Scientia Agricultura Sinica ›› 2023, Vol. 56 ›› Issue (2): 345-356.doi: 10.3864/j.issn.0578-1752.2023.02.011

• HORTICULTURE • Previous Articles     Next Articles

Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry

LIU ZhenShan1,2(),TU HongXia1,2,ZHOU JingTing1,2,MA Yan1,2,CHAI JiuFeng1,2,WANG ZhiYi1,2,YANG PengFei1,2,YANG XiaoQin2,Kumail Abbas1,2,WANG Hao1,WANG Yan1,2,WANG XiaoRong1,2()   

  1. 1Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130
    2College of Horticulture, Sichuan Agricultural University, Chengdu 611130
  • Received:2022-03-22 Accepted:2022-07-26 Online:2023-01-16 Published:2023-02-07

Abstract:

【Objective】 The aim of this study was to pave the way for the construction of high-density genetic map and QTL (quantitative trait locus) analysis, so as to facilitate the parental selection and mating design in the breeding programs targeting for new varieties in Chinese cherry (Cerasus pseudocerasus (Lindl.) G.Don) by investigating and analyzing fruit traits of F1 progenies between Nanzaohong (NZH, early maturity, orange red) and Hongfei (HF, purple red, with good comprehensive characteristics). 【Method】 The heredity variation and inheritance tendency of 17 fruit quality traits in the F1 segregating populations (n=226) were investigated, which were derived from the reciprocal cross between NZH and HF These traits included fruit weight, longitudinal, transverse and lateral diameter, total soluble solids (TSS), soluble sugar (SS), titratable acid (TA), anthocyanin content, fruit shape index, fruit development period, and fruit stalk length, etc. 【Result】The average fruit weight in offspring of both NZH × HF (4.30 g; range: 2.59-7.46 g) and HF × NZH (4.05 g; range: 2.45-6.48 g) was smaller than the mid-parent value (4.58 g). The TSS content (14.55% and 14.51%) was higher than those of two parents (12.97% and 11.36%), and the ratio of individuals with TSS content higher than high parent(HH)was 78.52% and 76.09%. The average TA content of individuals from the reciprocal cross was lower than the low parent (LL) (47.92% and 41.94%). Peel color segregated in the F1 progenies, with orange red, red, purple red and black purple being observed. Hybrids with red fruit color accounted for the largest proportion. The anthocyanin content is in the range of 3.12-112.51 and 1.80-79.94 mg/kg. The average fruit development period of NZH × HF progenies was two days shorter than that of HF × NZH progenies, which was mainly affected by the male parent. The fruit stalk length showed heterosis with HH values of 49.25% and 43.33%, respectively. The mixed major gene and polygene inheritance model method was evaluated for their fitness relating to these traits. Two major genes plus polygenes model was the optimal genetic model for 11 (out of 12) quantitative traits except for the fruit longitudinal diameter, which was controlled by one major gene plus polygenes. 【Conclusion】The main fruit quality characteristics were quantitative traits controlled by polygenic loci. The inheritance trend of the fruit weight, longitudinal, transverse, lateral diameter, TA, and anthocyanin content tended to be decreased, while the TSS, SS content and fruit stalk length tended to be increased.

Key words: Chinese cherry [Cerasus pseudocerasus (Lindl). G.Don], reciprocal cross, F1 populations, fruit characters, inheritance tendency

Table 1

The hereditary variation of fruit characters in the F1 progenies derived from reciprocal cross between Nanzaohong and Hongfei"

