Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (19): 3767-3778.doi: 10.3864/j.issn.0578-1752.2022.19.007

• PLANT PROTECTION • Previous Articles     Next Articles

Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker

XIAO GuiHua1,2,3(),WEN Kang1,2,3,HAN Jian4,HAO ChenXing1,2,3,YE RongChun1,2,3,ZHU YiChi1,2,3,XIAO ShunYuan1,DENG ZiNiu1,2,3,MA XianFeng1,2,3()   

  1. 1College of Horticulture, Hunan Agricultural University, Changsha 410128
    2Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha 410128
    3National Center for Citrus Improvement (Changsha), Changsha 410128
    4Hunan Institute of Horticulture, Changsha 410125
  • Received:2022-04-11 Accepted:2022-05-17 Online:2022-10-01 Published:2022-10-10
  • Contact: XianFeng MA E-mail:17843096258@163.com;ma8006@hunau.edu.cn

Abstract:

【Background】 Citrus canker is a bacterial disease caused by Xanthomonas citri subsp. citri (Xcc), which can infect branches, leaves and fruits, and affects almost all major citrus varieties. The results of a previous survey of 39 citrus orchards in Hunan Province showed that soil acidification and exchange calcium deficiency in citrus orchards were serious and calcium deficiency existed in all leaves. Calcium is one of the elements required by plants in large quantities, and calcium deficiency causes nutritional imbalance, reduced growth potential and compromised plant immunity level. However, the effect of calcium element on the process of citrus infection with canker is not clear. 【Objective】 The objective of this study is to analyze the pathogenic differences after inoculation with Xcc in Poncirus trifoliata (sensitive to citrus canker) leaves under different calcium concentrations, and to explore the role of calcium in Xcc infection of P. trifoliata leaves. 【Method】 The seedlings of P. trifoliata were sand cultured with calcium concentrations of 0, 0.75, 3, and 30 mmol·L-1. During the growth period of P. trifoliata, the biomass, chlorophyll a and b concentrations, and calcium content in roots and leaves were determined, as well as the formation of reactive oxygen species (ROS) in roots and callose deposition. The effects of Xcc inoculation on cell wall synthesis-related genes and immune-related genes in P. trifoliata leaves were investigated. 【Result】 Compared with 3 mmol·L-1 calcium treatment, 0, 0.75 and 30 mmol·L-1 calcium treatments inhibited the growth and development of aboveground and underground parts of P. trifoliate, and chlorophyll a and b concentrations decreased. The calcium content in roots and leaves was proportional to the amount of exogenous calcium. ROS and callose deposition were generated in roots after treatment with different calcium concentrations, reaching the maximum at 3 mmol·L-1. After inoculation with Xcc, the leaf symptoms gradually decreased with the increase of calcium concentration, but the growth of Xcc had no significant difference. Compared with 3 mmol·L-1 treatment, PtCESA4, a gene involved in cell wall synthesis, was up-regulated and then down-regulated by Xcc under 0 mmol·L-1 treatment, and up-regulated by Xcc under 30 mmol·L-1 treatment. PtPME and PtFLA were down-regulated by Xcc under 0 mmol·L-1 treatment, and up-regulated by Xcc under 30 mmol·L-1 treatment. The expression levels of immune pathway related genes PtGSL, PtGST1 and PtWRKY22 induced by Xcc at 30 mmol·L-1 were higher than those at 0 and 3 mmol·L-1 after inoculation with Xcc at 0, 2, 4 and 6 dpi. 【Conclusion】 The growth and development of P. trifoliate is affected by calcium deficiency and excess, resulting in leaf chlorosis, and ROS production and callose deposition in roots decreased. The sensitive symptoms on the leaf surface caused by Xcc were greatly attenuated after calcium application, but the bacterial content was not significantly different from that of the control. Calcium may promote cell wall thickening by regulating genes related to cell wall synthesis, thereby inhibiting Xcc from breaking through leaf epidermis and forming typical symptoms.

