Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (12): 2354-2366.doi: 10.3864/j.issn.0578-1752.2023.12.010

• HORTICULTURE • Previous Articles     Next Articles

Optimization of Water and Fertilizer Management of Substrate Cultivated Peppers Based on Quality, Yield, and Water and Fertilizer Use Efficiency

ZHOU DaoMing(), SUN Tao, ZHAO YuHong, JIA YuanJie, YANG MingFei, QU Feng, HU XiaoHui()   

  1. College of Horticulture, Northwest A&F University/Key Laboratory of Protected Horticultural Engineering in Northwestern China, Ministry of Agriculture and Rural Affairs/Facility Agricultural Engineering Technology Research Center, Yangling 712100, Shaanxi
  • Received:2022-08-26 Accepted:2022-11-10 Online:2023-06-16 Published:2023-06-27

Abstract:

【Objective】The aim of this study was to optimize the water and fertilizer management of peppers, and to investigate the effects of the coupling of irrigation frequency and nutrient solution supply on the quality, yield, water use efficiency and fertilizer partial productivity of peppers grown in substrate bags. 【Method】 Kailai (37-83) RZ F1 pepper was chosen as the material in the study, the irrigation amount (IA) required to maintain the water content of the substrate at 55%-60% was set as the total daily IA of single plant, and three irrigation frequencies (IF) of single plant were to supply IA according to 1 time (IF1), 2 times (IF2) and 4 times (IF3), respectively, and two nutrient solution supply amounts (NS) were the standard Yamazaki pepper nutrient solution (NS1, i.e. 250 mL/plant per day and 500 mL/plant per day during the flowering to triple layer harvesting period and after the triple layer harvesting, respectively) and the increasing nutrient solution (NS2, i.e. the initial nutrient solution supply was 250 mL/plant per day, after each layer of pepper was harvested, the nutrient supply of single plant was increased by 50 mL, and did not increase until it increased to 500 mL/plant), for a total of six coupled treatments. The principal component analysis-technique for order preference by similarity to an ideal solution (PCA-TOPSIS), membership function analysis and grey relational degree analysis were used to comprehensively evaluate fruit quality, yield, water use efficiency and fertilizer partial productivity. 【Result】The IF had a significant effect on all quality indicators except shoulder length (P<0.01); the NS had a significant effect on vitamin C, soluble protein, capsaicin and dihydrocapsaicin (P<0.01), but had no significant effect on other quality indicators; the coupling of IF and NS showed highly significant effect on the quality indicators, except the thickness of the peel (P<0.01). At the same time, IF, NS and their coupling showed extremely significant effects on pepper yield and water use efficiency (P<0.01). The evaluation results were consistent by PCA-TOPSIS, fuzzy membership function and grey relational degree, and the top two were IF1NS1 and IF2NS2. IF1NS1 treatment had the best fruit quality of pepper, for yield, water use efficiency, and N, P, K fertilizer partial productivity were the highest, with the value of 74 482.24 kg∙hm-2, 34.21 kg∙m-3, 625.95 kg∙kg-1, 679.54 kg∙kg-1, and 367.23 kg∙kg-1, respectively. Therefore, IF1NS1 was the optimal water-fertilizer coupling treatment. 【Conclusion】 The optimal IF and NS management of peppers grown in substrate bags were as follows: IF of single plant was to maintain the water content of the substrate at 55%-60% required IA was supplied according to 1 time, the standard Yamazaki formula nutrient solution of 250 mL/plant per day and 500 mL/plant per day was supplied from the flowering to triple layer harvesting period and after the triple layer harvesting, respectively.

Key words: pepper, yield, quality, water and fertilizer use efficiency, water and fertilizer optimization

Table 1

Irrigation frequency and irrigation volume"

灌溉频率水平
Irrigation frequency levels
处理变量值The variation value of treatment
灌溉频率(次/天)
Irrigation frequency (times/day)
灌溉时间
Irrigation time
每次灌溉量
Irrigation amount per time
IF1 1 8:00 IA
IF2 2 8:00, 15:00 1/2 IA
IF3 4 8:00, 9:00, 15:00, 16:00 1/4 IA

Table 2

Effects of irrigation frequency and nutrient solution supply coupling on fruit quality of pepper"

