Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 74-84.doi: 10.3864/j.issn.0578-1752.2022.01.007

• PLANT PROTECTION • Previous Articles     Next Articles

Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification

LI ZhenXi(),LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing()   

  1. College of Plant Protection, South China Agricultural University, Guangzhou 510642
  • Received:2021-06-03 Accepted:2021-07-06 Online:2022-01-01 Published:2022-01-07
  • Contact: XiaoLing DENG E-mail:554706824@qq.com;xldeng@scau.edu.cn

Abstract:

【Background】 Citrus Huanglongbing (HLB) is a citrus disease caused by ‘Candidatus Liberibacter asiaticus’ (CLas). The main approaches to control HLB include plant quarantine, establishing disease-free nurseries, removing disease trees, and concentrating on large area joint control of citrus psyllids (Diaphorina citri). The first three methods all rely on accurate HLB diagnosis techniques.【Objective】 The objective of this study is to establishment of a rapid and handy field/laboratory nucleic acid detection method of CLas using loop-mediated isothermal amplification (LAMP) combined with membrane adsorption rapid DNA extraction and Gelgreen fluorescence dye visualization.【Method】 The LAMP primers were designed using the β-operon and the prophage DNA polymerase gene of CLas as templates, including outer primer F3/B3, inner primer FIP/BIP, loop primer LoopF/LoopB and stem primer StemF/StemB. The LAMP primer set was optimized by setting different dosage combinations for loop primers and stem primers to determine the appropriate primer concentration. A total of 188 field citrus leaves were detected using the optimized LAMP primer set, and the receiver operating characteristic (ROC) curves were constructed to analyze the accuracy of real-time fluorescent LAMP (qLAMP) for CLas detection. The qLAMP premixed reaction solution was dried in two steps at room temperature, storage temperature (4, 25 and 35℃) and storage time (1, 2 and 4 weeks) were also set to assess the enzyme activity stability of the dry LAMP reagent. Using dry LAMP reagent, combined with membrane adsorption rapid DNA extraction technique in this study, 71 citrus leaf samples and 35 citrus fruit samples collected in the field were detected, while the detection results of real-time fluorescent quantitative (qPCR) were used as controls to compare the coincidence rates of the two detection methods.【Result】 The addition of loop primer, stem primer or increasing their concentrations in LAMP reaction could promote the increase of reaction rate, and the addition of both loop primer and stem primer at a final concentration of 1.6 μmol·L-1 could further improve the reaction rate. The reaction activity of LAMP premix could be maintained unchanged by two-step drying at different temperatures for 1-4 weeks, indicating that the two-step drying LAMP reagent prepared in this experiment had good detection performance and fair stability at low and room temperatures, and only at 35℃ storage would slightly increase the reaction time of LAMP reagent. Using 0.1 μm pore size nylon membrane instead of cellulose filter paper as nucleic acid adsorption material could improve the sensitivity of rapid diagnostic techniques. The overall accuracy of rapid DNA diagnosis for HLB established by combining rapid DNA extraction and visual LAMP was high, and the lowest detectable plasmid concentration was 102 copies/μL. The diagnostic results of this method were not significantly different from those of qPCR by paired Chi-square test. The visual LAMP rapid detection was less cost and time-consuming than routine detection, and visual LAMP rapid detection required no expensive instruments such as centrifuges and PCR instruments, requiring only a 65℃ thermostatic device.【Conclusion】 The rapid DNA detection method for CLas established in this study has low cost and can observe detection results in 30 min, easy to operate and high accuracy, which can replace qPCR for rapid identification of HLB in the field.