性状
Trait
组合
Cross
亲本 Parent 子代F1 progeny
NZH HF MP 均值
Average
范围
Range
CV (%) Hb2 (%) Ta (%) H
(%)
HH (%) HM (%) LL (%) K SK
单果质量
Fruit weight (g)
NZH×HF 3.81±0.55 5.35±0.38 4.58 4.30 2.59-7.46 21.46 73.92 93.82 -6.18 10.37 28.89 34.81 1.02 0.93
HF×NZH 4.05 2.45-6.48 18.89 62.18 88.51 -11.49 4.40 28.57 40.66 0.10 0.33
果实纵径
Longitudinal diameter (mm)
NZH×HF 17.36±0.82 21.88±1.16 19.62 19.32 15.99-24.66 8.83 65.37 98.50 -1.50 8.89 37.04 13.33 0.38 0.56
HF×NZH 18.97 16.15-23.82 7.65 52.11 96.69 -3.31 4.40 27.47 10.99 1.22 0.73
果实横径
Transverse diameter (mm)
NZH×HF 18.63±0.89 21.45±0.60 20.04 19.81 15.59-23.83 7.63 74.12 98.86 -1.14 14.07 42.22 21.48 0.16 0.52
HF×NZH 19.49 16.32-22.67 7.06 68.70 97.24 -2.76 7.69 35.16 25.27 -0.35 0.01
果实侧径
Lateral diameter (mm)
NZH×HF 17.03±1.38 18.77±0.63 17.90 17.22 14.35-21.07 7.71 35.78 96.20 -3.80 11.85 28.89 48.15 0.22 0.37
HF×NZH 17.04 14.12-20.44 7.60 32.52 95.20 -4.80 9.89 29.67 47.25 -0.33 0.05
可溶性固形物
Total soluble solid (%)
NZH×HF 11.36±0.82 12.97±0.90 12.17 14.55 8.10-19.70 14.40 83.11 119.61 19.61 78.52 90.37 5.93 0.17 0.11
HF×NZH 14.51 9.20-23.20 15.19 84.73 119.28 19.28 76.09 88.04 4.35 2.31 0.76
可溶性糖
Soluble sugar (g·kg-1)
NZH×HF 92.35±1.70 117.27±0.91 104.81 116.07 56.57-178.92 21.36 99.78 109.42 9.42 41.56 68.83 14.29 0.26 0.17
HF×NZH 120.10 67.97-199.76 27.81 99.88 114.59 14.59 46.34 65.85 19.51 -0.59 0.33
可滴定酸
Titratable acid (g/100 mL)
NZH×HF 0.67±0.01 0.58±0.02 0.63 0.60 0.31-1.13 32.60 89.50 95.60 -4.40 33.33 41.67 47.92 0.22 0.75
HF×NZH 0.59 0.25-0.96 24.01 80.11 94.31 -5.69 16.13 45.16 41.94 1.06 0.02
果实花色苷
Anthocyanin content (mg·kg-1)
NZH×HF 6.96±0.53 42.02±0.61 24.49 23.58 3.12-112.51 84.81 99.86 96.30 -3.70 14.10 30.77 8.97 6.58 0.26
HF×NZH 22.20 1.80-79.94 73.84 99.79 90.64 -9.36 12.20 31.71 7.32 3.18 1.70
果形指数
Fruit shape index
NZH×HF 0.87±0.02 1.02±0.05 0.95 0.98 0.86-1.12 5.58 47.71 102.85 2.85 22.39 68.66 1.49 -0.29 0.56
HF×NZH 0.97 0.87-1.12 4.56 21.57 102.61 2.61 14.29 71.43 0.75 0.16 0.57
果实生育期
Fruit development period (d)
NZH×HF 49.00 54.00 51.50 53.07 44-61 8.23 / 103.04 3.04 42.22 61.48 16.30 -0.93 0.14
HF×NZH 51.52 43-61 7.83 / 100.03 0.03 26.37 46.15 26.37 -0.86 0.24
果柄长度
Fruit stalk length (mm)
NZH×HF 19.43±3.04 19.94±3.33 19.69 20.03 7.24-35.30 20.60 40.30 101.74 1.74 49.25 52.99 44.78 1.61 0.36
HF×NZH 19.62 9.93-30.01 20.38 36.43 99.67 -0.33 43.33 47.78 50.00 0.06 0.28

Fig. 1

Fruit phenotypes of cross parents Nanzaohong (NZH) and Hongfei (HF) as well as representative F1 progenies"

Fig. 2

Frequency distributions of fruit characters in the F1 progenies derived from reciprocal cross between Nanzaohong (NZH) and Hongfei (HF)"