处理
Treatment
单果重
Weight of single fruit (g)
果皮厚度
Fruit wall thickness (mm)
果肩长
Fruit shoulder length (mm)
维生素C
Vitamin C
(mg/100 g)
可溶性蛋白
Soluble protein
(mg∙g-1)
游离氨基酸
Free amino acid
(mg∙kg-1)
还原糖
Reducing sugar
(%)
可溶性总糖
Total soluble sugar (%)
硝态氮
Nitrate nitrogen
(μg∙g-1)
辣椒素
Capsaicin
(ng∙L-1
二氢辣椒素
Hihydrocapsaicin (ng∙L-1
IF1NS1 137.01±1.36a 2.93±0.12a 46.05±0.81a 295.46±7.28bc 0.40±0.00a 599.13±4.62b 3.63±0.15a 14.42±0.51a 212.70±15.44c 90.52±0.21bc 69.02±0.23d
IF2NS1 116.93±4.27b 2.38±0.13b 43.47±1.00ab 254.60±6.89d 0.32±0.00c 549.10±7.15c 2.08±0.02c 10.35±0.04c 302.56±2.77a 94.03±0.09a 76.78±0.10a
IF3NS1 107.54±1.30c 2.38±0.09b 44.95±0.98ab 282.55±3.10cd 0.42±0.01a 560.15±19.05bc 2.62±0.08b 11.24±0.63bc 295.24±4.99a 91.62±0.36b 68.33±0.18d
IF1NS2 108.68±1.20bc 2.50±0.15ab 41.33±1.09b 376.37±6.40a 0.37±0.00b 420.54±4.20e 2.48±0.06bc 11.74±0.04bc 274.43±7.15ab 89.94±0.51c 69.78±0.15c
IF2NS2 130.18±0.79a 2.54±0.14ab 44.89±0.70ab 377.72±5.11a 0.33±0.01c 500.81±5.17d 3.55±0.11a 12.69±0.13b 245.67±15.26bc 72.49±0.08d 62.48±0.12e
IF3NS2 115.75±0.65bc 2.15±0.16b 44.46±1.08ab 322.61±8.02b 0.34±0.00bc 808.55±4.62a 2.57±0.02b 11.59±0.17bc 312.33±7.21a 73.75±0.03d 75.94±0.14b
ANOVA
IF ** ** ns ** ** ** ** ** ** ** **
NS ns ns ns ** ** ns ns ns ns ** **
IF×NS ** ns ** ** ** ** ** ** ** ** **

Table 3

Effects of irrigation frequency and nutrient solution supply coupling on yield and water use efficiency of pepper"

处理 Treatment 产量 Yield (kg∙hm-2) 水分利用率 Water use efficiency (kg∙m-3)
IF1NS1 74 482.24±698.67a 34.21±0.32a
IF2NS1 47 276.24±1 351.76cd 21.72±0.62cd
IF3NS1 46 749.92±2 028.02cd 21.47±0.93cd
IF1NS2 50 864.32±2 417.89bc 23.36±1.11bc
IF2NS2 55 265.08±2 073.33b 25.39±0.95b
IF3NS2 43 004.32±1 688.80d 19.75±0.78d
ANOVA
IF ** **
NS ** **
IF×NS ** **

Table 4

Effects of irrigation frequency and nutrient solution supply coupling on fertilizer partial productivity of pepper"

处理
Treatment
氮肥偏生产力
Nitrogen partial productivity (kg∙kg-1)
磷肥偏生产力
Phosphate partial productivity (kg∙kg-1 )
钾肥偏生产力
Potash partial productivity (kg∙kg-1)
IF1NS1 625.95±5.87a 679.54±6.37a 367.23±3.44a
IF2NS1 400.01±15.01b 434.25±16.29b 234.67±8.80b
IF3NS1 392.89±17.04b 426.52±18.50b 230.50±10.00b
IF1NS2 368.15±17.50bc 399.67±19.00bc 215.98±10.27bc
IF2NS2 397.31±11.36b 431.32±12.33b 233.09±6.66b
IF3NS2 311.26±12.22c 337.91±13.27c 182.61±7.17c
ANOVA
IF ** ** **
NS ** ** **
IF×NS ** ** **

Fig. 1

Pearson correlation analysis of pepper quality indexes under water-fertilizer coupling treatment"

Table 5

Eigen value and variance contribution rates of each principal component"

主成分
Principal component
特征值
Eigen value
方差贡献率
Variance contribution (%)
累计方差贡献率
Cumulative variance contribution (%)
1 5.33 48.46 48.46
2 2.16 19.66 68.12
3 2.07 18.86 86.98
4 0.95 8.63 95.60
5 0.48 4.40 100.00

Table 6

Component matrixes"