Key words: citrus Huanglongbing, Candidatus Liberibacter asiaticus’ (CLas), field detection, membrane adsorption, rapid DNA extraction, visual LAMP

Table 1

The LAMP primer sequences of CLas"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
CLas-F3 GCTTCCCCGAAATCGGAC
CLas-B3 CCAAACCCCTACCTTAGGC
CLas-FIP ACCTCCGCTGAGGCAAAGTTT-TAAGGATTACGGCGAAGAGCA
CLas-BIP CGCTCTGCCGTGGAACTGATCA-GAGGACTGCGGGTTTCAAT
CLas-LoopF AGACCGAGGTATCGGAGTCT
CLas-LoopB CTGATCAATGTCAAAGCTGTTTATCGAC
CLas-StemF GGAGTCCACCTCCGCTG
CLas-StemB GACGCTCTGCCGTGGA

Fig. 1

Alignment of LAMP primer sequences in CLas strains A4"

Fig. 2

Amplification and melting curves of polA3-qLAMP"

Fig. 3

Standard curve of qLAMP at different concentrations of loop primer and stem primer"

Fig. 4

The ROC curve of qLAMP in the diagnosis of CLas"

Table 2

Results of RNRf/RNRr-qPCR and qLAMP in the diagnosis of HLB"

RNRf/RNRr-qPCR 检测结果
RNRf/RNRr-qPCR result
合计
Total
阳性
Positive
阴性
Negative
qLAMP检测结果
qLAMP result
阳性
Positive
55 5 60
阴性
Negative
0 128 128
合计Total 55 133 188

Fig. 5

Standard curve of qLAMP room temperature drying reagents under different storage conditions"

Fig. 6

The sensitivity of visual LAMP room temperature drying reagents under different storage conditions Eight tubes in the same storage condition were successively added with different copy numbers of LAMP-positive plasmids (107, 106, 105, 104, 103, 102, 101 and 100 copies/μL, respectively) of CLas"

Fig. 7

Cellulose filter paper and nylon membrane rapid DNA extraction combined with visual LAMP detection results Nucleic acids were rapidly extracted from plant tissue extract containing CLas β-operon recombinant plasmids with concentrations of 105, 104, 103, 102, 101, 100, 0 copies/μL, respectively"

Fig. 8

Visual LAMP detection results of HLB in partial field leaf samples of Oarh mandarin No Ct value or undetermined"

Table 3

Results of visual LAMP rapid test and routine test in the diagnosis of HLB"

常规检测
Routine test result
合计
Total
阳性
Positive
阴性
Negative
可视化LAMP快速检测
Visual LAMP test result
阳性
Positive
54 1 55
阴性
Negative
6 45 51
合计 Total 60 46 106

Table 4

Comparison of the cost of consumables (yuan/sample) and time spent (min/sample) for the routine and visual LAMP rapid tests for HLB"

