting effect of phosphate-solubilizing bacteria in wheat affinity rhizosphere[D]. Hefei: Anhui Agricultural University, 2018. (in Chinese)
[14]
魏喜喜, 杨智鹏, 马路婷, 张梅, 禄彩丽, 宋健, 刘伟锋, 李建贵. 枣树根际解磷菌P7的溶磷特性. 经济林研究, 2021, 39(3): 122-133.
WEI X X, YANG Z P, MA L T, ZHANG M, LU C L, SONG J, LIU W F, LI J G. Characteristics of phosphorus-solubilizing bacteria P7 in the rhizosphere of jujube trees. Non-Wood Forest Research, 2021, 39(3): 122-133. (in Chinese)
[15]
CHEN Y P, REKHA P D, ARUN A B, SHEN F T, LAI W A, YOUNG C C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34(1): 33-41.

doi: 10.1016/j.apsoil.2005.12.002
[16]
林启美, 赵海英, 赵小蓉. 溶磷微生物对不同磷矿粉的溶解能力. 中国农业科学, 2002, 35(10): 1232-1235.
LIN Q M, ZHAO H Y, ZHAO X R. Solubility of phosphate- solubilizing microorganisms to different phosphate rock powders. Scientia Agricultura Sinica, 2002, 35(10): 1232-1235. (in Chinese)
[17]
SAHU S N, JANA B B. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering, 2000, 15(1/2): 27-39.

doi: 10.1016/S0925-8574(99)00013-0
[18]
林启美, 赵小蓉, 孙焱鑫, 姚军. 四种不同生态系统的土壤解磷细菌数量及种群分布. 土壤与环境, 2000, 9(1): 34-37.
LIN Q M, ZHAO X R, SUN Y X, YAO J. Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 2000, 9(1): 34-37. (in Chinese)
[19]
王苗. 机械化学生物活化条件下磷矿粉释磷特征与机理研究[D]. 淮南: 安徽理工大学, 2022.
WANG M. Study on characteristics and mechanism of phosphorus release from phosphate rock powder under mechanochemical biological activation[D]. Huainan: Anhui University of Science & Technology, 2022. (in Chinese)
[20]
李文, 王陶. 解磷菌JL-1对磷矿粉降解性能的研究. 生物技术通报, 2020, 36(8): 34-44.

doi: 10.13560/j.cnki.biotech.bull.1985.2019-1054
LI W, WANG T. The characteristics of phosphate solubilization of rock phosphate by phosphate-solubilizing bacterium JL-1. Biotechnology Bulletin, 2020, 36(8): 34-44. (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2019-1054
[21]
LIU Y H, BAI S H, WANG J W, HU D N, WU R H, ZHANG W Y, ZHANG M Y. Strain Klebsiella ZP-2 inoculation activating soil nutrient supply and altering soil phosphorus cycling. Journal of Soils and Sediments, 2022, 22(8): 2146-2157.

doi: 10.1007/s11368-022-03221-z
[22]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[23]
MOIR J, TIESSEN H. Characterization of available P by sequential extraction//Soil Sampling and Methods of Analysis. 2nd ed. Leiden, Netherlands: CRC Press, 2007.
[24]
DICK R P. Methods of soil enzymology. Madison: Soil Science Society of America, 2011: 163-168.
[25]
关强, 蒲瑶瑶, 张欣, 王媛媛, 李大明, 李辉信, 胡锋, 焦加国, 管晓进. 长期施肥对水稻根系有机酸分泌和土壤有机碳组分的影响. 土壤, 2018, 50(1): 115-121.
GUAN Q, PU Y Y, ZHANG X, WANG Y Y, LI D M, LI H X, HU F, JIAO J G, GUAN X J. Effects of long-term fertilization on organic acids in root exudates and SOC components of red paddy soils. Soils, 2018, 50(1): 115-121. (in Chinese)
[26]
CHEN X D, JIANG N, CHEN Z H, TIAN J H, SUN N, XU M G, CHEN L J. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Applied Soil Ecology, 2017, 119: 197-204.