指标
Index
主成分 Principal component
1 2 3
还原糖 Reducing sugar 0.97 0.21 -0.03
硝态氮 Nitrate nitrogen -0.97 0.18 0.04
可溶性总糖 Total soluble sugar 0.95 0.06 0.10
果皮厚度 Fruit wall thickness 0.86 -0.43 0.12
单果重 Weight of single fruit 0.84 0.28 0.21
二氢辣椒素 Hihydrocapsaicin -0.73 0.09 0.48
辣椒素 Capsaicin -0.18 -0.91 0.36
游离氨基酸 Free amino acid -0.19 0.71 0.60
可溶性蛋白 Soluble protein 0.32 -0.56 0.32
维生素C Vitamin C 0.30 0.23 -0.88
果肩长 Fruit shoulder length 0.58 0.34 0.64

Table 7

Comprehensive score and comparison of principal components of pepper fruit quality in each treatment"

处理 Treatment 因子1 Factor 1 因子2 Factor 2 因子3 Factor 3 综合评价 Comprehensive evaluation 排名 Ranking
IF1NS1 3.48 -0.57 1.54 2.14 1
IF2NS1 -2.37 -0.50 0.78 -1.27 6
IF3NS1 -0.80 -1.09 0.74 -0.53 4
IF1NS2 -0.78 -1.43 -1.99 -1.19 5
IF2NS2 2.18 1.27 -1.62 1.15 2
IF3NS2 -1.71 2.32 0.55 -0.30 3

Table 8

Comprehensive evaluation and ranking of pepper in various treatments based on PCA-TOPSIS"

处理
Treatment
还原糖
Reducing sugar
辣椒素
Capsaicine
维生素C
Vitamin C
产量
Yield
水分利用
效率
Water use efficiency
氮肥偏
生产力
Nitrogen partial productivity
磷肥偏
生产力
Phosphate partial productivity
钾肥偏
生产力
Potash partial productivity
Di+ Di- Ci 排名
Ranking
IF1NS1 0.21 0.18 0.15 0.23 0.23 0.25 0.25 0.25 0.04 0.28 0.86 1
IF2NS1 0.12 0.18 0.13 0.15 0.15 0.16 0.16 0.16 0.23 0.08 0.25 5
IF3NS1 0.15 0.18 0.15 0.15 0.15 0.16 0.16 0.16 0.22 0.08 0.26 4
IF1NS2 0.15 0.18 0.20 0.16 0.16 0.15 0.15 0.15 0.22 0.09 0.30 3
IF2NS2 0.21 0.14 0.20 0.17 0.17 0.16 0.16 0.16 0.18 0.14 0.43 2
IF3NS2 0.15 0.14 0.17 0.14 0.14 0.12 0.12 0.12 0.27 0.05 0.14 6
S+ 0.21 0.18 0.20 0.23 0.23 0.25 0.25 0.25
S- 0.12 0.14 0.13 0.14 0.14 0.12 0.12 0.12

Table 9

Membership function values and ranking of pepper in different treatments based on membership function analysis"

处理
Treatment
单果重
Weight of single fruit
果肩长
Fruit shoulder length
果皮厚度
Fruit wall thickness
维生素C
Vitamin C
可溶性蛋白
Soluble protein
游离氨基酸
Free amino acid
还原糖
Reducing
sugar
可溶性总糖
Total soluble sugar
硝态氮
Nitrate nitrogen
IF1NS1 1.00 1.00 1.00 0.33 0.80 0.46 1.00 1.00 1.00
IF2NS1 0.32 0.45 0.29 0.00 0.00 0.33 0.00 0.00 0.10
IF3NS1 0.00 0.77 0.29 0.23 1.00 0.36 0.35 0.22 0.17
IF1NS2 0.04 0.00 0.45 0.99 0.50 0.00 0.26 0.34 0.38
IF2NS2 0.77 0.75 0.50 1.00 0.10 0.21 0.95 0.57 0.67
IF3NS2 0.28 0.66 0.00 0.55 0.20 1.00 0.32 0.30 0.00
处理
Treatment
辣椒素
Capsaicine
二氢辣椒素
Hydrocapsaicin
产量
Yield
水分利用效率
Water use efficiency
氮肥偏生产力
Nitrogen partial productivity
磷肥偏生产力
Phosphate partial productivity
钾肥偏生产力
Potash partial productivity
平均隶属值
Mean membership value
排名
Ranking
IF1NS1 0.84 0.46 1.00 1.00 1.00 1.00 1.00 0.86 1
IF2NS1 1.00 1.00 0.14 0.14 0.27 0.27 0.27 0.28 5
IF3NS1 0.89 0.41 0.12 0.12 0.26 0.26 0.26 0.38 3
IF1NS2 0.81 0.51 0.25 0.25 0.18 0.18 0.18 0.35 4
IF2NS2 0.00 0.00 0.39 0.39 0.28 0.28 0.28 0.43 2
IF3NS2 0.06 0.94 0.00 0.00 0.00 0.00 0.00 0.27 6

