Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (9): 1813-1826.doi: 10.3864/j.issn.0578-1752.2023.09.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Chicken Quality Analysis and Screening of Key Flavor Substances and Genes

JU XiaoJun(), ZHANG Ming(), SHAN YanJu, JI GaiGe, TU YunJie, LIU YiFan, ZOU JianMin, SHU JingTing()   

  1. Jiangsu Institute of Poultry Sciences/Key Laboratory of Poultry Genetics and Breeding in Jiangsu Province, Yangzhou 225125, Jiangsu
  • Received:2021-10-19 Accepted:2023-03-03 Online:2023-05-01 Published:2023-05-10

Abstract:

【Objective】This experiment was conducted to screen flavor substances and genes in different breeds of chicken, and to provide a scientific basis for better breeding and development and utilization of chicken products. 【Method】 Firstly, the main selection factors of broiler chickens were investigated. Secondly, local chickens (Wenchang chicken and Luyuan chicken), cultivated chickens (817, Huashan chicken) and introduced white broilers (Ross 308) were selected, and 30 chickens (15 male and 15 female) with close to average body weight of each breed were slaughtered. Both breast muscles were taken immediately after slaughter and used for taste evaluation, routine meat quality, myofiber characteristics, inosinic acid, fatty acid amino acid content and gene expression. Finally, Partial Least Squares (PLS) method was used to analyze the correlation between the results of taste evaluation and the results of physical and chemical determination, and to explore the influence of flavor substances in taste evaluation.【Result】 (1) The flavor was the main choice factor for broiler chickens. The sweetness and umami taste of Wenchang chicken breast were significantly higher than those of Ross 308 (P≤0.05). (2) The average myofiber area of Wenchang chicken and Luyuan chicken breast was significantly lower than that of other breeds (P≤0.05), and the average myofiber diameter of Wenchang chicken and Luyuan chicken breast was significantly lower than that of Huashan chicken and Ross 308 (P≤0.05). The inosinic acid content of Wenchang chickens was significantly higher than that of other breeds (P≤0.05). The saturated fatty acid content in breast muscle of Wenchang and Luyuan chickens was significantly higher than that of other breeds (P≤0.05), and the unsaturated fatty acid content in breast muscle of Ross 308 was significantly higher than that of Wenchang, Luyuan, and 817 chickens (P≤0.05). Except lysine, the content of other amino acids of Wenchang chickens were relatively high, and the content of umami amino acids were significantly higher than those of other breeds (P≤0.05). Except lysine, the content of most amino acids in breast meat of Ross 308 was relatively low. The glutamate ATV value of Wenchang chicken, Luyuan chicken, 817 chicken and Huashan chicken was greater than 1, and the order was as follows: Wenchang chicken > Luyuan Chicken >817 chickens > Huashan chicken. The ATV value of Alanine in Wenchang chicken breast was greater than 1. (3) The ACOX1 gene expression in breast muscle of Wenchang chickens was significantly higher than that of 817 chickens and Ross 308 (P≤0.05), and the GADL1 gene expression of Wenchang chickens and Luyuan chickens was significantly higher than that of other breeds (P≤0.05). The GLUD1 gene expression of Wenchang chickens was significantly higher than that of 817 chickens, Huashan chicken and Ross 308 (P≤0.05). (4) Most fatty acids had a positive effect on the salty and sour taste of chicken, most amino acids had a positive effect on sweet and umami taste, and inosinic acid had a positive effect on the sweet and umami taste of chicken. Palmitic oleic acid, α-linolenic acid, linoleic acid, inosinic acid and other free amino acids except lysine had a positive effect on the flavor level of chicken. 【Conclusion】It could be concluded that the content of inosinic acid and amino acid was one of the main reasons that the flavor of local chickens was better than that of introduced chickens. GADL1 and GLUD1 were related genes that affected the difference of chicken flavor. Inosinic acid, glutamic acid, alanine, palmitoleic acid, α-linolenic acid, and linoleic acid might be the key flavor substances for different varieties of chicken meat.

Key words: chicken, breeds, chicken meat quality, flavor, gene

Table 1

Nutrient levels of feed diets (%)"

项目
Item
0-21 d 22-42 d 43日龄至屠宰
43 d to slaughter
粗蛋白质 CP 20.96 18.65 16.50
粗纤维 CF 4.50 4.50 4.50
粗灰分 Ash 9.87 9.50 9.50
钙 Ca 1.20 0.90 0.80
总磷 TP 0.30 0.30 0.30
氯化钠 Nacl 0.55 0.50 0.50
赖氨酸 Lys 1.22 0.90 0.80
蛋氨酸 Met 0.55 0.45 0.38

Table 2

Taste evaluation index and reference standard of poultry meat"