Table 2

The heredity variation of fruit flavor in the F1 progenies derived from reciprocal cross between Nanzaohong and Hongfei"

性状
Trait
组合
Cross
亲本Parent 杂交F1代性状分离比例
Separation proportion for F1 hybrids (%)
NZH HF
风味
Flavor
NZH×HF 酸甜
Sour-sweet
甜酸
Sweet-sour
酸Sour
(5.97)
甜酸Sweet-sour
(42.54)
酸甜Sour-sweet
(21.64)
甜Sweet
(29.85)
HF×NZH 酸Sour
(3.26)
甜酸Sweet-sour
(52.17)
酸甜Sour-sweet
(25.00)
甜Sweet
(19.57)
苦味
Bitter flavor
NZH×HF 有苦味
Bitter
无苦味
De-bitter
无苦味De-bitter (97.04) 有苦味Bitter (2.96)
HF×NZH 无苦味De-bitter (91.30) 有苦味Bitter (8.70)

Table 3

The heredity variation of flesh color and peel color in the F1 progenies derived from reciprocal cross between Nanzaohong and Hongfei"

性状
Trait
组合
Cross
亲本Parent 杂交F1代性状分离比例
Separation proportion for F1 hybrids (%)
NZH HF
果肉颜色Flesh color NZH×HF
Yellow
乳白
Cream-white
乳白 Cream-white
(35.07)
黄 Yellow
(56.72)
红 Red
(5.22)
紫红 Purple red
(2.99)
HF×NZH 乳白 Cream-white
(27.17)
黄 Yellow
(61.96)
红 Red
(7.61)
紫红 Purple red
(3.26)
果皮颜色
Peel color
NZH×HF 紫红
Purple red
橙红
Orange red
橙红 Orange red
(27.82)
红 Red
(53.38)
紫红 Purple red
(12.78)
黑紫 Black purple
(6.02)
HF×NZH 橙红 Orange red
(25.27)
红 Red
(61.54)
紫红 Purple red
(10.99)
黑紫 Black purple
(2.20)

Table 4

The heredity variation of fruit shape and fruit top shape in the F1 progenies derived from reciprocal cross between Nanzaohong and Hongfei"

性状
Trait
组合
Cross
亲本Parent 杂交F1代性状分离比例
Separation proportion for F1 hybrids (%)
NZH HF
果实形状
Fruit shape
NZH×HF 肾形
Reniform
心脏形
Heart
肾形
Reniform (46.27)
扁圆形
Oblate (2.24)
近圆形
Near round (12.69)
椭圆形
Ellipse (10.45)
心脏形
Heart (28.36)
HF×NZH 肾形
Reniform (35.16)
扁圆形
Oblate (5.49)
近圆形
Near round (21.98)
椭圆形
Ellipse (4.40)
心脏形
Heart (33.00)
果顶形状
Fruit top shape
NZH×HF
Concave

Convex
凹 Concave (29.10) 平 Flat (39.55) 凸 Convex (31.34)
HF×NZH 凹 Concave (18.68) 平 Flat (39.56) 凸 Convex (41.76)

Table 5

Candidate genetic models of fruit characters and their maximum log likelihood values and AIC values"