Table 10

Comprehensive evaluation and ranking of pepper in all treatments based on grey correlation degree analysis"

处理 Treatment 关联度 Correlation 权重 The weight 灰色评判值 Grey evaluation value 排名 Ranking
IF1NS1 0.92 0.23 3.41 1
IF2NS1 0.58 0.15 1.36 6
IF3NS1 0.60 0.15 1.46 4
IF1NS2 0.60 0.15 1.47 3
IF2NS2 0.65 0.17 1.73 2
IF3NS2 0.59 0.15 1.41 5
[1]
邹学校, 马艳青, 戴雄泽, 李雪峰, 杨莎. 辣椒在中国的传播与产业发展. 园艺学报, 2020, 47(9): 1715-1726.
ZOU X X, MA Y Q, DAI X Z, LI X F, YANG S. Spread and industry development of pepper in China. Acta Horticulturae Sinica, 2020, 47(9): 1715-1726. (in Chinese)

doi: 10.16420/j.issn.0513-353x.2020-0103
[2]
祁迎春, 王建, 秦萌. 延安市蔬菜大棚土壤肥力状况调查与评价. 陕西农业科学, 2022, 68(4): 6-10, 15.
QI Y C, WANG J, QIN M. Investigation and evaluation of soil fertility in vegetable greenhouses in Yan’an. Shaanxi Journal of Agricultural Sciences, 2022, 68(4): 6-10, 15. (in Chinese)
[3]
蒋静静, 常晓晓, 胡晓辉. 供氮水平对基质袋培黄瓜养分吸收分配和产量的影响. 浙江大学学报(农业与生命科学版), 2018, 44(6): 678-686.
JIANG J J, CHANG X X, HU X H. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system. Journal of Zhejiang University (Agriculture & Life Sciences), 2018, 44(6): 678-686. (in Chinese)
[4]
赵玉红, 孙涛, 朱柯钰, 张琪, 高子星, 胡晓辉. 陕北基质栽培樱桃番茄品种的筛选. 西北农林科技大学学报(自然科学版), 2021, 49(10): 73-82.
ZHAO Y H, SUN T, ZHU K Y, ZHANG Q, GAO Z X, HU X H. Selection of cherry tomato cultivars suitable for substrate cultivation in northern Shaanxi. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(10): 73-82. (in Chinese)
[5]
张佼, 屈锋, 杨甲甲, 胡晓辉. 基质深度及基质袋摆放方式对春季袋培番茄产量、品质和养分吸收的影响. 中国农业大学学报, 2020, 25(8): 43-53.
ZHANG J, QU F, YANG J J, HU X H. Effects of substrate depth and substrate bag arrangement on yield, quality and nutrient absorption of bag cultured tomato in spring. Journal of China Agricultural University, 2020, 25(8): 43-53. (in Chinese)
[6]
MARTINEZ-RUIZ A, LÓPEZ-CRUZ I L, RUIZ-GARCÍA A, PINEDA-PINEDA J, RAMÍREZ-ARIAS A. Uncertainty analysis of modified VegSyst model applied to a soilless culture tomato crop. Acta Horticulturae, 2017, 101(1182): 249-256.
[7]
KRASKA T, KLEINSCHMIDT B, WEINAND J, PUDE R. Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Scientia Horticulturae, 2018, 235: 205-213.

doi: 10.1016/j.scienta.2017.11.032
[8]
郑剑超, 董飞, 陈烨华, 智雪萍. 设施辣椒基质栽培与土壤栽培的生长发育对比试验. 农业工程技术, 2018, 38(32): 21, 23.
ZHENG J C, DONG F, CHEN Y H, ZHI X P. Comparative experiment on growth and development of greenhouse pepper substrate cultivation and soil cultivation. Applied Engineering Technology, 2018, 38(32): 21, 23. (in Chinese)
[9]
李芳, 马艳, 孙周平, 沈祥军. 不同尺寸栽培袋番茄营养基质栽培效果研究. 中国蔬菜, 2014(7): 43-46.
LI F, MA Y, SUN Z P, SHEN X J. Studies on effect of tomato nutrition substrate cultivation with different size of cultivation bag. China Vegetables, 2014(7): 43-46. (in Chinese)
[10]
ASSOULINE S. The effects of microdrip and conventional drip irrigation on water distribution and uptake. Soil Science Society of America Journal, 2002, 66(5): 1630-1636.