项目
Item
耗材成本*The cost of consumables 耗时Time-consuming
常规检测
Routine test
可视化LAMP快速检测
Visual LAMP rapid test
常规检测
Routine test
可视化LAMP快速检测
Visual LAMP rapid test
DNA提取DNA extraction 10.09 0.04 43 2
DNA扩增DNA amplification 1.52 1.73 60 30
合计 Total 11.61 1.77 103 32
[1] 罗志达, 叶自行, 许建楷, 胡桂兵. 柑桔黄龙病的田间诊断方法. 广东农业科学, 2009(3): 91-93.
LUO Z Z, YE Z X, XU J K, HU G B. Field diagnostic methods for citrus Huanglongbing. Guangdong Agricultural Sciences, 2009(3): 91-93. (in Chinese)
[2] 许美容, 陈燕玲, 邓晓玲. 柑橘黄龙病症状与“Candidatus Liberibacter asiaticus” PCR检测结果的相关性分析. 植物病理学报, 2016, 46(3): 367-373.
XU M R, CHEN Y L, DENG X L. Correlationships between symptoms of citrus Huanglongbing and PCR detection of ‘Candidatus Liberibacter asiaticus’. Acta Phytopathologica Sinica, 2016, 46(3): 367-373. (in Chinese)
[3] FREEMAN W M, WALKER S J, VRANA K E. Quantitative RT-PCR: Pitfalls and potential. BioTechniques, 1999, 26(1): 112-122, 124-125.
[4] 廖晓兰, 朱水芳, 赵文军, 罗宽, 漆艳香, 陈红运, 何昆, 朱晓湘. 柑桔黄龙病病原16S rDNA克隆、测序及实时荧光PCR检测方法的建立. 农业生物技术学报, 2004, 12(1): 80-85.
LIAO X L, ZHU S F, ZHAO W J, LUO K, QI Y X, CHEN H Y, HE K, ZHU X X. Cloning and sequencing of citrus Huanglongbing pathogen 16S rDNA and its detection by real-time fluorescent PCR. Journal of Agricultural Biotechnology, 2004, 12(1): 80-85. (in Chinese)
[5] NOTOMI T, OKAYAMA H, MASUBUCHI H, YONEKAWA T, WATANABE K, AMINO N, HASE T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.
doi: 10.1093/nar/28.12.e63
[6] OKUDA M, MATSUMOTO M, TANAKA Y, SUBANDIYAH S, IWANAMI T. Characterization of the tufB-secE-nusG-rplKAJL-rpoB gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Disease, 2005, 89(7): 705-711.
doi: 10.1094/PD-89-0705
[7] CHOI C W, HYUN J W, HWANG R Y, POWELL C A. Loop- mediated isothermal amplification assay for detection of ‘Candidatus Liberibacter asiaticus’, a causal agent of citrus Huanglongbing. The Plant Pathology Journal, 2018, 34(6): 499-505.
doi: 10.5423/PPJ.FT.10.2018.0212
[8] 丁鹏, 卢占军, 黄爱军, 苏华楠, 刘映雪, 周承华, 邹俊丞, 黄玉玲. 柑桔黄龙病菌LAMP检测制样方法比较. 中国南方果树, 2018, 47(1): 12-16.
DING P, LU Z J, HUANG A J, SU H N, LIU Y X, ZHOU C H, ZOU J C, HUANG Y L. Comparison of LAMP methods for detection of citrus Huanglongbing pathogen. South China Fruits, 2018, 47(1): 12-16. (in Chinese)
[9] QIAN W J, MENG Y Q, LU Y, WU C, WANG R, WANG L, QIAN C, YE Z Z, WU J, YING Y B. Rapid, sensitive, and carryover contamination-free loop-mediated isothermal amplification-coupled visual detection method for ‘Candidatus Liberibacter asiaticus’. Journal of Agricultural and Food Chemistry, 2017, 65(38): 8302-8310.
doi: 10.1021/acs.jafc.7b03490
[10] GHOSH D K, BHOSE S, WARGHANE A, MOTGHARE M, SHARMA A K, DHAR A K, GOWDA S. Loop-mediated isothermal amplification (LAMP) based method for rapid and sensitive detection of ‘Candidatus Liberibacter asiaticus’ in citrus and the psyllid vector, Diaphorina citri Kuwayama. Journal of Plant Biochemistry and Biotechnology, 2016, 25(2): 219-223.
doi: 10.1007/s13562-015-0332-8
[11] WU X H, MENG C L, WANG G H, LIU Y Z, ZHANG X, YI K X, PENG J. Rapid and quantitative detection of citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ by real-time fluorescent loop-mediated isothermal amplification assay in China. Physiological and Molecular Plant Pathology, 2016, 94: 1-7.
doi: 10.1016/j.pmpp.2016.03.001
