Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (19): 3829-3842.doi: 10.3864/j.issn.0578-1752.2023.19.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Paddy Soil Health to Continuous Amendments of Organic Fertilizer and Lime Separately Under Double-Cropping Rice Fields

YIN ZeRun1(), SHENG Hao1(), LIU Xin1, XIAO HuaCui1, ZHANG LiNa1, LI YuanZhao1, TIAN Yu1, ZHOU Ping2()   

  1. 1 College of Resources, Hunan Agricultural University, Changsha 410128
    2 Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125
  • Received:2022-11-10 Accepted:2023-02-14 Online:2023-10-01 Published:2023-10-08
  • Contact: SHENG Hao, ZHOU Ping

Abstract:

【Objective】 The aim of this study was to investigate the mechanism of the comprehensive soil health of double-cropping rice fields in response to continuous organic fertilizer and quick lime amendments, and to verify the current major soil health assessment methods in terms of the adaptability, sensitivity, and their sensitivity indicators in paddy soils. 【Method】 Here the double-cropping rice fields in the middle and lower reaches of the Yangtze River watershed were selected. Based on the principles of experimental design, the control and treatment fields were set up. It aimed at illuminating the changes in topsoil physical, chemical, and biological indicators (24 indicators) after 6-year biannual continuous organic and quick lime amendments, and assessing the holistic soil health index using the Cornell Soil Health Assessment (CASH), the Haney Soil Health Test (HSHT), and the principal component analysis combined with minimal data set construction (MDS) methods. 【Result】 Compared with the control treatment (CK), 6-year continuous organic amendment treatment reduced the soil bulk density, penetration resistance, and microaggregates (<0.25 mm) significantly by 14%, 25%, and 32%, respectively; however, which rose the soil aggregate (0.5-1 mm), ammonium N, activated C, water extractable organic C and N, respiration rate, and autoclaved-citrate extractable protein significantly by 100%, 37%, 54%, 21%, 44%, 59%, and 8%, respectively; in addition, the minimum data set (MDS), comprehensive assessment of soil health (CASH), 2015, 2018, and Ward Laboratory (SHS) versions of Haney soil health test (HSHT) indexes were significantly enhanced by 75%, 20%, 42%, 95%, and 55% under 6-year continuous organic amendment treatment than that under CK, respectively (P<0.05). After the 6-year continuous liming, the soil penetration resistance, microaggregates, water extractable organic N, and pH were significantly increased by 44%, 22%, 61%, and 0.57 units than that under CK, respectively; whereas 0.5-1 mm soil aggregates, available Zn, and respiration decreased significantly by 39%, 14%, and 52% under 6-year continuous organic amendment treatment than that under CK, respectively; meanwhile, the MDS, CASH and SHS HSHT indexes were significantly decreased by 59%, 15% and 47%, respectively. 【Conclusion】 The 6-year continuous biannual organic and liming amendments separately exerted positive and negative effect on the paddy soil health, and the soil respiration rate sensitively indicated the paddy soil health. However, the soil health index cannot reflect the change in soil Cd accumulation and its phyto-availability, and the assessment tools for paddy soil with excess Cd concentration remained to be further developed.

Key words: paddy soil, soil health, soil properties, soil respiration, organic fertilizer, lime

Table 1

Initial physiochemical properties of 0-15 cm topsoil before treatment in the studied paddy sites"

容重
Bulk density
(g·cm-3)
pH 土壤有机质
Soil organic matter (g·kg-1)
全氮
Total N
(g·kg-1)
全磷
Total P
(g·kg-1)
全钾
Total K
(g·kg-1)
总镉
Total Cd
(mg·kg-1)
有机肥-对照 Organic fertilizer-CK 1.03 5.53 33.48 2.04 0.54 16.25 0.82
石灰-对照 Lime-CK 0.95 5.29 36.65 2.06 0.60 17.30 0.85

Table 2

Soil physical properties in 6-year continuous amendments of organic fertilizer and lime separately in double-cropping rice fields"