项目 Item 定义 Definition 参考=强度 Reference=Strength
黏结性
Cohesiveness
第1次咬样品,在其断裂、碎裂前能够咬紧样品的距离
The first bite of the sample, the distance that can bite the sample before it breaks and shatters
玉米面包=1;椒盐脆饼=6;口香糖=10
Cornbread=1; pretzels=6; chewing gum=10
硬度
Hardness
前2次咬时,磨牙挤压样品所受到的力
Force exerted on the molar squeeze sample during the first 2 bites
奶油奶酪=1;干酪=4;橄榄=7;杏仁=10
Cream cheese=1; cheese=4; olives=7; almonds=10
多汁性
Succulence
最先5次咀嚼从样品中挤出水分的多少
The amount of water squeezed out of the sample by the first 5 chews
香蕉=1;蘑菇=4;黄瓜=7;西瓜=10
Banana=1; Mushroom=4; Cucumber=7; Watermelon=10
香味
Fragrance
气味的滋味感觉/刺激鼻腔的感觉
Taste sensation of odor/stimulation of nasal cavity
苏打饼干=1;橙汁=3;葡萄汁=5;葡萄果汁冲剂=7;八角=10
Soda crackers=1; orange juice=3; grape juice=5; grape juice punch=7; star anise=10
甜味 Sweetness 糖或高效甜味剂
Sugar or high potency sweeteners
2%,5%,10%的蔗糖水溶液=2,5,10
2%,5%,10% aqueous sucrose solution = 2,5,10
咸味
Saltiness
钠盐,特别是氯化钠
Sodium salts, especially sodium chloride
0.2%,0.35%,0.5%的氯化钠水溶液=2,5,10
0.2%,0.35%,0.5% aqueous solution of sodium chloride = 2,5,10
酸味
Sourness

Acid
0.05%,0.08%,0.15%的柠檬酸水溶液=2,5,10
0.05%,0.08%,0.15% aqueous citric acid solution=2,5,10
鲜味
Umami
谷氨酸钠
Monosodium glutamate
0.2%,0.5%,1%谷氨酸钠水溶液=2,5,10
0.2%,0.5%,1% monosodium glutamate aqueous solution=2,5,10

Table 3

Primers for flavor-related genes"

基因
Gene
基因号
Gene number
引物
Primer (5′-3′)
ACOX1 NM_001006205.1 F:CGAAAGGAGATCGAGGCCTTA
R:CTGATGGCTTGTTCACAGCG
GADL1 XM_004939424.3 F:GAAGGCGAGATGGAGGCTAGT
R:AGCCTCTTCCACAAATTTCTCTCC
IMPDH NM_001030601.2 F:CTGTGTGGTGCTGCTATCGG
R:CCTGAGAGGAATCCAGCACG
GLUD1 XM_015288033.2 F:CTGCAACTGGTCGTGGTCTC
R:CCCACGTTACCAAATCCCTGA

Fig. 1

Main factors for selecting broiler products"

Table 4

Taste evaluation results in different breeds of chicken"

项目
Item (n=30)
文昌鸡
Wenchang chicken
鹿苑鸡
Luyuan chicken
817肉鸡
817 chicken
花山鸡
Huashan chicken
罗斯308
Ross 308
黏结性 Cohesiveness 3.08±0.33b 3.19±0.35b 2.58±0.30a 2.50±0.14a 2.50±0.29a
硬度 Hardness 4.74±0.17 4.49±0.30 4.50±0.38 3.83±0.22 3.83±0.17
多汁性 Succulence 3.47±0.24ab 3.42±0.27ab 3.58±0.36b 3.42±0.17a 4.00±0.29b
香味 Fragrance 3.59±0.01 3.53±0.29 3.58±0.08 3.83±0.22 3.50±0.14
甜味 Sweetness 2.31±0.06b 2.01±0.11ab 2.17±0.30ab 1.92±0.30a 1.92±0.33a
咸味Saltiness 1.63±0.04a 1.56±0.03a 2.08±0.42b 2.25±0.43b 2.17±0.33b
酸味 Sourness 1.79±0.11a 1.59±0.05a 2.58±0.42b 2.25±0.25b 2.42±0.46b
鲜味 Umami 3.49±0.18b 2.91±0.09a 2.67±0.65a 3.42±0.51b 2.75±0.14a

Table 5

Determination of conventional meat quality and muscle fiber characteristics in different breeds"