doi: 10.2136/sssaj2002.1630
[11]
杜建军, 阚玉景, 黄帮裕, 李永胜, 王新爱. 水肥调控技术及其功能性肥料研究进展. 植物营养与肥料学报, 2017, 23(6): 1631-1641.
DU J J, KAN Y J, HUANG B Y, LI Y S, WANG X A. Research progress on water and fertilizer regulation technology and functional fertilizers. Plant Nutrition and Fertilizer Science, 2017, 23(6): 1631-1641. (in Chinese)
[12]
胡晓辉, 朱轲林, 张琪, 赵玉红, 马永博. 基于模糊Borda法的番茄营养液滴灌频率研究. 农业机械学报, 2022, 53(8): 407-415.
HU X H, ZHU K Y, ZHANG Q, ZHAO Y H, MA Y B. Determining optimal drip irrigation frequency for substrate-bag cultured tomato based on fuzzy Borda method. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 407-415. (in Chinese)
[13]
DU L, ZHENG Z C, LI T X, ZHANG X Z. Effects of irrigation frequency on transportation and accumulation regularity of greenhouse soil salt during different growth stages of pepper. Scientia Horticulturae, 2019, 256: 108568.

doi: 10.1016/j.scienta.2019.108568
[14]
FASINA A S, AWE G O, ILORI A O A, BABALOLA T S, OGUNLEYE K S. Effect of drip irrigation frequency and N- fertilization on yield and water use efficiency of cucumber (Cucumis sativus) in Ado-Ekiti, Nigeria. Research on Crops, 2021, 22(2): 292-300.
[15]
COLIMBA-LIMAICO J E, ZUBELZU-MINGUEZ S, Optimal irrigation scheduling for greenhouse tomato crop (Solanum lycopersicum L.) in Ecuador. Agronomy, 2022, 12(5): 1020.

doi: 10.3390/agronomy12051020
[16]
景博, 刁明, 张坤, 郭鹏飞, 万文亮, 牛宁. 基于临界氮浓度的加工番茄优化施肥效应研究. 中国土壤与肥料, 2020(6): 205-212.
JING B, DIAO M, ZHANG K, GUO P F, WAN W L, NIU N. Estimation of optimum fertilization effect of processed tomato based on critical nitrogen concentration. Soil and Fertilizer Sciences in China, 2020(6): 205-212. (in Chinese)
[17]
黄绍文, 唐继伟, 李春花, 张怀志, 袁硕. 我国蔬菜化肥减施潜力与科学施用对策. 植物营养与肥料学报, 2017, 23(6): 1480-1493.
HUANG S W, TANG J W, LI C H, ZHANG H Z, YUAN S. Reducing potential of chemical fertilizers and scientific fertilization countermeasure in vegetable production in China. Plant Nutrition and Fertilizer Science, 2017, 23(6): 1480-1493. (in Chinese)
[18]
胡莹莹. 日光温室番茄架式栽培营养液量化管理技术研究[D]. 泰安: 山东农业大学, 2014.
HU Y Y. Study on quantitative management technology of nutrient solution for tomato frame cultivation in solar greenhouse[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[19]
屈锋, 张佼, 王君正, 马雪强, 高子星, 刘冬年, 胡晓辉. 基于遗传算法的基质培黄瓜营养液配方优化. 农业工程学报, 2021, 37(2): 96-104.
QU F, ZHANG J, WANG J Z, MA X Q, GAO Z X, LIU D N, HU X H. Genetic algorithm-based optimization of nutrient solution formula for substrate-cultivated cucumber. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 96-104. (in Chinese)
[20]
MALI S S, NAIK S K, JHA B K, SINGH A K, BHATT B P. Planting geometry and growth stage linked fertigation patterns: impact on yield, nutrient uptake and water productivity of Chilli pepper in hot and sub-humid climate. Scientia Horticulturae, 2019, 249: 289-298.