处理
Treatment
容重
Bulk density
(g·cm-3)
有效含水量
Available water capacity (g·g-1)
紧实度
Soil hardness
(kg·cm-2)
土壤团聚体组分 Soil aggregate fractions (%)
12 mm 0.51 mm 0.250.5 mm <0.25 mm
有机肥对照
Organic fertilizer-CK
1.05±0.16a 0.24±0.04a 12.2±1.6a 12.8±5.3a 17.1±5.5b 24.4±6.4b 45.7±10.0a
有机肥
Organic fertilizer
0.90±0.09b 0.25±0.05a 9.2±1.8b 13.2±4.2a 25.9±5.5a 26.5±5.9a 34.5±10.2b
石灰对照 Lime-CK 0.93±0.06a 0.24±0.06a 10.2±2.3b 17.3±1.9a 27.6±5.8a 18.2±5.3a 36.9±3.1b
石灰 Lime 0.98±0.13a 0.20±0.06a 14.7±2.2a 16.3±6.3a 16.8±2.7b 22.0±8.1a 45.0±2.2a

Table 3

Soil chemical properties in 6-year continuous amendments of organic fertilizer, and lime separately in double-cropping rice fields"

处理
Treatment
pH 铵态氮
Ammonium N
(mg·kg-1)
有效磷
Olsen-P
(mg·kg-1)
速效钾
Extractable K
(mg·kg-1)
交换态镁
Exchangeable Mg (mg·kg-1)
有效态锌
Available Zn
(mg·kg-1)
有效态铁
Available Fe
(mg·kg-1)
有效态锰
Available Mn
(mg·kg-1)
有机肥对照
Organic fertilizer-CK
5.5±0.1b 11.9±1.5b 30.8±4.3a 109±20a 186±32a 3.9±1.4a 108±12a 15.1±1.3a
有机肥
Organic fertilizer
5.7±0.2a 16.2±2.7a 29.4±6.5a 113±40a 175±32a 4.1±1.6a 101±9a 18.2±2.8a
石灰对照 Lime-CK 5.7±0.1b 9.8±3.1a 27.9±6.5b 114±29a 176±41a 3.9±0.3a 118±9a 9.0±3.8a
石灰 Lime 6.2±0.2a 11.9±2.9a 39.1±4.7a 115±31a 179±38a 3.4±0.2b 105±22a 10.8±2.8a

Fig. 1

Soil total Cd, DTPA-Cd, and exchangeable Cd concentrations in 6-year continuous amendments of organic fertilizer and lime separately in double-cropping rice fields"

Fig. 2

Soil biological properties in 6-year continuous amendments of organic fertilizer and lime separately in double-cropping rice fields"

Table 4

Load matrix, Norm value, and principal component factor screening of soil health impact factors"