项目
Item
名称
Name
文昌鸡
Wenchang chicken
鹿苑鸡
Luyuan chicken
817肉鸡
817 chicken
花山鸡
Huashan chicken
罗斯308
Ross 308
常规肉品质
Conventional meat quality (n=30)
失水率 Water loss rate 0.43±0.01b 0.43±0.01b 0.42±0.01b 0.39±0.01a 0.41±0.01ab
pH 4.38±0.12a 4.53±0.06ab 5.04±0.14b 4.93±0.09b 5.62±0.14c
剪切力 Shear force (N) 17.41±4.74c 16.70±2.31c 12.71±0.98ab 10.23±0.63ab 8.67±0.98a
L* 55.82±1.47b 57.87±0.52c 55.31±1.04b 55.67±0.67b 53.50±1.04a
a* 5.75±0.21c 3.34±0.45b 1.69±0.38a 1.484±0.246a 1.116±0.381a
b* 8.30±0.65c 5.50±0.79a 7.37±0.59b 9.09±0.38c 6.27±0.59ab
肌纤维特性
Myofibre characteristics (n=12)
平均肌纤维面积
Mean muscle fiber area (μm2)
1614.81±68.60a 1727.9±80.00a 1972.87±63.68b 2026±145.76b 2925.34±71.56c
平均肌纤维直径
Mean muscle fiber diameter (μm)
42.01±0.85a 43.91±1.03a 44.91±1.03ab 47.27±1.63b 53.89±2.36c
平均肌纤维密度
Mean muscle fiber density (root/μm2)
535.31±23.60c 519.59±27.29bc 491.42±30.69bc 435.82±30.95b 291.60±31.65a
肌苷酸 IMP (mg·g-1) 1.58±0.12c 1.41±0.10b 1.23±0.13ab 1.35±0.07b 0.93±0.09a

Table 6

Determination of muscle fatty acid in different breeds (g/100g)"

名称
Item (n=12)
文昌鸡
Wenchang chicken
鹿苑鸡
Luyuan chicken
817肉鸡
817 chicken
花山鸡
Huashan chicken
罗斯308
Ross 308
肉豆蔻酸 Myristic acid (C14:0) 0.60±0.08b 0.34±0.10a 0.34±0.01a 0.39±0.06a 0.50±0.04ab
棕榈酸 Palmitic acid (C16:0) 23.20±1.25b 21.57±2.12a 19.64±1.09a 21.91±2.07a 22.96±2.16ab
棕榈酸油酸 Palmitoleic acid (16:1) 2.15±0.02b 0.61±0.05a 0.63±0.02a 2.94±0.01b 2.61±0.01b
十七烷酸 Heptadecanoic acid (c17:0) 2.15±0.01c 0.21±0.01b 0.18±0.01ab 0.11±0.01a 0.12±0.01a
十七碳烯酸 Heptadecamonoenoic acid (c17:1) 0.16±0.01b 0.18±0.01b 0.09±0.01a 0.13±0.01b 0.08±0.01a
十八烷酸 Stearic acid (c18:0) 9.58±0.68b 10.12±1.23b 10.10±1.12b 7.86±0.67a 8.85±0.63a
油酸 Oleic acid (C18:1c) 24.56±2.20c 16.15±1.18a 20.39±2.15b 26.08±2.18c 35.26±3.28d
亚油酸 Linolelaidic Acid (C18:2c) 11.89±1.18a 16.48±1.15b 24.32±2.22c 22.23±2.18c 17.75±1.12b
二十碳烯酸 Eicosenoic acid (c20:1) 0.16±0.01a 0.18±0.01a 0.20±0.01a 0.26±0.02b 0.32±0.02c
α-亚麻酸α-Linolenic acid (c18:3n3) 0.21±0.02a 0.27±0.02a 1.13±0.11c 1.09±0.08c 0.52±0.04b
二十碳二烯酸 Eicosadienoic acid (c20:2) 0.22±0.02a 0.44±0.02b 0.81±0.04c 0.42±0.03b 0.29±0.03ab
二十碳三烯酸Eicosatrienoic acid (c20:3n6) 1.00±0.08c 1.06±0.08c 0.71±0.03b 0.75±0.04b 0.15±0.01a
二十三烷酸 Tricosanoic acid (c23:0) 7.75±0.19c 12.62±1.38d 7.23±0.38c 4.85±0.21b 2.83±0.18a
饱和脂肪酸 SFA 43.29±3.52b 45.01±4.08b 37.67±2.96a 35.13±3.08a 35.39±3.08a
必需脂肪酸 EFA 12.09±1.11a 16.75±1.12ab 25.58±1.17b 23.48±2.22b 18.45±1.15ab
不饱和脂肪酸 UFA 41.48±3.58a 36.44±3.08a 49.80±4.48b 54.87±5.08bc 58.23±4.68c

Table 7

Determination of free amino acids in different breeds (g·kg-1)"