性状
Trait
NZH×HF HF×NZH
备选模型 Model 极大似然值 MLV AIC值 AIC value 备选模型 Model 极大似然值 MLV AIC值 AIC value
果质量
Fruit weight
2MG-AD -158.9561 329.9123 2MG-AD -97.4125 206.8250
2MG-A -163.5741 335.1482 2MG-EA -102.5554 211.1109
2MG-EA -164.5972 335.1944 1MG-A -103.3361 212.6722
果实纵径
Longitudinal diameter
1MG-A -256.1247 518.2493 1MG-A -158.1745 322.3489
2MG-A -255.7949 519.5899 2MG-EA -158.3125 322.6250
1MG-AD -255.9692 519.9385 1MG-AD -158.0700 324.1400
果实横径
Transverse diameter
2MG-AD -237.5514 487.1027 2MG-EA -154.2085 314.4170
2MG-EA -244.3091 494.6182 2MG-AD -151.5555 315.1110
1MG-A -244.4566 494.9132 0MG -157.5688 319.1377
果实侧径
Lateral diameter
2MG-EA -225.2212 456.4423 2MG-EA -148.4416 302.8831
1MG-A -225.3303 456.6606 1MG-A -150.5678 307.1356
2MG-A -224.8276 457.6553 2MG-AD -148.3132 308.6263
可溶性固形物
Total soluble solid
2MG-AD -282.5172 577.0345 2MG-AD -192.1946 396.3893
2MG-EA -285.9259 577.8517 2MG-A -196.4489 400.8979
1MG-A -286.1594 578.3188 2MG-EA -198.4019 402.8039
可溶性糖
Soluble sugar
2MG-AD -359.3510 730.7020 2MG-EA -196.4061 398.8121
2MG-A -362.0946 732.1892 1MG-AD -195.5200 399.0401
2MG-EA -363.7563 733.5126 1MG-A -196.6420 399.2839
可滴定酸
Titratable acid
2MG-A 19.4123 -30.8247 2MG-A 22.4635 -36.9270
1MG-A 18.1227 -30.2453 2MG-AD 22.9213 -33.8426
1MG-AD 18.1240 -28.2481 2MG-EA 18.2742 -30.5484
花色苷含量
Anthocyanin content
2MG-AD -308.7738 629.5476 2MG-EA -159.7461 325.4923
1MG-AD -311.2824 630.5649 2MG-AD -157.1097 326.2195
2MG-EA -312.9347 631.8694 2MG-A -159.7025 327.4050
果形指数
Fruit shape index
2MG-EA 205.0708 -404.1417 2MG-AD 160.6529 -309.3059
2MG-A 203.9652 -399.9304 2MG-EA 158.3081 -308.6163
1MG-A 202.7257 -399.4513 2MG-A 157.1782 -308.3565
果实生育期
Fruit development period
1MG-A -379.6368 765.2737 1MG-A -247.9257 501.8514
1MG-AD -379.6406 767.2812 1MG-AD -246.9941 501.9882
1MG-EAD -380.9697 769.9394 1MG-NCD -247.9908 503.9815
果柄长度
Fruit stalk length
2MG-A -376.5200 761.0400 2MG-AD -244.6610 501.3221
2MG-EA -377.7745 761.5490 0MG -251.9375 507.8750
1MG-A -377.8436 761.6871 2MG-EA -251.1569 508.3138

Table 6

Estimation of genetic parameters for main fruit characters as its optimal genetic model"