指标
Index
PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 分组
Groups
Norm 最小数据集
Minimum data set
物理指标 Physical indicator
紧实度 Penetration resistance 0.51 0.56 0.21 -0.36 0.30 -0.07 2 0.00
有效含水量 Available water capacity 0.89 -0.09 -0.27 0.16 0.10 -0.05 1 2.45
容重 Bulk density 0.77 0.45 0.19 -0.02 0.31 -0.07 1 2.34
水稳性团聚体 Wet aggregate stability
1—2 mm 0.33 -0.56 -0.07 0.60 0.16 0.14 4 1.83
0.5—1 mm 0.46 0.12 0.56 0.65 0.06 -0.15 4 1.95 是 Yes
0.25—0.5 mm 0.24 0.69 -0.36 -0.51 -0.12 0.06 2 2.00
<0.25 mm 0.64 0.61 0.25 0.24 0.09 -0.04 1 2.28
化学指标 Chemical indicator
pH -0.57 -0.01 -0.53 0.33 0.32 -0.32 1 1.99
铵态氮 Ammonium N 0.10 0.74 -0.23 -0.07 -0.40 0.16 2 2.05
有效磷 Olsen-P 0.24 -0.38 -0.65 0.18 -0.01 0.38 3 1.76
速效钾 Extractable K -0.52 0.58 0.04 0.21 0.13 0.20 2 1.96
有效态锌 Available Zn 0.81 0.25 -0.20 -0.19 0.15 0.37 1 2.34
交换态镁 Exchangeable Mg -0.80 0.38 0.27 0.10 0.09 0.35 1 2.40
有效态铁 Available Fe -0.08 0.16 0.35 0.39 0.46 0.67 6 1.43 是 Yes
有效态锰 Available Mn 0.19 -0.41 0.55 0.19 -0.39 -0.12 3 1.63
污染指标 Pollution indicator
总镉Total Cd -0.63 0.14 0.69 -0.10 0.01 0.15 3 2.19
DTPA浸提镉 DTPA-Cd -0.78 0.56 0.06 0.06 -0.06 0.14 1 2.44
交换态镉 Exchangeable Cd -0.53 0.57 -0.31 0.09 0.37 -0.31 2 2.11
生物学指标 Biological indicator
土壤有机质 Soil organic matter 0.92 0.09 -0.02 -0.12 0.12 0.04 1 2.46 是 Yes
活性有机碳 Soil active organic C 0.43 0.82 -0.23 0.37 0.11 -0.16 2 2.19 是 Yes
水溶性有机碳 Water extractable organic C -0.27 0.65 -0.32 0.29 -0.49 -0.08 2 1.93
水溶性有机氮 Water extractable organic N -0.04 0.15 -0.70 0.58 -0.23 0.01 3 1.76
ACE蛋白 Autoclaved citrate extractable protein 0.51 0.18 0.27 0.18 -0.71 0.25 5 1.83 是 Yes
土壤呼吸 Soil respiration 0.09 0.39 0.74 0.24 -0.06 -0.36 3 1.82 是 Yes
特征值 Eigenvalue 7.08 5.14 3.85 2.36 1.86 1.46
贡献率 Contribution rate(%) 29.50 21.44 16.03 9.84 7.75 6.10
累积贡献率 Cumulative Contribution rate(%) 29.50 50.93 66.96 76.80 84.55 90.65

Fig. 3

Correlation coefficients between soil health indicators"

Fig. 4

MDS and CASH soil health index in 6-year continuous amendments of organic fertilizer and lime separately in double- cropping rice fields"

Fig. 5

Haney soil health index in 6-year continuous amendments of organic fertilizer and lime separately in double-cropping rice fields"

Fig. 6

Heat map of correlation coefficients between paddy soil health indices and soil physical, chemical, and biological properties"

Fig. 7

Sensitivity index (SI) of soil properties and soil health in response to 6-year continuous amendments of organic fertilizer, and lime separately in double-cropping rice fields"

[1]
张桃林. 守护耕地土壤健康支撑农业高质量发展. 土壤, 2021, 53(1): 1-4.
ZHANG T L. Protecting soil health of cultivated land to promote high-quality development of agriculture in China. Soils, 2021, 53(1): 1-4. (in Chinese)
[2]
朱永官, 李宝值, 吝涛. 培育健康土壤,助力乡村振兴. 科技导报, 2021, 39(23): 54-58.
ZHU Y G, LI B Z, LIN T. Fostering healthy soil to push forward rural revitalization. Science & Technology Review, 2021, 39(23): 54-58. (in Chinese)
[3]
韩明会, 李保国, 张丹, 李颖. 再生农业: 基于土地保护性利用的可持续农业. 中国农业科学, 2021, 54(5): 1003-1016. doi: 10.3864/j.issn.0578-1752.2021.05.012.
HAN M H, LI B G, ZHANG D, LI Y. Regenerative agriculture- sustainable agriculture based on the conservational land use. Scientia Agricultura Sinica, 2021, 54(5): 1003-1016. doi: 10.3864/j.issn.0578-1752.2021.05.012. (in Chinese)
[4]
张俊伶, 张江周, 申建波, 田静, 金可默, 张福锁. 土壤健康与农业绿色发展: 机遇与对策. 土壤学报, 2020, 57(4): 783-796.
ZHANG J L, ZHANG J Z, SHEN J B, TIAN J, JIN K M, ZHANG F S. Soil health and agriculture green development: Opportunities and challenges. Acta Pedologica Sinica, 2020, 57(4): 783-796. (in Chinese)
[5]
司绍诚, 吴宇澄, 李远, 涂晨, 付传城, 骆永明. 耕地和草地土壤健康研究进展与展望. 土壤学报, 2022, 59(3): 625-642.
SI S C, WU Y C, LI Y, TU C, FU C C, LUO Y M. The current research progress and prospects of cultivated and grassland soil health-A review. Acta Pedologica Sinica, 2022, 59(3): 625-642. (in Chinese)
[6]
RINOT O, LEVY G J, STEINBERGER Y, SVORAY T, ESHEL G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Science of the Total Environment, 2019, 648: 1484-1491.