[12] KEREMANE M L, RAMADUGU C, RODRIGUEZ E, KUBOTA R, SHIBATA S, HALL D G, ROOSE M L, JENKINS D, LEE R F. A rapid field detection system for citrus Huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Protection, 2015, 68: 41-48.
doi: 10.1016/j.cropro.2014.10.026
[13] 王贤达, 林雄杰, 胡菡青, 王宗华, 范国成. 柑橘黄龙病可视化LAMP检测技术的建立及应用. 热带作物学报, 2014, 35(5): 918-924.
WANG X D, LIN X J, HU H Q, WANG Z H, FAN G C. Establishment and application of visual loop-mediated amplification assay on citrus Huanglongbing. Chinese Journal of Tropical Crops, 2014, 35(5): 918-924. (in Chinese)
[14] 程保平, 赵弘巍, 彭埃天, 陈霞, 宋晓兵, 凌金锋. 以omp基因为靶标的3种检测方法对柑橘黄龙病菌检测效果比较. 广东农业科学, 2014, 41(5): 141-145.
CHENG B P, ZHAO H W, PENG A T, CHEN X, SONG X B, LING J F. Comparative study on citrus Huanglongbing molecular detection methods with the omp target gene. Guangdong Agricultural Sciences, 2014, 41(5): 141-145. (in Chinese)
[15] 孔德英, 孙涛, 李应国, 滕少娜, 陆丽华, 邓朝晖. 柑桔黄龙病LAMP快速检测方法的建立. 中国南方果树, 2013, 42(1): 8-11.
KONG D Y, SUN T, LI Y G, TENG S N, LU L H, DENG C H. Development and evaluation of a loop-mediated isothermal amplification method for the rapid detection of Huanglongbing. South China Fruits, 2013, 42(1): 8-11. (in Chinese)
[16] 彭军, 廖孝文, 杨海中, 曾凡云, 龙海波, 裴月令, 郭建荣. 柑桔黄龙病环介导等温扩增检测方法建立及应用. 热带作物学报, 2013, 34(10): 1998-2003.
PENG J, LIAO X W, YANG H Z, ZENG F Y, LONG H B, PEI Y L, GUO J R. Rapid detection of citrus Huanglongbing using a LAMP method. Chinese Journal of Tropical Crops, 2013, 34(10): 1998-2003. (in Chinese)
[17] 黄丽, 苏华楠, 唐科志, 黄爱军, 周常勇, 李中安. 柑橘黄龙病LAMP快速检测方法的建立及应用. 果树学报, 2012, 29(6): 1121-1126, 1155.
HUANG L, SU H N, TANG K Z, HUANG A J, ZHOU C Y, LI Z A. Establishment and application of loop-mediated isothermal amplification assay for the detection of citrus Huanglongbing. Journal of Fruit Science, 2012, 29(6): 1121-1126, 1155. (in Chinese)
[18] 王华堂, 曾鑫年, 薛培培, 杨柳. Direct-PCR检测柑橘黄龙病的快速制样方法研究. 果树学报, 2014, 31(4): 733-738.
WANG H T, ZENG X N, XUE P P, YANG L. Research on DNA extraction methods for Direct-PCR detection of citrus Huanglongbing. Journal of Fruit Science, 2014, 31(4): 733-738. (in Chinese)
[19] ZHENG Z, XU M R, BAO M L, WU F N, CHEN J C, DENG X L. Unusual five copies and dual forms of nrdB in ‘Candidatus Liberibacter asiaticus’: Biological implications and PCR detection application. Scientific Reports, 2016, 6: 39020.
doi: 10.1038/srep39020
[20] DIEGO J G, FERNÁNDEZ-SOTO P, CREGO-VICENTE B, ALONSO-CASTRILLEJO S, FEBRER-SENDRA B, GÓMEZ- SÁNCHEZ A, VICENTE B, LÓPEZ-ABÁN J, MURO A. Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: Towards a ready-to-use test. Scientific Reports, 2019, 9: 14744.
doi: 10.1038/s41598-019-51342-2
[21] NAGAMINE K, HASE T, NOTOMI T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 2002, 16(3): 223-229.
doi: 10.1006/mcpr.2002.0415
[22] GANDELMAN O, JACKSON R, KIDDLE G, TISI L. Loop- mediated amplification accelerated by stem primers. International Journal of Molecular Sciences, 2011, 12(12): 9108-9124.
doi: 10.3390/ijms12129108
[23] MARTINEAU R L, MURRAY S A, CI S F, GAO W M, CHAO S H, MELDRUM D R. Improved performance of loop-mediated isothermal amplification assays via swarm priming. Analytical Chemistry, 2017, 89(1): 625-632.
doi: 10.1021/acs.analchem.6b02578