Key words: citrus canker, Xanthomonas citri subsp. citri (Xcc), calcium, Poncirus trifoliata, immunity

Table 1

Primers list of genes related to PTI immune response and cell wall synthesis"

基因Gene 引物名称Primer name 引物序列Primer sequence (5′-3′) Tm (℃)
PtGSL PtGSL-qPCR-F GGTGGGATGGAGAACAAGAACACC 59.8
PtGSL-qPCR-R GGTACCAAATCTTCGTCTGCCCAT 59.3
PtWAKY22
PtWAKY22-qPCR-F GCGGATTGTCTCGCATGTG 59.6
PtWAKY22-qPCR-R TTATGGGTTTCTGCCCGTATTT 60.0
PtGST1
PtGST1-qPCR-F GCCCGTTTGTCTCAGTCCAA 59.8
PtGST1-qPCR-R TGCAAATCGACCAAGGTGAA 59.7
PtCESA4
PtCESA4-qPCR-F GATGGGCTCTTGGCTCTGTT 59.2
PtCESA4-qPCR-R GGTGTTGGTGTATGCAAGCC 59.4
Actin
Actin-qPCR-F CACACTGGAGTGATGGTTGG 59.4
Actin-qPCR-R ATTGGCCTTGGGGTTAAGAG 60.0
PtPME
PtPME-qPCR-F GAACCTAACGGAAGCCCACA 58.6
PtPME-qPCR-R GACTCCGTTGCTCGACTTCA 59.3
PtFLA
PtFLA-qPCR-F GACCCTCTACCCGAACCTCT 59.4
PtFLA-qPCR-R GCAGCGTCATGTTGAACGAA 59.1
PtRbohD
PtRbohD-qPCR-F GTAAATTGCGCTGCCGTCTC 58.3
PtRbohD-qPCR-R GTCCAATCGCCCAAAGTTCG 59.2
PtRbohF
PtRbohF-qPCR-F GACCTTGTCAAAGGGGCAGA 59.6
PtRbohF-qPCR-R CCTATCGAAGGGCTTTGGCA 58.1

Fig. 1

Differences in growth and development of P. trifoliata treated with different calcium concentrations"

Fig. 2

The chlorophyll concentration of P. trifoliata leaves under different calcium concentration treatments"

Fig. 3

The calcium content in leaves (A) and roots (B) of P. trifoliate under different calcium concentration treatments"

Fig. 4

Observation of susceptibility symptoms and quantitative analysis of bacteria after Xcc inoculation"

Fig. 5

Relative expression level of genes involved in cell wall synthesis after inoculation with Xcc under different calcium concentration treatments"

Fig. 6

The relative expression levels of immune-related genes after inoculation with Xcc under different calcium concentration treatments"

Fig. 7

DAB and callose staining in the roots of P. trifoliata under different calcium concentration treatments"