doi: 10.1016/j.scitotenv.2018.08.259
[7]
BÜNEMANN E K, BONGIORNO G, BAI Z G, CREAMER R E, DE DEYN G, DE GOEDE R, FLESKENS L, GEISSEN V, KUYPER T W, MÄDER P, PULLEMAN M, SUKKEL W, VAN GROENIGEN J W, BRUSSAARD L. Soil quality-A critical review. Soil Biology and Biochemistry, 2018, 120: 105-125.

doi: 10.1016/j.soilbio.2018.01.030
[8]
李鑫, 张文菊, 邬磊, 任意, 张骏达, 徐明岗. 土壤质量评价指标体系的构建及评价方法. 中国农业科学, 2021, 54(14): 3043-3056. doi: 10.3864/j.issn.0578-1752.2021.14.010.
LI X, ZHANG W J, WU L, REN Y, ZHANG J D, XU M G. Advance in indicator screening and methodologies of soil quality evaluation. Scientia Agricultura Sinica, 2021, 54(14): 3043-3056. doi: 10.3864/j.issn.0578-1752.2021.14.010. (in Chinese)
[9]
VAN ES H M, KARLEN D L. Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Science Society of America Journal, 2019, 83(3): 721-732.

doi: 10.2136/sssaj2018.09.0338
[10]
SINGH S, JAGADAMMA S, YODER D, YIN X H, WALKER F. Agroecosystem management responses to Haney soil health test in the southeastern United States. Soil Science Society of America Journal, 2020, 84(5): 1705-1721.

doi: 10.1002/saj2.v84.5
[11]
WANG H X, XU J L, LIU X J, ZHANG D, LI L W, LI W, SHENG L X. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research, 2019, 195: 104382.

doi: 10.1016/j.still.2019.104382
[12]
HUANG Y, SHENG H, ZHOU P, ZHANG Y Z. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive Liming. Ecotoxicology and Environmental Safety, 2020, 188: 109903.

doi: 10.1016/j.ecoenv.2019.109903
[13]
MIJANGOS I, ALBIZU I, EPELDE L, AMEZAGA I, MENDARTE S, GARBISU C. Effects of Liming on soil properties and plant performance of temperate mountainous grasslands. Journal of Environmental Management, 2010, 91(10): 2066-2074.

doi: 10.1016/j.jenvman.2010.05.011 pmid: 20538406
[14]
薛毅, 尹泽润, 盛浩, 马颢榴, 周清, 宋达清, 张杨珠. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量. 环境科学, 2020, 41(4): 1880-1887.
XUE Y, YIN Z R, SHENG H, MA H L, ZHOU Q, SONG D Q, ZHANG Y Z. Reduction of soil cadmium activity and rice cadmium content by 4-year-consecutive application of organic fertilizer. Environmental Science, 2020, 41(4): 1880-1887. (in Chinese)
[15]
YIN Z R, SHENG H, XIAO H C, XUE Y, MAN Z Y, HUANG D Z, ZHOU Q. Inter-annual reduction in rice Cd and its eco-environmental controls in 6-year biannual mineral amendment in subtropical double-rice cropping ecosystems. Environmental Pollution, 2022, 293: 118566.