[24] TOMITA N, MORI Y, KANDA H, NOTOMI T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nature Protocols, 2008, 3(5): 877-882.
doi: 10.1038/nprot.2008.57
[25] KHOROSHEVA E M, KARYMOV M A, SELCK D A, ISMAGILOV R F. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: Validation using digital real-time RT-LAMP. Nucleic Acids Research, 2016, 44(2): e10.
doi: 10.1093/nar/gkv877
[26] ACHOR D, WELKER S, BEN-MAHMOUD S, WANG C X, FOLIMONOVA S Y, DUTT M, GOWDA S, LEVY A. Dynamics of ‘Candidatus Liberibacter asiaticus’ movement and sieve-pore plugging in citrus sink cells. Plant Physiology, 2020, 182(2): 882-891.
doi: 10.1104/pp.19.01391
[27] BAO M, ZHENG Z, SUN X, CHEN J, DENG X. Enhancing PCR capacity to detect ‘Candidatus Liberibacter asiaticus’ utilizing whole genome sequence information. Plant Disease, 2020, 104(2): 527-532.
doi: 10.1094/PDIS-05-19-0931-RE
[28] HAYASHIDA K, KAJINO K, HACHAAMBWA L, NAMANGALA B, SUGIMOTO C. Direct blood dry LAMP: A rapid, stable, and easy diagnostic tool for human African trypanosomiasis. PLoS Neglected Tropical Diseases, 2015, 9(3): e0003578.
doi: 10.1371/journal.pntd.0003578
[29] 张建中. 应用于即时检测的核酸提取与扩增试剂冷冻干燥研究[D]. 厦门: 厦门大学, 2019.
ZHANG J Z. Study on freeze-drying of reagents for nucleic acid extraction and amplification in point of care testing[D]. Xiamen: Xiamen University, 2019. (in Chinese)
[30] 郭亨玉, 罗小玲, 李桃, 邓晓玲, 郑正. 柑橘黄龙病菌在染病贡柑枝条和果实橘络内的分布规律. 植物病理学报, 2020, 50(5): 543-548.
GUO H Y, LUO X L, LI T, DENG X L, ZHENG Z. Distribution of ‘Candidatus Liberibacter asiaticus’ in Huanglongbing-affected Citrus reticulata Blanco cv. Gongkan branches and the fruit pith. Acta Phytopathologica Sinica, 2020, 50(5): 543-548. (in Chinese)
[31] 李桃, 郑正, 邓晓玲. 离体砂糖橘黄龙病病果中病菌浓度变化规律的探究. 植物病理学报, 2021, 51(2): 298-302.
LI T, ZHENG Z, DENG X L. Quantitative analysis of ‘Candidatus Liberibacter asiaticus’ in the excised citrus fruits. Acta Phytopathologica Sinica, 2021, 51(2): 298-302. (in Chinese)
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[3] CUI YiPing,PENG AiTian,SONG XiaoBing,CHENG BaoPing,LING JinFeng,CHEN Xia. Investigation on Occurrence of Citrus Huanglongbing and Virus Diseases, and Prophage Genetic Diversity of Huanglongbing Pathogen in Meizhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(8): 1572-1582.
[4] CaiLing TENG,Xi ZHONG,HaoDi WU,Yan HU,ChangYong ZHOU,XueFeng WANG. Biologic and Transcriptomic Analysis of Citrus hystrix Responses to ‘Candidatus Liberibacter asiaticus’ at Different Infection Stages [J]. Scientia Agricultura Sinica, 2020, 53(7): 1368-1380.
[5] WU Yue, SU Hua-nan, HUANG Ai-jun, ZHOU Yan, LI Zhong-an, LIU Jin-xiang, ZHOU Chang-yong. Effect of Candidatus Liberibacter asiaticus Infection on Carbohydrate Metabolism in Citrus sinensis [J]. Scientia Agricultura Sinica, 2015, 48(1): 63-72.
[6] HUANG Ai-jun, SU Hua-nan, WANG Xue-feng, TANG Ke-zhi, LI Zhong-an, ZHOU Chang-yong. Population Structure of ‘Candidatus Liberibacter asiaticus’ in China Revealed by SSR Markers [J]. Scientia Agricultura Sinica, 2014, 47(22): 4488-4494.
[7] TAN Jin-12, WANG Xue-Feng-2, SU Hua-Nan-12, LI Zhong-An-2, ZHOU Chang-Yong-2. Genetic Diversity of Two Hypervariable Genes from Prophage Regions of ‘Candidatus Liberibacter asiaticus’ in China [J]. Scientia Agricultura Sinica, 2013, 46(18): 3784-3792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!