doi: 10.1016/j.scienta.2019.02.003
[21]
雷菲, 潘孝忠, 张治军, 符传良, 刘国彪, 曾建华, 张冬明. 灌溉施肥模式对海南辣椒产量和水肥利用的影响. 灌溉排水学报, 2022, 41(4): 20-29.
LEI F, PAN X Z, ZHANG Z J, FU C L, LIU G B, ZENG J H, ZHANG D M. The effects of irrigation and fertigation on yield, water-fertilizer utilization of pepper in Hainan Province. Journal of Irrigation and Drainage, 2022, 41(4): 20-29. (in Chinese)
[22]
董思琼, 田军仓, 沈晖, 闫新房, 陈海银. 不同再生水水质和追肥量对滴灌辣椒光合和产量的影响. 节水灌溉, 2022(2): 34-39.
DONG S Q, TIAN J C, SHEN H, YAN X F, CHEN H Y. Effects of different reclaimed water quality and fertilization levels on photosynthesis and yield of pepper under drip irrigation. Water Saving Irrigation, 2022(2): 34-39. (in Chinese)
[23]
周三利, 芦倩, 吴彦霖, 董昕, 张恒嘉, 王玉才, 任晓燕, 梁超. 水肥耦合对辣椒生长及产量的影响研究述评. 农业工程, 2021, 11(7): 77-80.
ZHOU S L, LU Q, WU Y L, DONG X, ZHANG H J, WANG Y C, REN X Y, LIANG C. Effects of water-fertilizer coupling on growth and yield of pepper. Agricultural Engineering, 2021, 11(7): 77-80. (in Chinese)
[24]
胡晓辉, 高子星, 马永博, 薛建康, 谢志龙, 李雪, 张林阳, 王君正, 马雪强, 屈锋, 张佼. 基于产量品质及水肥利用率的袋培辣椒水肥耦合方案. 农业工程学报, 2020, 36(17): 81-89.
HU X H, GAO Z X, MA Y B, XUE J K, XIE Z L, LI X, ZHANG L Y, WANG J Z, MA X Q, QU F, ZHANG J. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 81-89. (in Chinese)
[25]
高子星, 马雪强, 王君正, 胡晓辉. 水肥耦合对越冬基质栽培辣椒产量、品质和水分利用效率的影响. 中国农业大学学报, 2022, 27(1): 96-108.
GAO Z X, MA X Q, WANG J Z, HU X H. Effects of water and fertilizer coupling on the yield, quality and water use efficiency of overwintering pepper in substrate cultivation. Journal of China Agricultural University, 2022, 27(1): 96-108. (in Chinese)
[26]
高子星. 设施辣椒基质栽培水肥供应优化方案研究[D]. 杨凌: 西北农林科技大学, 2021.
GAO Z X. Study on optimization scheme of water and fertilizer supply for greenhouse pepper substrate cultivation[D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[27]
赵玉红, 康珍, 孙涛, 朱轲钰, 张琪, 胡晓辉. 不同营养液供应频率对日光温室袋培辣椒产量、品质及水分利用效率的影响. 中国蔬菜, 2021(10): 79-84.
ZHAO Y H, KANG Z, SUN T, ZHU K Y, ZHANG Q, HU X H. Effects of different nutrient solution supply frequency on yield, quality and water use efficiency of bag cultured pepper in solar greenhouse. China Vegetables, 2021(10): 79-84. (in Chinese)
[28]
张大龙, 常毅博, 李建明, 张中典, 潘铜华, 杜清洁, 郑刚. 大棚甜瓜蒸腾规律及其影响因子. 生态学报, 2014, 34(4): 953-962.
ZHANG D L, CHANG Y B, LI J M, ZHANG Z D, PAN T H, DU Q J, ZHENG G. The critical factors of transpiration on muskmelon in plastic greenhouse. Acta Ecologica Sinica, 2014, 34(4): 953-962. (in Chinese)
[29]
蒋静静, 屈锋, 苏春杰, 杨剑锋, 余剑, 胡晓辉. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响. 中国农业科学, 2019, 52(1): 86-97. doi: 10.3864/j.issn.0578-1752.2019.01.009.