性状
Trait
NZH×HF HF×NZH
模型 Model da db ha hb 模型 Model da db ha hb
单果质量Fruit weight 2MG-AD 0.86 0.25 0.04 -0.40 2MG-AD 0.82 0.51 0.04 -0.09
果实纵径Longitudinal diameter 1MG-A 1.95 / / / 1MG-A 1.22 / / /
果实横径Transverse diameter 2MG-AD 1.76 -0.08 -0.09 0.91 2MG-EA 1.30 1.30 / /
果实侧径Lateral diameter 2MG-EA 0.66 0.66 / / 2MG-EA 0.62 0.62 / /
可溶性固形物Total soluble solid 2MG-AD 1.88 0.55 -1.76 -1.38 2MG-AD 1.67 1.26 -0.30 -1.08
可溶性糖Soluble sugar 2MG-AD 22.50 19.35 8.65 7.98 2MG-EA 22.97 22.97 / /
可滴定酸Titratable acid 2MG-A 0.00 0.22 / / 2MG-A 0.02 0.07 / /
花色苷含量Anthocyanin content 2MG-AD 17.05 8.45 -13.99 -0.50 2MG-EA 7.37 7.73 / /
果形指数Fruit shape index 2MG-EA 0.05 0.05 / / 2MG-AD 0.02 0.01/ -0.06 0.04
果实生育期Fruit development period 1MG-A 4.30 / / / 1MG-A 3.67 / / /
果柄长度Fruit stalk length 2MG-A -0.24 2.62 / / 2MG-AD 2.71 1.59 -3.09 -4.61
[1] 俞德浚. 中国植物志.第三十八卷. 北京: 科学出版社, 1986.
YU D J. Flora of China (Vol. 38). Beijing: Science Press, 1986. (in Chinese)
[2] 黄晓姣, 王小蓉, 陈涛, 陈娇, 汤浩茹. 中国樱桃遗传资源多样性研究进展. 果树学报, 2013, 30(3): 470-479.
HUANG X J, WANG X R, CHEN T, CHEN J, TANG H R. Research progress of germplasm diversity in Chinese cherry (Cerasus pseudocerasus). Journal of Fruit Science, 2013, 30(3): 470-479. (in Chinese)
[3] 王小蓉, 洪莉. 樱桃种质资源研究与生产关键技术. 北京: 中国农业科学技术出版社, 2019.
WANG X R, HONG L. Research on Cheery Germplasm Resources and Key Technology of Production. Beijing: China Agricultural Science and Technology Press, 2019. (in Chinese)
[4] 段续伟, 李明, 谭钺, 张晓明, 王宝刚, 闫国华, 王晶, 潘凤荣, 刘庆忠, 张开春. 新中国果树科学研究70年—樱桃. 果树学报, 2019, 36(10): 1339-1351.
DUAN X W, LI M, TAN Y, ZHANG X M, WANG B G, YAN G H, WANG J, PAN F R, LIU Q Z, ZHANG K C. Fruit scientific research in new China in the past 70 years: Cherry. Journal of Fruit Science, 2019, 36(10): 1339-1351. (in Chinese)
[5] 陈涛, 李良, 张静, 黄智林, 张洪伟, 刘胤, 陈清, 汤浩茹, 王小蓉. 中国樱桃种质资源的考察、收集和评价. 果树学报, 2016, 33(8): 917-933.
CHEN T, LI L, ZHANG J, HUANG Z L, ZHANG H W, LIU Y, CHEN Q, TANG H R, WANG X R. Investigation, collection and preliminary evaluation of genetic resources of Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. Journal of Fruit Science, 2016, 33(8): 917-933. (in Chinese)
[6] QUERO-GARCÍA J, LETOURMY P, CAMPOY J A, BRANCHEREAU C, MALCHEV S, BARRENECHE T, DIRLEWANGER E. Multi-year analyses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry (Prunus avium L.). Horticulture Research, 2021, 8: s41438-21. doi: 10.1038/s41438-021-00571-6.
doi: 10.1038/s41438-021-00571-6
[7] HARDNER C M, HAYES B J, KUMAR S, VANDERZANDE S, CAI L C, PIASKOWSKI J, QUERO-GARCIA J, CAMPOY J A, BARRENECHE T, GIOVANNINI D, LIVERANI A, CHARLOT G, VILLAMIL-CASTRO M, ORAGUZIE N, PEACE C P. Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array. Horticulture Research, 2019, 6: 6-15. doi: 10.1038/s41438-018-0081-7.
doi: 10.1038/s41438-018-0081-7 pmid: 30603092
[8] 徐强, 郝玉金, 黄三文, 邓秀新. 果实品质研究进展. 中国基础科学, 2016(1): 55-62.