[1] 赵宜波, 韩健, 杨贵兵, 龙立长, 谭振华, 李先信, 周卫军, 邓子牛, 马先锋. 湖南省甜橙主产区土壤和叶果矿质元素状况分析. 中国南方果树, 2020, 49(6): 27-33.
ZHAO Y B, HAN J, YANG G B, LONG L C, TAN Z H, LI X X, ZHOU W J, DENG Z N, MA X F. Analysis of soil and leaf and fruit mineral elements in main producing areas of sweet orange in Hunan Province. South China Fruits, 2020, 49(6): 27-33. (in Chinese)
[2] 杨利玲, 张桂兰. 土壤中的钙化学与植物的钙营养. 甘肃农业, 2006(10): 272-273.
YANG L L, ZHANG G L. Calcium chemistry in soil and calcium nutrition in plants. Gansu Agriculture, 2006(10): 272-273. (in Chinese)
[3] WHITE P J, BROADLEY M R. Calcium in plants. Annals of Botany, 2003, 92(4): 487-511.
pmid: 12933363
[4] HEPLER P K. Calcium: A central regulator of plant growth and development. The Plant Cell, 2005, 17(8): 2142-2155.
doi: 10.1105/tpc.105.032508
[5] BASCOM C S, HEPLER P K, BEZANILLA M. Interplay between ions, the cytoskeleton, and cell wall properties during tip growth. Plant Physiology, 2018, 176(1): 28-40.
doi: 10.1104/pp.17.01466 pmid: 29138353
[6] YAMAMOTO T, NAKAMURA A, IWAI H, ISHII T, MA J F, YOKOYAMA R, NISHITANI K, SATOH S, FURUKAWA J. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. Journal of Plant Research, 2012, 125(6): 771-779.
doi: 10.1007/s10265-012-0489-3 pmid: 22527842
[7] GIOVANE A, SERVILLO L, BALESTRIERI C, RAIOLA A, D’AVINO R, TAMBURRINI M, CIARDIELLO M A, CAMARDELLA L. Pectin methylesterase inhibitor. Biochimica et Biophysica Acta, 2004, 1696(2): 245-252.
pmid: 14871665
[8] WANG H, JIANG C, WANG C, YANG Y, YANG L, GAO X, ZHANG H. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees. Journal of Experimental Botany, 2015, 66(5): 1291-1302.
doi: 10.1093/jxb/eru479
[9] HIRSCHI K D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology, 2004, 136(1): 2438-2442.
pmid: 15375199
[10] DODD A N, KUDLA J, SANDERS D. The language of calcium signaling. Annual Review of Plant Biology, 2010, 61: 593-620.
doi: 10.1146/annurev-arplant-070109-104628 pmid: 20192754
[11] FINKA A, CUENDET A F, MAATHUIS F J, SAIDI Y, GOLOUBINOFF P. Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. The Plant Cell, 2012, 24(8): 3333-3348.
doi: 10.1105/tpc.112.095844 pmid: 22904147
[12] TUNC-OZDEMIR M, TANG C, ISHKA M R, BROWN E, GROVES N R, MYERS C T, RATO C, POULSEN L R, MCDOWELL S, MILLER G, MITTLER R, HARPER J F. A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiology, 2013, 161(2): 1010-1020.
doi: 10.1104/pp.112.206888
[13] TOYOTA M, SPENCER D, SAWAI-TOYOTA S, JIAQI W, ZHANG T, KOO A J, HOWE G A, GILROY S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science, 2018, 361(6407): 1112-1115.
doi: 10.1126/science.aat7744 pmid: 30213912
[14] JIANG Z, ZHOU X, TAO M, YUAN F, LIU L, WU F, WU X, XIANG Y, NIU Y, LIU F, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature, 2019, 572(7769): 341-346.
doi: 10.1038/s41586-019-1449-z
[15] CALDWELL D, KIM B S, IYER-PASCUZZI A S. Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 2017, 107(5): 528-536.
doi: 10.1094/PHYTO-09-16-0353-R
[16] SUGIMOTO T, WATANABE K, YOSHIDA S, AINO M, FURIKI M, SHIONO M, MATOH T, BIGGS A R. Field application of calcium to reduce phytophthora stem rot of soybean, and calcium distribution in plants. Plant Disease, 2010, 94(7): 812-819.