项目
Item (n=12)
阈值
Threshold value
实际测定值 Actual measured value ATV
文昌鸡
Wenchang chicken
鹿苑鸡
Luyuan chicken
817肉鸡
817 chicken
花山鸡
Huashan chicken
罗斯308
Ross 308
文昌鸡
Wenchang chicken
鹿苑鸡
Luyuan chicken
817肉鸡
817 chicken
花山鸡
Huashan chicken
罗斯308
Ross 308
天门冬氨酸 Asp 1 0.36±0.01c 0.12±0.01b 0.16±0.01b 0.12±0.01b 0.06±0.01a 0.36 0.12 0.16 0.12 0.06
苏氨酸 Thr 2.6 0.39±0.01b 0.19±0.02a 0.36±0.02b 0.24±0.02ab 0.12±0.01a 0.15 0.07 0.14 0.09 0.05
丝氨酸 Ser 1.5 0.44±0.03b 0.22±0.02a 0.26±0.02ab 0.19±0.01a 0.15±0.01a 0.29 0.15 0.17 0.13 0.10
谷氨酸 Glu 0.3 0.81±0.08b 0.43±0.04ab 0.41±0.04ab 0.31±0.02a 0.28±0.02a 2.70 1.43 1.37 1.03 0.93
甘氨酸 Gly 1.3 0.33±0.03c 0.11±0.01ab 0.17±0.01b 0.08±0.01a 0.06±0.01a 0.25 0.08 0.13 0.06 0.05
丙氨酸 Ala 0.6 0.64±0.05b 0.24±0.01a 0.36±0.01a 0.25±0.02a 0.19±0.01a 1.07 0.40 0.60 0.42 0.32
缬氨酸 Val 0.4 0.30±0.02b 0.14±0.01a 0.19±0.01ab 0.10±0.01a 0.09±0.01a 0.75 0.35 0.48 0.25 0.23
蛋氨酸 Met 0.3 0.16±0.01b 0.11±0.01b 0.12±0.01b 0.08±0.01a 0.08±0.01a 0.53 0.37 0.40 0.27 0.27
异亮氨酸 Ile 0.9 0.20±0.01b 0.09±0.01ab 0.12±0.01b 0.07±0.01a 0.06±0.01a 0.22 0.10 0.13 0.08 0.07
亮氨酸 Leu 1.9 0.38±0.02b 0.24±0.01a 0.27±0.01ab 0.16±0.01a 0.16±0.01a 0.20 0.13 0.14 0.08 0.08
酪氨酸 Tyr 0.21±0.01b 0.18±0.01ab 0.20±0.01b 0.13±0.01a 0.11±0.01a
苯丙氨酸 Phe 0.9 0.24±0.01b 0.16±0.01ab 0.17±0.01ab 0.12±0.01a 0.13±0.01a 0.27 0.18 0.19 0.13 0.14
赖氨酸 Lys 0.5 0.43±0.04a 3.19±0.03b 2.16±0.01b 2.32±0.01b 2.78±0.02b 0.86 6.38 4.32 4.64 5.56
组氨酸 His 0.5 0.24±0.01b 0.08±0.01a 0.13±0.01ab 0.07±0.01a 0.04±0.01a 0.48 0.16 0.26 0.14 0.08
精氨酸 His 3 0.37±0.02b 0.17±0.01ab 0.24±0.01ab 0.17±0.01ab 0.09±0.01a 0.12 0.06 0.08 0.06 0.03
脯氨酸 Pro 0.19±0.01b 0.05±0.01a 0.10±0.01ab 0.06±0.01a 0.03±0.01a
必需氨基酸 EAA 2.72±0.21a 4.37±0.31b 3.76±0.31ab 3.33±0.30ab 3.56±0.21ab
非必需氨基酸 NEAA 2.99±0.21b 1.34±0.12a 1.65±0.11a 1.14±0.11a 0.87±0.03a
甜味氨基酸 SAA 2.42±0.11a 3.99±0.13b 3.40±0.31b 3.14±0.35b 3.33±0.41b
鲜味氨基酸 FAA 1.17±0.09c 0.55±0.09b 0.57±0.08b 0.42±0.08ab 0.34±0.06a
总氨基酸 TAA 5.70±0.51b 5.71±0.45b 5.42±0.47b 4.46±0.39a 4.43±0.35a

Fig. 2

Expression of flavor-related genes in chicken"

Fig. 3

Partial least squares analysis of sensory evaluation results and taste substance concentration"

[1]
LU Q, WEN J, ZHANG H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poultry Science, 2007, 86(6): 1059-1064.

pmid: 17495073
[2]
ZHANG G M, WEN J, CHEN J L, ZHAO G P, ZHENG M Q, LI W J. Effect of conjugated linoleic acid on growth performances, carcase composition, plasma lipoprotein lipase activity and meat traits of chickens. British Poultry Science, 2007, 48(2): 217-223.

pmid: 17453815
[3]
LI W J, ZHAO G P, CHEN J L, ZHENG M Q, WEN J. Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken. British Poultry Science, 2009, 50(2): 188-198.

doi: 10.1080/00071660902755409 pmid: 19373719
[4]
姜琳琳. 不同品种鸡的肌肉化学成分及其与风味关系的比较研究[D]. 武汉: 华中农业大学, 2006.
JIANG L L. Comparation of the chemical composition in different kinds of broilers meat and the relationship with the flavour[D]. Wuhan: Huazhong Agricultural University, 2006. (in Chinese)
[5]
DEVATKAL S K, NAVEENA B M, KOTAIAH T. Quality, composition, and consumer evaluation of meat from slow-growing broilers relative to commercial broilers. Poultry Science, 2019, 98(11): 6177-6186.