doi: 10.3864/j.issn.0578-1752.2019.01.009
JIANG J J, QU F, SU C J, YANG J F, YU J, HU X H. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer. Scientia Agricultura Sinica, 2019, 52(1): 86-97. doi: 10.3864/j.issn.0578-1752.2019.01.009. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2019.01.009
[30]
段鹏伟, 程福厚. 滴灌频率和灌水量对‘黄冠’梨生长与果实品质的影响. 北方园艺, 2017(20): 46-53.
DUAN P W, CHENG F H. Effects of drip irrigation frequency and amount on growth and fruit quality of ‘Huanguan’ pear. Northern Horticulture, 2017(20): 46-53. (in Chinese)
[31]
汪生林. 基质培薄皮甜瓜和辣椒营养液供液量与供液频率研究[D]. 银川: 宁夏大学, 2017.
WANG S L. Study on the amount and frequency of nutrient solution for muskmelon and pepper cultured in substrate[D]. Yinchuan: Ningxia University, 2017. (in Chinese)
[32]
WANG X K, GUO T, WANG Y, XING Y Y, WANG Y F, HE X L. Exploring the optimization of water and fertilizer management practices for potato production in the sandy loam soils of Northwest China based on PCA. Agricultural Water Management, 2020, 237: 106180.

doi: 10.1016/j.agwat.2020.106180
[33]
王秀康, 杜常亮, 邢金金, 王美琪, 邢英英. 基于施肥量对马铃薯块茎品质影响的主成分分析. 分子植物育种, 2017, 15(5): 2003-2008.
WANG X K, DU C L, XING J J, WANG M Q, XING Y Y. Based on potato tuber quality response to fertilizer rates: A principal component analysis. Molecular Plant Breeding, 2017, 15(5): 2003-2008. (in Chinese)
[34]
WANG H D, CHENG M H, ZHANG S H, FAN J L, FENG H, ZHANG F C, WANG X K, SUN L J, XIANG Y Z. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods. Agricultural Water Management, 2021, 256: 107130.

doi: 10.1016/j.agwat.2021.107130
[35]
马道承, 余注光, 王凌晖, 林泳志, 潘媛媛. 氮磷钾配比施肥对赤苍藤生理及生物量积累的影响. 植物科学学报, 2022, 40(6): 839-852.
MA D C, YU Z G, WANG L H, LIN Y Z, PAN Y Y. Effects of nitrogen-phosphorus-potassium ratio fertilization on physiology and biomass accumulation of Erythropalum scandens Bl. Plant Science Journal, 2022, 40(6): 839-852. (in Chinese)
[36]
张智, 李曼宁, 杨志, 蔡泽林, 洪婷婷, 丁明. 基于多指标协同的草莓水肥耦合综合调控. 农业机械学报, 2020, 51(2): 267-276.
ZHANG Z, LI M N, YANG Z, CAI Z L, HONG T T, DING M. Comprehensive regulation of water and fertilizer coupling based on multi-index collaboration of strawberry. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 267-276. (in Chinese)
[37]
TADESSE T, SHARMA P D, AYELE T. Effect of the irrigation interval and nitrogen rate on yield and yield components of onion (Allium cepa L.) at Arba Minch, southern Ethiopia. Advances in Agriculture, 2022, 2022: 1-13.
[38]
李邵, 薛绪掌, 郭文善, 张伟娟, 陈菲. 水肥耦合对温室盆栽黄瓜产量与水分利用效率的影响. 植物营养与肥料学报, 2010, 16(2): 376-381.
LI S, XUE X Z, GUO W S, ZHANG W J, CHEN F. Effects of water and fertilizer coupling on yield and water use efficiency in greenhouse potted cucumber. Plant Nutrition and Fertilizer Science, 2010, 16(2): 376-381. (in Chinese)
[39]
DU Y D, NIU W Q, ZHANG Q, CUI B J, GU X B, GUO L L, LIANG B H. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation. Soil Science Society of America Journal, 2018, 82(3): 606-613.

doi: 10.2136/sssaj2017.11.0377
[40]
MAUREL C, NACRY P. Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 2020, 6(7): 744-749.

doi: 10.1038/s41477-020-0684-5 pmid: 32601421
[41]
OLIVEIRA E M M, RUIZ H A, ALVAREZ V V H, FERREIRA P A, COSTA F O, ALMEIDA I C C. Nutrient supply by mass flow and diffusion to maize plants in response to soil aggregate size and water potential. Revista Brasileira De Ciência Do Solo, 2010, 34(2): 317-328.

doi: 10.1590/S0100-06832010000200005
[42]
FAGERIA N K, BARBOSA FILHO M P. Influence of pH on productivity, nutrient use efficiency by dry bean, and soil phosphorus availability in a No-tillage system. Communications in Soil Science and Plant Analysis, 2008, 39(7/8): 1016-1025.