doi: 10.1094/PDIS-94-7-0812 pmid: 30743551
[17] RAZ V, FLUHR R. Calcium requirement for ethylene-dependent responses. The Plant Cell, 1992, 4(9): 1123-1130.
pmid: 12297671
[18] BOLLER T, HE S Y. Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science, 2009, 324(5928): 742-744.
doi: 10.1126/science.1171647 pmid: 19423812
[19] MORALES J, KADOTA Y, ZIPFEL C, MOLINA A, TORRES M A. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. Journal of Experimental Botany, 2016, 67(6): 1663-1676.
doi: 10.1093/jxb/erv558
[20] VOIGT C A. Callose-mediated resistance to pathogenic intruders in plant defense-related papillae. Frontiers in Plant Science, 2014, 5: 168.
doi: 10.3389/fpls.2014.00168 pmid: 24808903
[21] WOJTASZEK P. Oxidative burst: An early plant response to pathogen infection. The Biochemical Journal, 1997, 322(3): 681-692.
doi: 10.1042/bj3220681
[22] TORRES M A, ONOUCHI H, HAMADA S, MACHIDA C, HAMMOND-KOSACK K E, JONES J D. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). The Plant Journal, 1998, 14(3): 365-370.
doi: 10.1046/j.1365-313X.1998.00136.x
[23] KLOTH K J, WIEGERS G L, BUSSCHER-LANGE J, VAN HAARST J C, KRUIJER W, BOUWMEESTER H J, DICKE M, JONGSMA M A. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. Journal of Experimental Botany, 2016, 67(11): 3383-3396.
doi: 10.1093/jxb/erw159 pmid: 27107291
[24] WANG Y, LI X F, FAN B F, ZHU C, CHEN Z X. Regulation and function of defense-related callose deposition in plants. International Journal of Molecular Science, 2021, 22(5): 2393.
doi: 10.3390/ijms22052393
[25] 李合生. 现代植物生理学. 3版. 北京: 高等教育出版社, 2012.
LI H S. Modern Plant Physiology. 3rd ed. Beijing: Higher Education Press, 2012. (in Chinese)
[26] ZHANG Q, XIE Z, ZHANG R, XU P, LIU H, YANG H, DOBLIN M S, BACIC A, LI L. Blue light regulates secondary cell wall thickening via MYC2/MYC4 activation of the NST1-directed transcriptional network in Arabidopsis. The Plant Cell, 2018, 30(10): 2512-2528.
doi: 10.1105/tpc.18.00315
[27] 张海平, 单世华, 蔡来龙, 官德义, 李毓, 庄伟建. 钙对花生植株生长和叶片活性氧防御系统的影响. 中国油料作物学报, 2004, 26(3): 33-36.
ZHANG H P, SHAN S H, CAI L L, GUAN D Y, LI Y, ZHUANG W J. Effects of calcium on peanut plant growth and defense system of active oxygen in leaves. Chinese Journal of Oil Crop Sciences, 2004, 26(3): 33-36. (in Chinese)
[28] 任城帅, 李慧, 翁小航, 张淞著, 刘丽颖, 周永斌. 外源钙对水曲柳生长、光合特性及水分利用效率的影响. 沈阳农业大学学报, 2020, 51(6): 663-669.
REN C S, LI H, WENG X H, ZHANG S Z, LIU L Y, ZHOU Y B. Effects of exogenous calcium on growth, photosynthetic characteristics and water use efficiency of Fraxinus mandshurica. Journal of Shenyang Agricultural University, 2020, 51(6): 663-669. (in Chinese)
[29] 姚棋, 韩天云, 梁祎, 石玉, 侯雷平, 张毅. 外源钙和EBR处理对番茄果实品质特性的影响. 中国瓜菜, 2021, 34(10): 74-79.
YAO Q, HAN T Y, LIANG Y, SHI Y, HOU L P, ZHANG Y. Effects of exogenous calcium and EBR treatment on fruit quality characteristics of tomato. China Cucurbits and Vegetables, 2021, 34(10): 74-79. (in Chinese)
[30] 张芳, 宋敏, 彭晚霞, 曾馥平, 杜虎, 胡芳, 陈莉, 苏樑. 不同钙浓度对两种岩溶植物幼苗生长及其酶活性的影响. 广西植物, 2017, 37(6): 707-715.
ZHANG F, SONG M, PENG W X, ZENG F P, DU H, HU F, CHEN L, SU L. Effects of different calcium concentrations on seedling growth and enzyme activities of two karst plant species. Guihaia, 2017, 37(6): 707-715. (in Chinese)