doi: 10.1016/j.envpol.2021.118566
[16]
SHENG H, GU Y, YIN Z R, XUE Y, ZHOU P, THOMPSON M L. Consistent inter-annual reduction of rice cadmium in 5-year biannual organic amendment. The Science of the Total Environment, 2022, 807(Pt 3): 151026.

doi: 10.1016/j.scitotenv.2021.151026
[17]
李源钊, 盛浩, 尹泽润, 肖华翠, 薛毅, 周萍. 双季稻田土壤微生物群落对连续5年施有机肥和石灰的响应差异. 土壤通报, 2022, 53(2): 482-491.
LI Y Z, SHENG H, YIN Z R, XIAO H C, XUE Y, ZHOU P. Response of microbial community in purple mud of double-cropped rice fields to 5-year continuous application of organic amendment and Liming. Chinese Journal of Soil Science, 2022, 53(2): 482-491. (in Chinese)
[18]
LIAO P, HUANG S, ZENG Y J, SHAO H, ZHANG J, VAN GROENIGEN K J. Liming increases yield and reduces grain cadmium concentration in rice paddies: A meta-analysis. Plant and Soil, 2021, 465(1): 157-169.

doi: 10.1007/s11104-021-05004-w
[19]
SCHINDELBECK R R, MOEBIUS-CLUNE B N, MOEBIUS- CLUNE D J, KURTZ K S, VAN ES H M. Cornell University Comprehensive assessment of soil health laboratory standard operating procedures[R\OL]. February 2016. [2023-01-03] https://www.css.cornell.edu/extension/soil-health/front-matter.pdf.
[20]
SONG W F, SHU A P, LIU J A, SHI W C, LI M C, ZHANG W X, LI Z Z, LIU G R, YUAN F S, ZHANG S X, LIU Z B, GAO Z. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere, 2022, 32(4): 637-648.

doi: 10.1016/S1002-0160(21)60047-4
[21]
RAHMAN M M, SHAN J, YANG P P, SHANG X X, XIA Y Q, YAN X Y. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution, 2018, 240: 368-377.

doi: S0269-7491(17)35028-5 pmid: 29753245
[22]
DU Y Y, WANG X, JI X H, ZHANG Z X, SAHA U K, XIE W C, XIE Y H, WU J M, PENG B, TAN C Y. Effectiveness and potential risk of CaO application in Cd-contaminated paddy soil. Chemosphere, 2018, 204: 130-139.

doi: S0045-6535(18)30643-X pmid: 29655105
[23]
AGEGNEHU G, YIRGA C, ERKOSSA T. Soil Acidity Management. Addis Ababa. Ethiopia: Ethiopian Institute of Agricultural Research (EIAR), 2019, 1-56.
[24]
FANG H, LIU K L, LI D M, PENG X H, ZHANG W J, ZHOU H. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil. Soil and Tillage Research, 2021, 213: 105137.

doi: 10.1016/j.still.2021.105137
[25]
ZHOU H, FANG H, MOONEY S J, PENG X H. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies. Geoderma, 2016, 266: 66-74.

doi: 10.1016/j.geoderma.2015.12.007
[26]
廖抒蔚, 孔维凤, 梁嫦娥, 王腊梅, 李坤桐, 王纯, 仝川. 湿地土壤水稳性团聚体结构和稳定性研究进展. 湿地科学, 2021, 19(5): 623-628.
LIAO S W, KONG W F, LIANG C E, WANG L M, LI K T, WANG C, TONG C. Research progress on composition and stability of soil water-stable aggregates in wetlands. Wetland Science, 2021, 19(5): 623-628. (in Chinese)
[27]
ROTH C H, PAVAN M A. Effects of lime and gypsum on clay dispersion and infiltration in samples of a Brazilian Oxisol. Geoderma, 1991, 48(3/4): 351-361.