doi: 10.1016/j.apsoil.2017.06.019
[27]
赵夫涛, 盖国胜, 井大炜, 杨玉芬, 董元杰, 刘春生. 磷矿粉的超微细活化及磷释放动态研究. 植物营养与肥料学报, 2009, 15(2): 474-477.
ZHAO F T, GAI G S, JING D W, YANG Y F, DONG Y J, LIU C S. Ultrafine grinding activations of phosphate rock and their dynamic phosphorus releases. Plant Nutrition and Fertilizer Science, 2009, 15(2): 474-477. (in Chinese)
[28]
王薇, 张晓松, 孟春玲, 刘智强, 钱朗, 房娜娜, 吴春华. 施用超微细磷矿粉对玉米生长发育及产量的影响. 黑龙江农业科学, 2017(6): 27-32.
WANG W, ZHANG X S, MENG C L, LIU Z Q, QIAN L, FANG N N, WU C H. Effects of superfine phosphorite powder application on growth and yield of maize. Heilongjiang Agricultural Sciences, 2017(6): 27-32. (in Chinese)
[29]
穆淑红, 吕乐福, 何振全, 李彦华, 李生太, 刘春生. 微晶化磷矿粉在不同类型土壤上的释磷效应. 安徽农业科学, 2015, 43(3): 64-66.
MU S H, L F, HE Z Q, LI Y H, LI S T, LIU C S. Fertilizer research of micro-crystalline phosphate rock powder on different types of soil. Journal of Anhui Agricultural Sciences, 2015, 43(3): 64-66. (in Chinese)
[30]
张青, 王煌平, 孔庆波, 栗方亮, 罗涛. 不同生育期施加超细磷矿粉对水稻吸收和转运Pb、Cd的影响. 农业环境科学学报, 2020, 39(1): 45-54.
ZHANG Q, WANG H P, KONG Q B, LI F L, LUO T. Effects of superfine phosphate rock powders on Pb and Cd uptake and transportation in rice at different growth stages. Journal of Agro- Environment Science, 2020, 39(1): 45-54. (in Chinese)
[31]
王箫璇, 张敏, 张鑫尧, 魏鹏, 柴如山, 张朝春, 张亮亮, 罗来超, 郜红建. 不同磷肥对砂姜黑土和红壤磷库转化及冬小麦磷素吸收利用的影响. 中国农业科学, 2023, 56(6): 1113-1126. doi: 10.3864/j.issn.0578-1752.2023.06.008.
WANG X X, ZHANG M, ZHANG X Y, WEI P, CHAI R S, ZHANG C C, ZHANG L L, LUO L C, GAO H J. Effects of different varieties of phosphate fertilizer application on soil phosphorus transformation and phosphorus uptake and utilization of winter wheat. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126. doi: 10.3864/j.issn.0578-1752.2023.06.008. (in Chinese)
[32]
孙锐璞. 长期不同管理塿土耕层土壤磷组分的变化[D]. 杨凌: 西北农林科技大学, 2015.
SUN R P. Changes in phosphorus fractions in the plough layer of loess soil under long-term contrasting soil management regimes[D]. Yangling: Northwest A & F University, 2015. (in Chinese)
[33]
LIU Y H, BAI S H, WANG D J, ZHANG L, HU D N, WEN J, ZHANG W Y, ZHANG M Y. Relationships among phosphatase activities, functional genes and soil properties following amendment with the bacterium Burkholderia sp. ZP-4. Land Degradation & Development, 2022, 33(17): 3427-3437.