[31] THOR K. Calcium-nutrient and messenger. Frontiers in Plant Science, 2019, 10: 440.
doi: 10.3389/fpls.2019.00440 pmid: 31073302
[32] 李敏, 吉文丽, 张恒, 李程程, 杨静萱, 张延龙. 外源Ca2+对油用牡丹凤丹白幼苗光合特性的影响. 西北林学院学报, 2017, 32(5): 39-45.
LI M, JI W L, ZHANG H, LI C C, YANG J X, ZHANG Y L. Effects of exogenous calcium on photosynthetic characteristics and biomass of oil Paeonia ostii ‘Fengdan White’. Journal of Northwest Forestry University, 2017, 32(5): 39-45. (in Chinese)
[33] 汪雷, 马琛, 高海立, 徐涛. 钙对半夏生理特性及光合生理的影响. 浙江理工大学学报(自然科学版), 2018, 39(4): 461-467.
WANG L, MA C, GAO H L, XU T. Effects of calcium on physiological characteristics and photosynthetic physiology of Pinellia ternata. Journal of Zhejiang Sci-Tech University (Natural Sciences), 2018, 39(4): 461-467. (in Chinese)
[34] 杨阳, 王恒振, 王咏梅, 管雪强, 尹向田, 苏玲. 喷钙对干旱胁迫下葡萄光合作用及叶绿素荧光参数的影响. 安徽农业科学, 2017, 45(27): 62-64, 189.
YANG Y, WANG H Z, WANG Y M, GUAN X Q, YIN X T, SU L. Effects of calcium spray on photosynthesis and chlorophyll fluorescence of grape under drought stress. Journal of Anhui Agricultural Sciences, 2017, 45(27): 62-64, 189. (in Chinese)
[35] FORAND A D, FINFROCK Y Z, LAVIER M, STOBBS J, QIN L, WANG S, KARUNAKARAN C, WEI Y, GHOSH S, TANINO K K. With a little help from my cell wall: Structural modifications in pectin may play a role to overcome both dehydration stress and fungal pathogens. Plants, 2022, 11(3): 385.
doi: 10.3390/plants11030385
[36] LANGER S E, MARINA M, BURGOS J L, MARTíNEZ G A, CIVELLO P M, VILLARREAL N M. Calcium chloride treatment modifies cell wall metabolism and activates defense responses in strawberry fruit (Fragaria × ananassa, Duch). Journal of the Science of Food and Agriculture, 2019, 99(8): 4003-4010.
doi: 10.1002/jsfa.9626
[37] ZHUANG Y, WEI M, LING C, LIU Y, AMIN A K, LI P, LI P, HU X, BAO H, HUO H, SMALLE J, WANG S. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Reports, 2021, 36(2): 109384.
doi: 10.1016/j.celrep.2021.109384
[38] MÜLLER J, TOEV T, HEISTERS M, TELLER J, MOORE K L, HAUSE G, DINESH D C, BÜRSTENBINDER K, ABEL S. Iron-dependent callose deposition adjusts root meristem maintenance to phosphate availability. Developmental Cell, 2015, 33(2): 216-230.
doi: 10.1016/j.devcel.2015.02.007 pmid: 25898169
[39] RASMUSSEN M W, ROUX M, PETERSEN M, MUNDY J. MAP kinase cascades in Arabidopsis innate immunity. Frontiers in Plant Sciences, 2012, 3: 169.
[40] ABBRUSCATO P, NEPUSZ T, MIZZI L, DEL CORVO M, MORANDINI P, FUMASONI I, MICHEL C, PACCANARO A, GUIDERDONI E, SCHAFFRATH U, MOREL J B, PIFFANELLI P, FAIVRE-RAMPANT O. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology, 2012, 13(8): 828-841.
doi: 10.1111/j.1364-3703.2012.00795.x pmid: 22443363
[41] HSU F C, CHOU M Y, CHOU S J, LI Y R, PENG H P, SHIH M C. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. The Plant Cell, 2013, 25(7): 2699-2713.
doi: 10.1105/tpc.113.114447
[42] HUSSAIN A, LI X, WENG Y H, LIU Z Q, ASHRAF M F, NOMAN A, YANG S, IFNAN M, QIU S S, YANG Y J, GUAN D Y, HE S L. CaWRKY22 acts as a positive regulator in pepper response to Ralstonia solanacearum by constituting networks with CaWRKY6, CaWRKY27, CaWRKY40, and CaWRKY58. International Journal of Molecular Science, 2018, 19(5): 1426.