doi: 10.3382/ps/pez344 pmid: 31222363
[6]
KIM S K, TAKEUCHI T, YOKOYAMA M, MURATA Y, KANENIWA M, SAKAKURA Y. Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture, 2005, 250(3/4): 765-774.

doi: 10.1016/j.aquaculture.2005.04.073
[7]
崔小燕, 苟钟勇, 蒋守群, 蒋宗勇. 鸡肉风味的形成机制与调控研究进展. 动物营养学报, 2019, 31(2): 500-508.
CUI X Y, GOU Z Y, JIANG S Q, JIANG Z Y. Research advance of formation mechanism of chicken meat flavor and regulation. Chinese Journal of Animal Nutrition, 2019, 31(2): 500-508. (in Chinese)
[8]
YAMAGUCHI S, NINOMIYA K. What is umami? Food Reviews International, 1998, 14(2/3): 123-138.

doi: 10.1080/87559129809541155
[9]
CLAUSEN M P, CHRISTENSEN M, DJURHUUS T H, DUELUND L, MOURITSEN O G. The quest for umami: Can sous vide contribute? International Journal of Gastronomy and Food Science, 2018, 13: 129-133.

doi: 10.1016/j.ijgfs.2018.03.002
[10]
王春青, 李侠, 张春晖, 陈旭华, 孙红梅, 李银, 李海, 何雷堂. 肌原纤维特性与鸡肉原料肉品质的关系. 中国农业科学, 2014, 47(10): 2003-2012.

doi: 10.3864/j.issn.0578-1752.2014.10.014
WANG C Q, LI X, ZHANG C H, CHEN X H, SUN H M, LI Y, LI H, HE L T. Study on relationship between myofibril characteristics and meat quality of chicken raw meat. Scientia Agricultura Sinica, 2014, 47(10): 2003-2012. (in Chinese)
[11]
JATURASITHA S, SRIKANCHAI T, KREUZER M, WICKE M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (black-boned and Thai native) and imported extensive breeds (bresse and Rhode island red). Poultry Science, 2008, 87(1): 160-169.

doi: 10.3382/ps.2006-00398
[12]
WATTANACHANT S, BENJAKUL S, LEDWARD D A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poultry Science, 2004, 83(1): 123-128.

pmid: 14761094
[13]
FANATICO A C, PILLAI P B, EMMERT J L, OWENS C M. Meat quality of slow- and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science, 2007, 86(10): 2245-2255.

pmid: 17878457
[14]
王长远, 马万龙, 姜昱男. 猪肉新鲜度的检测及肉质综合评定. 农产品加工(学刊), 2007(10): 75-77.
WANG C Y, MA W L, JIANG Y N. Detection of pork freshness and synthetic evaluation of pork quality. Academic Periodical of Farm Products Processing, 2007(10): 75-77. (in Chinese)
[15]
尹忠平, 夏延斌, 李智峰, 颜学祥. 冷却猪肉pH值变化与肉汁渗出率的关系研究. 肉类研究, 2004, 18(3): 38-40.
YIN Z P, XIA Y W, LI Z F, YAN X X. Study on the relationship between pH value change of chilled pork and exudation rate of gravy. Meat Research, 2004, 18(3): 38-40. (in Chinese)
[16]
PURSLOW P P. Intramuscular connective tissue and its role in meat quality. Meat Science, 2005, 70(3): 435-447.

doi: 10.1016/j.meatsci.2004.06.028 pmid: 22063743
[17]
李雪茹, 师希雄, 王建忠, 张攀高, 田铸, 韩玲. 一氧化氮合成酶抑制剂对宰后成熟过程中牦牛肉品质的影响. 中国农业科学, 2020, 53(8): 1617-1626.

doi: 10.3864/j.issn.0578-1752.2020.08.011
LI X R, SHI X X, WANG J Z, ZHANG P G, TIAN Z, HAN L. Effect of nitric oxide synthetase inhibitor on yak meat quality during post-mortem aging. Scientia Agricultura Sinica, 2020, 53(8): 1617-1626. (in Chinese)

doi: 10.3864/j.issn.0578-1752.2020.08.011
[18]
沈晓晖, 刘炜, 吴昊昊. 不同肉鸡品种肉质性状的比较. 上海畜牧兽医通讯, 2009(6): 50-51.
SHEN X H, LIU W, WU H H. Comparison of meat quality traits of different broiler breeds. Shanghai Journal of Animal Husbandry and Veterinary Medicine, 2009(6): 50-51. (in Chinese)
[19]
JEON H J, CHOE J H, JUNG Y K, KRUK Z A, LIM D G, JO C R. Comparison of the chemical composition, textural characteristics, and sensory properties of north and South Korean native chickens and commercial broilers. Korean Journal for Food Science of Animal Resources, 2010, 30(2): 171-178.