doi: 10.1002/ldr.v33.17
[34]
杜雷, 王素萍, 陈钢, 洪娟, 黄翔, 张利红, 叶莉霞, 练志诚, 张贵友. 一株高效解磷细菌的筛选、鉴定及其溶磷能力的研究. 中国土壤与肥料, 2017(3): 136-141.
DU L, WANG S P, CHEN G, HONG J, HUANG X, ZHANG L H, YE L X, LIAN Z C, ZHANG G Y. Isolation and identidication of efficient phosphate-solubilizing bacterial strain and its phosphate-solubilizing capacity. Soil and Fertilizer Sciences in China, 2017(3): 136-141. (in Chinese)
[35]
黄伟. 红壤中溶磷菌的筛选及溶磷特性的研究[D]. 南京: 南京农业大学, 2006.
HUANG W. Screening of phosphate-solubilizing bacteria in red soil and study on phosphorus-solubilizing characteristics[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese)
[36]
介晓磊, 李有田, 庞荣丽, 刘世亮, 化党领. 低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响. 土壤通报, 2005, 36(6): 856-860.
JIE X L, LI Y T, PANG R L, LIU S L, HUA D L. Effect of low molecular weight organic acids on transformation and availability of phosphates in calcareous soil. Chinese Journal of Soil Science, 2005, 36(6): 856-860. (in Chinese)
[37]
廖新荣, 梁嘉伟, 梁善, 王荣萍, 詹振寿. 不同种类小分子有机酸对砖红壤磷素形态转化的影响. 华南农业大学学报, 2017, 38(5): 30-35.
LIAO X R, LIANG J W, LIANG S, WANG R P, ZHAN Z S. Effects of various low-molecular-weight organic acids on phosphorus transformation in lateritic soil. Journal of South China Agricultural University, 2017, 38(5): 30-35. (in Chinese)
[38]
王树起, 韩晓增, 严君, 李晓慧, 乔云发. 低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响. 生态学杂志, 2009, 28(8): 1550-1554.
WANG S Q, HAN X Z, YAN J, LI X H, QIAO Y F. Effects of low molecular weight organic acids on P accumulation in soybean (Glycine max L.) and inorganic P form transformation in soil. Chinese Journal of Ecology, 2009, 28(8): 1550-1554. (in Chinese)
[39]
刘胜亮, 朱舒亮, 杨越, 李静, 李建贵. 红枣根际解磷菌对土壤有机酸及速效磷含量的影响. 江苏农业科学, 2018, 46(17): 130-133.
LIU S L, ZHU S L, YANG Y, LI J, LI J G. Effects of phosphate- solubilizing bacteria in jujube rhizosphere on soil organic acids and available phosphorus content. Jiangsu Agricultural Sciences, 2018, 46(17): 130-133. (in Chinese)
[40]
马凯, 王效昌, 谢嘉慧, 高丽. 沉积物解磷菌的研究进展:分布、解磷能力及功能基因. 农业资源与环境学报, 2023, 40(2): 280-290.
MA K, WANG X C, XIE J H, GAO L. Research progress of phosphate-solubilizing bacteria in sediments: distribution, phosphate- solubilizing ability, and functional genes. Journal of Agricultural Resources and Environment, 2023, 40(2): 280-290. (in Chinese)
[41]
MARRA L M, SOARES C R F S, DE OLIVEIRA S M, FERREIRA P A A, SOARES B L, DE FRÁGUAS CARVALH O R, DE LIMA J M, DE SOUZA MOREIRA F M. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil, 2012, 357(1): 289-307.

doi: 10.1007/s11104-012-1157-z
[42]
WANG Y Z, CHEN X, WHALEN J K, CAO Y H, QUAN Z, LU C Y, SHI Y. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils. Journal of Plant Nutrition and Soil Science, 2015, 178(4): 555-566.

doi: 10.1002/jpln.v178.4
[43]
KAUR G, REDDY M S. Role of phosphate-solubilizing bacteria in improving the soil fertility and crop productivity in organic farming. Archives of Agronomy and Soil Science, 2014, 60(4): 549-564.

doi: 10.1080/03650340.2013.817667
[44]
李豆豆, 尚双华, 韩巍, 房娜娜, 依艳丽. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性. 应用生态学报, 2019, 30(7): 2384-2392.

doi: 10.13287/j.1001-9332.201907.033
LI D D, SHANG S H, HAN W, FANG N N, YI Y L. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus. Chinese Journal of Applied Ecology, 2019, 30(7): 2384-2392. (in Chinese)
[45]
ZHENG M M, WANG C, LI W X, GUO L, CAI Z J, WANG B R, CHEN J, SHEN R F. Changes of acid and alkaline phosphatase activities in long-term chemical fertilization are driven by the similar soil properties and associated microbial community composition in acidic soil. European Journal of Soil Biology, 2021, 104: 103312.