doi: 10.1016/0016-7061(91)90053-V
[28]
李烜桢, 骆永明, 侯德义. 土壤健康评估指标、框架及程序研究进展. 土壤学报, 2022, 59(3): 617-624.
LI X Z, LUO Y M, HOU D Y. The indicators, framework and procedures for soil health: A critical review. Acta Pedologica Sinica, 2022, 59(3): 617-624. (in Chinese)
[29]
HE L L, HUANG D Y, ZHANG Q, ZHU H H, XU C, LI B, ZHU Q H. Meta-analysis of the effects of Liming on soil pH and cadmium accumulation in crops. Ecotoxicology and Environmental Safety, 2021, 223: 112621.

doi: 10.1016/j.ecoenv.2021.112621
[30]
LAURENT C, BRAVIN M N, CROUZET O, PELOSI C, TILLARD E, LECOMTE P, LAMY I. Increased soil pH and dissolved organic matter after a decade of organic fertilizer application mitigates copper and zinc availability despite contamination. Science of the Total Environment, 2020, 709: 135927.

doi: 10.1016/j.scitotenv.2019.135927
[31]
RAO Z X, HUANG D Y, WU J S, ZHU Q H, ZHU H H, XU C, XIONG J, WANG H, DUAN M M. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environmental Pollution, 2018, 239: 198-204.

doi: 10.1016/j.envpol.2018.04.024
[32]
朱永官, 彭静静, 韦中, 沈其荣, 张福锁. 土壤微生物组与土壤健康. 中国科学: 生命科学, 2021, 51(1): 1-11.
ZHU Y G, PENG J J, WEI Z, SHEN Q R, ZHANG F S. Linking the soil microbiome to soil health. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese)
[33]
PULLEMAN M, WILLS S, CREAMER R, DICK R, FERGUSON R, HOOPER D, WILLIAMS C, MARGENOT A J. Soil mass and grind size used for sample homogenization strongly affect permanganate-oxidizable carbon (POXC) values, with implications for its use as a national soil health indicator. Geoderma, 2021, 383: 114742.

doi: 10.1016/j.geoderma.2020.114742
[34]
CISSÉ G, ESSI M, NICOLAS M, STAUNTON S. Bradford quantification of Glomalin-Related Soil Protein in coloured extracts of forest soils. Geoderma, 2020, 372: 114394.

doi: 10.1016/j.geoderma.2020.114394
[35]
LIPTZIN D, NORRIS C E, CAPPELLAZZI S B, MAC BEAN G, COPE M, GREUB K L H, RIEKE E L, TRACY P W, ABERLE E, ASHWORTH A, BAÑUELOS TAVAREZ O, BARY A I, BAUMHARDT R L, BORBÓN GRACIA A, BRAINARD D C, BRENNAN J R, BRIONES REYES D, BRUHJELL D, CARLYLE C N, CRAWFORD J J W, HONEYCUTT C W. An evaluation of carbon indicators of soil health in long-term agricultural experiments. Soil Biology and Biochemistry, 2022, 172: 108708.