XU Q, HAO Y J, HUANG S W, DENG X X. Advances in fruit quality researches. China Basic Science, 2016(1): 55-62. (in Chinese)
[9] 赵慧. 甜樱桃果实大小性状的遗传分析与QTL定位[D]. 沈阳: 沈阳农业大学, 2018.
ZHAO H. Inheritance and QTL mapping for fruit size in sweet cherry[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[10] CALLE A, CAI L C, IEZZONI A, WÜNSCH A. Genetic dissection of bloom time in low chilling sweet cherry (Prunus avium L.) using a multi-family QTL approach. Frontiers in Plant Science, 2020, 10: 1647. doi: 10.3389/fpls.2019.01647.
doi: 10.3389/fpls.2019.01647
[11] ZHOU H, MA R J, GAO L, ZHANG J Y, ZHANG A, ZHANG X J, REN F, ZHANG W H, LIAO L, YANG Q R, XU S L, OGUTU C O, ZHAO J B, YU M L, JIANG Q, KORBAN S S, HAN Y P. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. Plant Biotechnology Journal, 2021, 19(1): 192-205. doi: 10.1111/pbi.13455.
doi: 10.1111/pbi.13455
[12] VALDERRAMA-SOTO D, SALAZAR J, SEPÚLVEDA-GONZÁLEZ A, SILVA-ANDRADE C, GARDANA C, MORALES H, BATTISTONI B, JIMÉNEZ-MUÑOZ P, GONZÁLEZ M, PEÑA-NEIRA Á, INFANTE R, PACHECO I. Detection of quantitative trait Loci controlling the content of phenolic compounds in an Asian plum (Prunus salicina L.) F1 population. Frontiers in Plant Science, 2021, 12: 679059. doi: 10.3389/fpls.2021.679059.
doi: 10.3389/fpls.2021.679059
[13] 刘家成, 章秋平, 牛铁泉, 刘宁, 张玉萍, 徐铭, 马小雪, 张玉君, 刘硕, 刘威生. ‘串枝红’与‘赛买提’杏正、反交后代果实性状遗传倾向分析. 果树学报, 2020, 37(5): 625-634.
LIU J C, ZHANG Q P, NIU T Q, LIU N, ZHANG Y P, XU M, MA X X, ZHANG Y J, LIU S, LIU W S. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Chuanzhihong’ and ‘Saimaiti' in apricots. Journal of Fruit Science, 2020, 37(5): 625-634. (in Chinese)
[14] YANG C Q, SHA G Y, WEI T, MA B Q, LI C Y, LI P M, ZOU Y J, XU L F, MA F W. Linkage map and QTL mapping of red flesh locus in apple using a R1R1×R6R6 population. Horticultural Plant Journal, 2021, 7(5): 393-400.
doi: 10.1016/j.hpj.2020.12.008
[15] 闫忠业, 伊凯, 刘志, 王冬梅, 吕天星, 李春敏, 陈东玫. ‘玉’ב冠’果杂交后代果实糖酸组分遗传分析. 果树学报, 2017, 34(2): 129-136.
YAN Z Y, YI K, LIU Z, WANG D M, LÜ T X, LI C M, CHEN D M. A study of genetic trend of sugar and acid components in the fruits of apple hybrid progeny of‘Jonathan' × ‘Golden Delicious'. Journal of Fruit Science, 2017, 34(2): 129-136. (in Chinese)
[16] 赵崇斌, 郭乙含, 李舒庆, 徐红霞, 黄天启, 林顺权, 陈俊伟, 杨向晖. 宁海白×大房枇杷F1杂交群体果实性状的相关性及遗传分析. 果树学报, 2021, 38(7): 1055-1065.
ZHAO C B, GUO Y H, LI S Q, XU H X, HUANG T Q, LIN S Q, CHEN J W, YANG X H. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang. Journal of Fruit Science, 2021, 38(7): 1055-1065. (in Chinese)
[17] IEZZONI A F, MCFERSON J, LUBY J, GASIC K, WHITAKER V, BASSIL N, YUE C Y, GALLARDO K, MCCRACKEN V, COE M, HARDNER C, ZURN J D, HOKANSON S, WEG E V D, JUNG S, MAIN D, LINGE D S L, VANDERZANDE S, DAVIS T M, MAHONEY L L, FINN C, PEACE C. RosBREED: Bidging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. Horticulture Research, 2020, 7(1): 177.