doi: 10.1016/j.ejsobi.2021.103312
[46]
TAN H, BARRET M, MOOIJ M J, RICE O, MORRISSEY J P, DOBSON A, GRIFFITHS B, O’GARA F. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49(6): 661-672.

doi: 10.1007/s00374-012-0755-5
[47]
HE D L, WAN W J. Phosphate-solubilizing bacterium Acinetobacter pittii gp-1 affects rhizosphere bacterial community to alleviate soil phosphorus limitation for growth of soybean (Glycine max). Frontiers in Microbiology, 2021, 12: 2744.
[1] QIU HaiHua, KUAI LeiXin, ZHANG Lu, LIU LiSheng, WEN ShiLin, CAI ZeJiang. Characteristics of Acidity and Nutrient Changes in Red Soil After Conversion of Paddy Field to Dry Land and Vegetable Field [J]. Scientia Agricultura Sinica, 2024, 57(3): 525-538.
[2] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[3] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[4] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[5] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[6] YIN ZeRun, SHENG Hao, LIU Xin, XIAO HuaCui, ZHANG LiNa, LI YuanZhao, TIAN Yu, ZHOU Ping. Response of Paddy Soil Health to Continuous Amendments of Organic Fertilizer and Lime Separately Under Double-Cropping Rice Fields [J]. Scientia Agricultura Sinica, 2023, 56(19): 3829-3842.
[7] SHEN KaiQin, LIU Qian, YANG GuoTao, CHEN Hong, LIANG Cheng, LAI Peng, LI Chong, WANG XueChun, HU YunGao. Effects of Phosphorus Reduction on Soil Phosphorus Pool Composition and Phosphorus Solubilizing Microorganisms [J]. Scientia Agricultura Sinica, 2023, 56(15): 2941-2953.
[8] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[9] GAO JiaRui, FANG ShengZhi, ZHANG YuLing, AN Jing, YU Na, ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] QIN ZhenHan,WANG Qiong,ZHANG NaiYu,JIN YuWen,ZHANG ShuXiang. Characteristics of Phosphorus Fractions and Its Response to Soil Chemical Properties Under the Threshold Region of Olsen P in Black Soil [J]. Scientia Agricultura Sinica, 2022, 55(22): 4419-4432.
[11] LI ShuaiShuai, GUO JunJie, LIU WenBo, HAN ChunLong, JIA HaiFei, LING Ning, GUO ShiWei. Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies [J]. Scientia Agricultura Sinica, 2022, 55(1): 96-110.
[12] JI BingJie,LI WenHai,XU MengYang,NIU JinCan,ZHANG ShuLan,YANG XueYun. Varying Synthetic Phosphorus Varieties Lead to Different Fractions in Calcareous Soil [J]. Scientia Agricultura Sinica, 2021, 54(12): 2581-2594.
[13] Kai LIU,Jia LIU,XiaoFen CHEN,WeiTao LI,ChunYu JIANG,Meng WU,JianBo FAN,ZhongPei LI,Ming LIU. Seasonal Variation and Differences of Microbial Biomass Phosphorus in Paddy Soils Under Long-Term Application of Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(7): 1411-1418.
[14] XiaoLei LI,YuJun ZHANG,FengMin SHEN,GuiYing JIANG,Fang LIU,KaiLou LIU,ShiLiang LIU. The Effects of Long-Term Fertilization on the Labile Organic Matter and Carbon Pool Management Index in Different Soil Layers in Red Soil [J]. Scientia Agricultura Sinica, 2020, 53(6): 1189-1201.
[15] OU HuiPing,ZHOU LiuQiang,HUANG JinSheng,XIE RuLin,ZHU XiaoHui,PENG JiaYu,ZENG Yan,MO ZongBiao,TAN HongWei,YE ShengQin. Change of Phosphorus in Lateritic Red Soil and Its Effect on Sugarcane Yield and Phosphorus Loss in Runoff Under 11-Year Continuous Application of Excessive Phosphorus Fertilizer [J]. Scientia Agricultura Sinica, 2020, 53(22): 4623-4633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!