doi: 10.1016/j.soilbio.2022.108708
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[3] LI Hao, CHEN Jin, WANG HongLiang, LIU KaiLou, HAN TianFu, DU JiangXue, SHEN Zhe, LIU LiSheng, HUANG Jing, ZHANG HuiMin. Response of Carbon and Nitrogen Distribution in Organo-Mineral Complexes of Red Paddy Soil to Long-Term Fertilization [J]. Scientia Agricultura Sinica, 2023, 56(7): 1333-1343.
[4] WANG XiaoXuan, ZHANG Min, ZHANG XinYao, WEI Peng, CHAI RuShan, ZHANG ChaoChun, ZHANG LiangLiang, LUO LaiChao, GAO HongJian. Effects of Different Varieties of Phosphate Fertilizer Application on Soil Phosphorus Transformation and Phosphorus Uptake and Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2023, 56(6): 1113-1126.
[5] LI DeJin, MA Xiang, SUN Yue, XU MingGang, DUAN YingHua. Decomposition Characteristics of Straw and Organic Fertilizer Mixed Soil After Landfill in Typical Area [J]. Scientia Agricultura Sinica, 2023, 56(6): 1127-1138.
[6] LI YaZhen, HAN TianFu, QU XiaoLin, MA ChangBao, DU JiangXue, LIU KaiLou, HUANG Jing, LIU ShuJun, LIU LiSheng, SHEN Zhe, ZHANG HuiMin. Spatio-Temporal Variations of Fertilizer Contribution Rate for Rice in China and Its Influencing Factors [J]. Scientia Agricultura Sinica, 2023, 56(4): 674-685.
[7] LIU Lei, SHI JianShuo, ZHANG GuoYin, GAO Jing, LI Pin, REN Yanli, WANG LiYing. Effects of Long-Term Application of Organic Fertilizer on Rare and Abundant Bacterial Sub-Communities in Greenhouse Tomato Soil [J]. Scientia Agricultura Sinica, 2023, 56(18): 3615-3628.
[8] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[9] CHEN ShuoTong, XIA Xin, DING YuanJun, FENG Xiao, LIU XiaoYu, Marios Drosos, LI LianQing, PAN GenXing. Changes in Topsoil Organic Matter Content and Composition of a Gleyic Stagnic Anthrosol Amended with Maize Residue in Different Forms from the Tai Lake Plain, China [J]. Scientia Agricultura Sinica, 2023, 56(13): 2518-2529.
[10] YU Ru, SONG JiaShen, ZHANG HongYuan, CHANG FangDi, WANG YongQing, WANG XiQuan, WANG Jing, WANG WeiNi, LI YuYi. Effects of Straw Interlayer Combined with Spring Irrigation on Saline- Alkali Soil Respiration and Its Temperature Sensitivity in Hetao Irrigation District [J]. Scientia Agricultura Sinica, 2023, 56(12): 2341-2353.
[11] WU JinZhi, HUANG XiuLi, HOU YuanQuan, TIAN WenZhong, LI JunHong, ZHANG Jie, LI Fang, LÜ JunJie, YAO YuQing, FU GuoZhan, HUANG Ming, LI YouJun. Effects of Ridge and Furrow Planting Patterns on Crop Productivity and Soil Nitrate-N Accumulation in Dryland Summer Maize and Winter Wheat Rotation System [J]. Scientia Agricultura Sinica, 2023, 56(11): 2078-2091.
[12] GAO JiaRui, FANG ShengZhi, ZHANG YuLing, AN Jing, YU Na, ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[13] LI XiaoLi,HE TangQing,ZHANG ChenXi,TIAN MingHui,WU Mei,LI ChaoHai,YANG QingHua,ZHANG XueLin. Effect of Organic Fertilizer Replacing Chemical Fertilizers on Greenhouse Gas Emission Under the Conditions of Same Nitrogen Fertilizer Input in Maize Farmland [J]. Scientia Agricultura Sinica, 2022, 55(5): 948-961.
[14] DU WenTing,LEI XiaoXiao,LU HuiYu,WANG YunFeng,XU JiaXing,LUO CaiXia,ZHANG ShuLan. Effects of Reducing Nitrogen Application Rate on the Yields of Three Major Cereals in China [J]. Scientia Agricultura Sinica, 2022, 55(24): 4863-4878.
[15] YI YingJie, HAN Kun, ZHAO Bin, LIU GuoLi, LIN DianXu, CHEN GuoQiang, REN Hao, ZHANG JiWang, REN BaiZhao, LIU Peng. The Comparison of Ammonia Volatilization Loss in Winter Wheat- Summer Maize Rotation System with Long-Term Different Fertilization Measures [J]. Scientia Agricultura Sinica, 2022, 55(23): 4600-4613.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!