doi: 10.1038/s41438-020-00398-7
[18] PEACE C P. DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Horticulture Research, 2017, 4(1): 17006. doi: 10.1038/hortres.2017.6.
doi: 10.1038/hortres.2017.6
[19] WANG L, WANG Y, ZHANG J, FENG Y, CHEN Q, LIU Z S, LIU C L, HE W, WANG H, YANG S F, ZHANG Y, LUO Y, TANG H R, WANG X R. Comparative analysis of transposable elements and the identification of candidate centromeric elements in the Prunus subgenus Cerasus and its relatives. Genes, 2022, 13(4): 641. doi: 10.3390/genes13040641.
doi: 10.3390/genes13040641
[20] LIU Z S, ZHANG J, WANG Y, WANG H, WANG L, ZHANG L, XIONG M R, HE W, YANG S F, CHEN Q, CHEN T, LUO Y, ZHANG Y, TANG H R, WANG X R. Development and cross-species transferability of novel genomic-SSR markers and their utility in hybrid identification and trait association analysis in Chinese cherry. Horticulturae, 2022, 8(3): 222.
doi: 10.3390/horticulturae8030222
[21] 王珏, 王燕, 张静, 陈涛, 王磊, 陈清, 汤浩茹, 王小蓉. 中国樱桃InDel标记开发及其在蔷薇科果树中通用性评价. 园艺学报, 2020, 47(1): 98-110.
WANG J, WANG Y, ZHANG J, CHEN T, WANG L, CHEN Q, TANG H R, WANG X R. Development of insertion-deletion(InDel)markers based on whole-genome sequencing data in Chinese cherry and their transferability in Rosaceae fruit trees. Acta Horticlturae Sincia, 2020, 47(1): 98-110. (in Chinese)
[22] 宗宇, 王月, 朱友银, 邵姁, 李永强, 郭卫东. 基于中国樱桃转录组的SSR分子标记开发与鉴定. 园艺学报, 2016, 43(8): 1566-1576.
ZONG Y, WANG Y, ZHU Y Y, SHAO X, LI Y Q, GUO W D. Development and validation of SSR markers based on transcriptomic data of Chinese cherry (Prunus pseudocerasus). Acta Horticulturae Sinica, 2016, 43(8): 1566-1576. (in Chinese)
[23] WANG Y, WANG H, ZHANG J, LIU Z S, CHEN Q, HE W, YANG S F, LIN Y X, ZHANG Y T, LI M Y, ZHANG Y, LUO Y, TANG H R, WANG X R. Survey on intra-specific crossing and F1 seedlings cultivation of seven combinations in Chinese cherry. Horticultural Plant Journal, 2022, 91(3): 267-275.
[24] WANG Y, HU G P, LIU Z S, ZHANG J, MA L, TIAN T, WANG H, CHEN T, CHEN Q, HE W, YANG S F, LIN Y X, ZHANG Y T, LI M Y, ZHANG Y, LUO Y, TANG H R, WANG X R. Phenotyping in flower and main fruit traits of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don]. Scientia Horticulturae, 2022, 296: 110920.
doi: 10.1016/j.scienta.2022.110920
[25] 杜含梅, 王小蓉, 陈涛, 张洪伟, 杜涛. 中国樱桃种内及与欧洲甜樱桃杂交的初步分析. 广西植物, 2015, 35(2): 227-230, 193.
DU H M, WANG X R, CHEN T, ZHANG H W, DU T. Preliminary study on intraspecific hybridization of Cerasus pseudocerasus and interspecific hybridization with C. avium. Guihaia, 2015, 35(2): 227-230, 193. (in Chinese)
[26] 吴延军, 武凯翔, 袁玥, 董梦梦. 甜樱桃新种质种内及与中国樱桃种间杂交效率分析. 果树学报, 2019, 36(9): 1112-1120.
WU Y J, WU K X, YUAN Y, DONG M M. Analysis the efficiency of inter and intra-specific hybridization of new cultivars of sweet cherry and Chinese cherry. Journal of Fruit Science, 2019, 36(9): 1112-1120. (in Chinese)