doi: 10.1080/00103620801925422
[43]
BARŁÓG P, GRZEBISZ W, ŁUKOWIAK R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants, 2022, 11(14): 1855.

doi: 10.3390/plants11141855
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] REN ZhiQiang, WANG ChenYang, KOU ZhongYun, CAI Rui, YANG GongShe, PANG WeiJun. In Vivo Estimation of Lean Percentage, Fat Percentage, and Intramuscular Fat Content of Boars by Computed Tomography [J]. Scientia Agricultura Sinica, 2023, 56(9): 1787-1799.
[3] JU XiaoJun, ZHANG Ming, SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing. Chicken Quality Analysis and Screening of Key Flavor Substances and Genes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1813-1826.
[4] HAN ZiXuan, FANG JingJing, WU XuePing, JIANG Yu, SONG XiaoJun, LIU XiaoTong. Synergistic Effects of Organic Carbon and Nitrogen Content in Water-Stable Aggregates as well as Microbial Biomass on Crop Yield Under Long-Term Straw Combined Chemical Fertilizers Application [J]. Scientia Agricultura Sinica, 2023, 56(8): 1503-1514.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] WANG Ning, FENG KeYun, NAN HongYu, CONG AnQi, ZHANG TongHui. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit [J]. Scientia Agricultura Sinica, 2023, 56(8): 1531-1546.
[7] WANG PengFei, YU AiZhong, WANG YuLong, SU XiangXiang, LI Yue, LÜ HanQiang, CHAI Jian, YANG HongWei. Effects of Returning Green Manure to Field Combined with Reducing Nitrogen Application on the Dry Matter Accumulation, Distribution and Yield of Maize [J]. Scientia Agricultura Sinica, 2023, 56(7): 1283-1294.
[8] NAN Rui, YANG YuCun, SHI FangHui, ZHANG LiNing, MI TongXi, ZHANG LiQiang, LI ChunYan, SUN FengLi, XI YaJun, ZHANG Chao. Identification of Excellent Wheat Germplasms and Classification of Source-Sink Types [J]. Scientia Agricultura Sinica, 2023, 56(6): 1019-1034.
[9] LI XiaoYong, HUANG Wei, LIU HongJu, LI YinShui, GU ChiMing, DAI Jing, HU WenShi, YANG Lu, LIAO Xing, QIN Lu. Effect of Nitrogen Rates on Yield Formation and Nitrogen Use Efficiency in Oilseed Under Different Cropping Systems [J]. Scientia Agricultura Sinica, 2023, 56(6): 1074-1085.
[10] WANG ZiDun, WANG Hui, FENG YuChen, ZHANG XueLiang, YAN LeiYu, LIU XiaoJie, ZHAO ZhengYang. Effects of Different Color Fruit Bags on Quality of Ruixue Apple Fruits [J]. Scientia Agricultura Sinica, 2023, 56(4): 729-740.
[11] JIA XiaoYun, WANG ShiJie, ZHU JiJie, ZHAO HongXia, LI Miao, WANG GuoYin. Construction of A High-Density Genetic Map and QTL Mapping for Yield Related Traits in Upland Cotton [J]. Scientia Agricultura Sinica, 2023, 56(4): 587-598.
[12] DING JinFeng, XU DongYi, DING YongGang, ZHU Min, LI ChunYan, ZHU XinKai, GUO WenShan. Effects of Cultivation Patterns on Grain Yield, Nitrogen Uptake and Utilization, and Population Quality of Wheat Under Rice-Wheat Rotation [J]. Scientia Agricultura Sinica, 2023, 56(4): 619-634.
[13] LIU Na, XIE Chang, HUANG HaiYun, YAO Rui, XU Shuang, SONG HaiLing, YU HaiQiu, ZHAO XinHua, WANG Jing, JIANG ChunJi, WANG XiaoGuang. Effects of Potassium Application on Root and Nodule Characteristics, Nutrient Uptake and Yield of Peanut [J]. Scientia Agricultura Sinica, 2023, 56(4): 635-648.
[14] ZHU YouYun, ZENG YuLing, LI Bo, YUAN YuJie, ZHOU Xing, LI QiuPing, HE ChenYan, CHEN Yong, WANG Li, CHENG Hong, ZHOU Wei, TAO YouFeng, LEI XiaoLong, REN WanJun, DENG Fei. Effect of Post-Anthesis Shading Stress on Eating Quality of Indica Rice in Chengdu Plain [J]. Scientia Agricultura Sinica, 2023, 56(3): 430-440.
[15] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!