doi: 10.3390/ijms19051426
[43] ELLINGER D, VOIGT C A. Callose biosynthesis in Arabidopsis with a focus on pathogen response: What we have learned within the last decade. Annals of Botany, 2014, 114(6): 1349-1358.
doi: 10.1093/aob/mcu120
[1] WANG LÜYang,CUI LeiHong,FENG JiangYin,HONG QiuXia,YOU MeiJing,BAO HaoYu,HANG SuQin. Effects of CaSR and CCK-1R Mediated Soybean Protein Hydrolysate on Appetite Using Mouse [J]. Scientia Agricultura Sinica, 2022, 55(4): 807-815.
[2] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[3] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[4] YAN DuoZi,CAI Ni,WANG Feng,NONG XiangQun,WANG GuangJun,TU XiongBing,ZHANG ZeHua. Expression in vitro of Metarhizium anisopliae Adhesin MAD1 and Its Effect on Inducing Response in Peanut [J]. Scientia Agricultura Sinica, 2021, 54(4): 744-753.
[5] JING JianYuan,YUAN Liang,ZHANG ShuiQin,LI YanTing,ZHAO BingQiang. Effects and Mechanism of Humic Acid in Humic Acid Enhanced Phosphate Fertilizer on Fertilizer-Phosphorus Migration [J]. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042.
[6] ZHANG JingYun,LIU YuNuo,WANG ZhaoHao,PENG AiHong,CHEN ShanChun,HE YongRui. Analysis of Resistance Mechanism of CiNPR4 Transgenic Plants to Citrus Canker [J]. Scientia Agricultura Sinica, 2021, 54(18): 3871-3880.
[7] FU XiaLi,ZHENG ZiFang,MA ZhiQian,XU LeLe,LI ZhiWei,LI Yang,XIAO ShuQi,LI Shuang. The Ability of Acidic Calcium Sulfate to Kill Common Clinical Pathogenic Microorganisms [J]. Scientia Agricultura Sinica, 2021, 54(13): 2906-2915.
[8] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[9] QIN XiuJuan,QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui,LI Qiang. Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus [J]. Scientia Agricultura Sinica, 2020, 53(20): 4189-4203.
[10] ZOU XiuPing,LONG JunHong,PENG AiHong,CHEN Min,LONG Qin,CHEN ShanChun. Overexpression of CsGH3.6 Enhanced Resistance to Citrus Canker Disease by Inhibiting Auxin Signaling Transduction [J]. Scientia Agricultura Sinica, 2019, 52(21): 3806-3818.
[11] LI Zhen,LIU ZhiYong,JIANG WuJun,HE XuJiang,YAN WeiYu,ZHANG LiZhen,ZENG ZhiJiang. Effects of Natural Bee Bread on Blood Lipid, Antioxidation and Immune Function in Rats with Hyperlipidemia [J]. Scientia Agricultura Sinica, 2019, 52(16): 2912-2920.
[12] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[13] YU Jing,ZHANG WeiXing,MA LanTing,XU BaoHua. Effect of Dietary α-Linolenic Acid Levels on Physiological Function of Apis mellifera ligustica Worker Bee Larvae [J]. Scientia Agricultura Sinica, 2019, 52(13): 2368-2378.
[14] CHEN ZhiYong, ZHANG LiYang, MA XueLian, WANG LiangZhi, XING GuanZhong, YANG Liu, LIU DongYuan, LIAO XiuDong, LI SuFen, HUANG YanLing, LÜ Lin, LUO XuGang. A Survey on Distribution of Calcium Contents in Feedstuffs for Livestock and Poultry in China [J]. Scientia Agricultura Sinica, 2019, 52(11): 1973-1981.
[15] ZHANG YiHao, FENG HongJie, YUAN Yuan, JIN YuYing, SHI YongQiang, ZHANG ChaoJun, LI FuGuang. Induced Immunity Effect and Mechanism of the Weak Pathogenicity Isolate of Verticillium dahliae Vd171 Against Verticillium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2018, 51(6): 1067-1078.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!