doi: 10.5851/kosfa.2010.30.2.171
[20]
高儒松, 张春霞, 赵红艳. 肌肉组织学特性与肉品质的关系. 肉类研究, 2009, 23(5): 11-15.
GAO R S, ZHANG C X, ZHAO H Y. Muscular histological characteristics and meat quality. Meat Research, 2009, 23(5): 11-15. (in Chinese)
[21]
陈宽维, 李慧芳, 张学余, 陈国宏, 高玉时. 肉鸡肌纤维与肉质关系研究. 中国畜牧杂志, 2002, 38(6): 6-7.
CHEN K W, LI H F, ZHANG X Y, CHEN G H, GAO Y S. Study on the relation between muscle fiber and meat quality in broilers. Chinese Journal of Animal Science, 2002, 38(6): 6-7. (in Chinese)
[22]
吴信生, 陈国宏, 陈宽维, 王克华, 常洪, 童海兵, 吴兆林, 李碧春, 张学余. 中国部分地方鸡种肌肉组织学特点及其肉品质的比较研究. 江苏农学院学报, 1998, 19(4): 52-58.
WU X S, CHEN G H, CHEN K W, WANG K H, CHANG H, TONG H B, WU Z L, LI B C, ZHANG X Y. Comparison on histologic characteristics of muscle and muscle quality in Chinese native chickens. Journal of Jiangsu Agricultural College, 1998, 19(4): 52-58. (in Chinese)
[23]
KOOMKRONG N, THEERAWATANASIRIKUL S, BOONKAEWWAN C, JATURASITHA S, KAYAN A. Breed-related number and size of muscle fibres and their response to carcass quality in chickens. Italian Journal of Animal Science, 2015, 14(4): 4145.

doi: 10.4081/ijas.2015.4145
[24]
MUSFIROH A F, JANISCH S, BINTORO V P, WICHE M, PRAMONOY B. The correlation of muscle fiber and perimysium thickness to the quality of turkey breast meat. Jurnal Aplikasl Teknologi Pangan, 2013, 2:121-125.
[25]
WATTANACHANT S, BENJAKUL S, LEDWARD D A. Microstructure and thermal characteristics of Thai indigenous and broiler chicken muscles. Poultry Science, 2005, 84(2): 328-336.

pmid: 15742971
[26]
IWAMOTO E, OKA A, IWAKI F. Effects of the fattening period on the fatty acid composition of fat deposits and free amino acid and inosinic acid contents of the longissimus muscle in carcasses of Japanese Black steers. Animal Science Journal = Nihon Chikusan Gakkaiho, 2009, 80(4): 411-417.
[27]
王述柏. 鸡肉肌苷酸沉积规律及营养调控研究[D]. 北京: 中国农业科学院, 2004.
WANG S B. Studies on the deposition of 5’-inosinic acid in chicken meat and its modification by nutrition[D]. Beijing: Chinese Academy of Agricultural Sciences, 2004. (in Chinese)
[28]
邢通, 王成赞, 张林, 高峰. 鸡肉风味物质的影响因素及其营养调控研究进展. 动物营养学报, 2021, 33(6): 3028-3035.

doi: 10.3969/j.issn.1006-267x.2021.06.004
XING T, WANG C Z, ZHANG L, GAO F. Research advance of factors affecting chicken meat flavor and its nutritional regulation. Chinese Journal of Animal Nutrition, 2021, 33(6): 3028-3035. (in Chinese)
[29]
TANG H, GONG Y Z, WU C X, JIANG J, WANG Y, LI K. Variation of meat quality traits among five genotypes of chicken. Poultry Science, 2009, 88(10): 2212-2218.

doi: 10.3382/ps.2008-00036 pmid: 19762878
[30]
MOTTRAM D S. Flavour formation in meat and meat products: A review. Food Chemistry, 1998, 62(4): 415-424.

doi: 10.1016/S0308-8146(98)00076-4
[31]
巨晓军, 束婧婷, 章明, 刘一帆, 屠云洁, 姬改革, 单艳菊, 邹剑敏. 不同品种、饲养周期肉鸡肉品质和风味的比较分析. 动物营养学报, 2018, 30(6): 2421-2430.
JU X J, SHU J T, ZHANG M, LIU Y F, TU Y J, JI G G, SHAN Y J, ZOU J M. Comparison analysis of meat quality and flavor of different breeds and feeding periods of broilers. Chinese Journal of Animal Nutrition, 2018, 30(6): 2421-2430. (in Chinese)
[32]
荀文, 王桂瑛, 谷大海, 徐志强, 普岳红, 葛长荣, 廖国周. 鸡肉中脂肪酸的研究进展. 食品研究与开发, 2020, 41(21): 214-219.
XUN W, WANG G Y, GU D H, XU Z Q, PU Y H, GE C R, LIAO G Z. Review on fatty acid in muscle tissues of chicken. Food Research and Development, 2020, 41(21): 214-219. (in Chinese)
[33]
PAVLOVSKI Z, SKRBIC Z, STANISIC N, LILIC S, HENGL B, LUKIC M, PETRICEVIC V. Differences in fatty acid composition of meat between naked neck and two commercial broiler chicken breeds. Biotechnology in Animal Husbandry, 2013, 29(3): 467-476.

doi: 10.2298/BAH1303467P
[34]
ZHANG M, CHEN X, HAYAT K, DUHORANIMANA E, ZHANG X M, XIA S Q, YU J Y, XING F L. Characterization of odor-active compounds of chicken broth and improved flavor by thermal modulation in electrical stewpots. Food Research International, 2018, 109: 72-81.

doi: S0963-9969(18)30307-7 pmid: 29803494
[35]
CHO S H, SEONG P N, KIM J H, PARK B Y, BAEK B H, LEE Y J, IN T S, LEE J M, KIM D H, AHN C N. Calorie, cholesterol, collagen, free amino acids, nucleotide-related compounds and fatty acid composition of hanwoo steer beef with 1++Quality grade. Korean Journal for Food Science of Animal Resources, 2008, 28(3): 333-343.

doi: 10.5851/kosfa.2008.28.3.333
[36]
CHOE J H, NAM K C, JUNG S, KIM B N, YUN H J, JO C R. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean Journal for Food Science of Animal Resources, 2010, 30(1): 13-19.

doi: 10.5851/kosfa.2010.30.1.13
[37]
TOLDRÁ F. The role of muscle enzymes in dry-cured meat products with different drying conditions. Trends in Food Science & Technology, 2006, 17(4): 164-168.
[38]
YAMAGUCHI S. Fundamental properties of Umami taste. Journal of the Agricultural Chemical Society of Japan, 1991, 65(5): 903-906.
[39]
TIAN Y G, ZHU S, XIE M Y, WANG W Y, WU H J, GONG D M. Composition of fatty acids in the muscle of black-bone silky chicken (Gallus gellus demesticus brissen) and its bioactivity in mice. Food Chemistry, 2011, 126(2): 479-483.

doi: 10.1016/j.foodchem.2010.11.024
[40]
SOHN M, HO C T. Ammonia generation during thermal degradation of amino acids. Journal of Agricultural and Food Chemistry, 1995, 43(12): 3001-3003.

doi: 10.1021/jf00060a001
[41]
HWANG D F, CHEN T Y, JENG S S. Seasonal variations of free amino acids and nucleotide-related compounds in the muscle of cultured Taiwanese puffer Takifugu rubripes. Fisheries Science, 2000, 66(6): 1123-1129.

doi: 10.1046/j.1444-2906.2000.00178.x
[42]
KATO H, RHUE M R, NISHIMURA T. Role of free amino acids and peptides in food taste. Flavor Chemistry. Washington, DC: American Chemical Society, 1989: 158-174.
[43]
ZHENG J Y, TAO N P, GONG J, GU S Q, XU C H. Comparison of non-volatile taste-active compounds between the cooked meats of pre- and post-spawning Yangtze Coilia ectenes. Fisheries Science, 2015, 81(3): 559-568.

doi: 10.1007/s12562-015-0858-7
[44]
龚骏, 陶宁萍, 顾赛麒. 食品中鲜味物质及其检测研究方法概述. 中国调味品, 2014, 39(1): 129-135.
GONG J, TAO N P, GU S Q. Overview of umami substance in food and its detection methods. China Condiment, 2014, 39(1): 129-135. (in Chinese)
[45]
LIU P Y, GE X M, DING H Z, JIANG H L, CHRISTENSEN B M, LI J Y. Role of glutamate decarboxylase-like protein 1 (GADL1) in taurine biosynthesis. Journal of Biological Chemistry, 2012, 287(49): 40898-40906.

doi: 10.1074/jbc.M112.393728 pmid: 23038267
[46]
MAHOOTCHI E, CANNON HOMAEI S, KLEPPE R, WINGE I, HEGVIK T A, MEGIAS-PEREZ R, TOTLAND C, MOGAVERO F, BAUMANN A, GLENNON J C, MILETIC H, KURSULA P, HAAVIK J. GADL1 is a multifunctional decarboxylase with tissue-specific roles in β-alanine and carnosine production. Science Advances, 2020, 6(29): eabb3713.
[47]
章琳俐, 李丽, 朱志明, 缪中纬, 辛清武, 郑嫩珠. 基于RNA-seq鉴定连城白鸭肉质风味相关候选基因. 农业生物技术学报, 2021, 29(4): 711-722.
ZHANG L L, LI L, ZHU Z M, MIAO Z W, XIN Q W, ZHENG N Z. Identification of candidate genes related to meat flavor in Liancheng white duck (Anas platyrhynchos) based on RNA-seq. Journal of Agricultural Biotechnology, 2021, 29(4): 711-722. (in Chinese)
[48]
陈怡博. 略阳乌鸡肌肉肌苷酸含量的变化规律与相关基因表达的关联性研究[D]. 汉中: 陕西理工大学, 2021.
CHEN Y B. Study on the relationship between the change rule of IMP content and correlation of related genes expression in muscle of Lueyang black-bone chicken[D]. Hanzhong: Shaanxi University of Technology, 2021. (in Chinese)
[49]
LIU Y F, ZHANG M, SHAN Y J, JI G G, JU X J, TU Y J, SHENG Z W, XIE J F, ZOU J M, SHU J T. miRNA-mRNA network regulation in the skeletal muscle fiber phenotype of chickens revealed by integrated analysis of miRNAome and transcriptome. Scientific Reports, 2020, 10(1): 1-9.

doi: 10.1038/s41598-019-56847-4
[50]
DAJANTA K, APICHARTSRANGKOON A, CHUKEATIROTE E, FRAZIER R A. Free-amino acid profiles of thua nao, a Thai fermented soybean. Food Chemistry, 2011, 125(2): 342-347.

doi: 10.1016/j.foodchem.2010.09.002
[1] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[2] WANG ZhaoHao, GUO XingRu, ZHANG LeHuan, HE YongRui, CHEN ShanChun, YAO LiXiao. Expression Pattern of csi-miR399 in Response to Xanthomonas citri subsp. citri Infection and Its Disease Resistance Analysis [J]. Scientia Agricultura Sinica, 2023, 56(8): 1484-1493.
[3] JIANG Dong, WANG Xu, LI RenJing, ZHAO XiaoDong, DAI XiangSheng, LIU ZhengWei. Population Genomic Structure of Pomelo Germplasm and Fruit Acidity Associated Genes Identification by Genotyping-by-Sequencing Technology [J]. Scientia Agricultura Sinica, 2023, 56(8): 1547-1560.
[4] WANG HuiLing, YAN AiLing, WANG XiaoYue, LIU ZhenHua, REN JianCheng, XU HaiYing, SUN Lei. Genome-Wide Association Studies for Grape Berry Weight Related Traits [J]. Scientia Agricultura Sinica, 2023, 56(8): 1561-1573.
[5] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[6] GU WenDong, LIU ChunJuan, LI Bang, LIU Chang, ZHOU YuFei. Effects of Exogenous Tryptophan on C/N Balance and Senescence Characteristics of Sorghum Seedlings Under Low Nitrogen Stress [J]. Scientia Agricultura Sinica, 2023, 56(7): 1295-1310.
[7] SHAO HongYang, MENG Xiang, ZHANG Tao, CHEN Min. Analysis of Cytochrome P450 Genes in Response to Quercetin and Function of CYP6ZB2 in Hyphantria cunea [J]. Scientia Agricultura Sinica, 2023, 56(7): 1322-1332.
[8] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[9] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[10] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[11] WANG Mai, DONG QingFeng, GAO ShenAo, LIU DeZheng, LU Shan, QIAO PengFang, CHEN Liang, HU YinGang. Genome-Wide Association Studies and Mining for Favorable Loci of Root Traits at Seedling Stage in Wheat [J]. Scientia Agricultura Sinica, 2023, 56(5): 801-820.
[12] YANG MingLu, ZHANG HaiLiang, LUO HanPeng, HUANG XiXia, ZHANG HanLin, ZHANG ShiShi, WANG Yan, LIU Lin, GUO Gang, WANG YaChun. Estimation of Genetic Parameters and Genome-Wide Association Study of Heat Indicators in Holstein Cattle Based on Collar-Mounted Device [J]. Scientia Agricultura Sinica, 2023, 56(5): 995-1006.
[13] ZHANG KaiJing, HE ShuaiShuai, JIA Li, HU YuChao, YANG DeKun, LU XiaoMin, ZHANG QiAn, YAN CongSheng. Genome-Wide Identification and Expression Analysis of DIR Gene Family in Cucumber [J]. Scientia Agricultura Sinica, 2023, 56(4): 711-728.
[14] GUO YuChen, DONG Ming, ZENG XianMing, TIAN HuiXin, YIN JiaQi, HOU YuKe, BAI Yun, TANG ChangBo, HAN MinYi, XU XingLian. Effects of Pulsed Electric Field on Gelation Properties of PSE-Like Chicken Myosin: A Molecular Dynamics Simulation Analysis [J]. Scientia Agricultura Sinica, 2023, 56(4): 741-753.
[15] XI MengXue, SHEN Dan, SHI YiFan, LI ChunMei. Effects of TBHQ on Pyroptosis, Necroptosis and Inflammatory Damage of Chicken Embryonic Lung Tissues Induced by PM2.5 from Chicken Houses [J]. Scientia Agricultura Sinica, 2023, 56(4): 779-787.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!