[27] 赵改荣, 李明. 樱桃种质资源描述规范和数据标准. 北京: 中国农业科学技术出版社, 2011.
ZHAO G R, LI M. Descriptors and data standards for cherry. Beijing: China Agricultural Science and Technology Press, 2011. (in Chinese)
[28] 熊庆娥. 植物生理学实验教程. 成都: 四川科学技术出版社, 2003.
XIONG Q E. Plant Physiology. Chengdu: Sichuan Scientific & Technical Publishers, 2003. (in Chinese)
[29] CHEN X S, WU Y, CHEN M X, HE T M, FENG J R, LIANG Q, LIU W, YANG H H, ZHANG L J. Inheritance and correlation of self-compatibility and other yield components in the apricot hybrid F1 populations. Euphytica, 2006, 150(1/2): 69-74. doi: 10.1007/s10681-006-9094-7.
doi: 10.1007/s10681-006-9094-7
[30] 沈德绪. 果树育种学. 2版. 北京: 中国农业出版社, 1997.
SHEN D X. Fruit-Tree Breeding. Beijing: Chinese Agriculture Press, 1997. (in Chinese)
[31] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0. 作物学报, 2022, 48(6): 1416-1424.
doi: 10.3724/SP.J.1006.2022.14088
WANG J T, ZHANG Y W, DU Y W, REN W L, LI H F, SUN W X, GE C, ZHANG Y M. SEA v2.0: An R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14088
[32] 王燕, 刘针杉, 张静, 杨鹏飞, 马蓝, 王旨意, 涂红霞, 杨绍凤, 王浩, 陈涛, 王小蓉. 中国樱桃杂交F1代花和果实若干性状遗传倾向分析. 园艺学报, 2022, 49(9): 1853-1865.
WANG Y, LIU Z S, ZHANG J, YANG P F, MA L, WANG Z Y, TU H X, YANG S F, WANG H, CHEN T, WANG X R. Inheritance trend of flower and fruit traits in F1 progenies of Chinese cherry. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. (in Chinese)
[33] 王勇, 伍国红, 李玉玲, 孙锋, 骆强伟, 苏来曼·艾则孜, 郭平峰, 余义和. ‘红地球’葡萄杂交F1代重要果实性状遗传倾向分析. 果树学报, 2015, 32(6): 1099-1106.
WANG Y, WU G H, LI Y L, SUN F, LUO Q W, SULAIMAN Aizezi, GUO P F, YU Y H. Inheritance trend of the fruit traits of F1 progenies of ‘Red Globe’ grapevine. Journal of Fruit Science, 2015, 32(6): 1099-1106. (in Chinese)
[34] 王鹏飞, 付鸿博, 穆霄鹏, 张建成, 杜俊杰. ‘农大6号’与‘农大7号’欧李正反交F1代果实品质的遗传变异分析. 中国果树, 2021(1): 50-55.
WANG P F, FU H B, MU X P, ZHANG J C, DU J J. Genetic analysis of fruit quality in the F1 generation from reciprocal crosses between ‘Nongda 6’ and ‘Nongda 7’ Cerasus humilis. China Fruits, 2021(1): 50-55. (in Chinese)
[35] 姜凤超, 孙浩元, 杨丽, 张俊环, 王玉柱. ‘串枝红’ב骆驼黄’杏F1代糖酸性状的遗传变异分析. 果树学报, 2018, 35(6): 649-657.
JIANG F C, SUN H Y, YANG L, ZHANG J H, WANG Y Z. Analysis of genetic variation of sugar and acid contents in F1 population of apricot derived from ‘Chuanzhihong’ × ‘Luotuohuang’. Journal of Fruit Science, 2018, 35(6): 649-657. (in Chinese)
[36] 付鸿博, 王鹏飞, 徐豆, 穆霄鹏, 张建成, 付宝春, 杜俊杰. 农大4号与DS-1欧李正、反交F1代果实品质的遗传变异分析. 核农学报, 2021, 35(10): 2223-2233.
doi: 10.11869/j.issn.100-8551.2021.10.2223
FU H B, WANG P F, XU D, MU X P, ZHANG J C, FU B C, DU J J. Heredity and variation analysis of fruit quality in the F generation from reciprocal crosses between nongda 4 and DS-1 Chinese dwarf cherry (Cerasus humilis). Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2223-2233. (in Chinese)
doi: 10.11869/j.issn.100-8551.2021.10.2223
[37] 刘有春, 魏永祥, 王兴东, 刘成, 蒋明三, 张舵, 袁兴福, 陶承光. 南高丛越橘品种‘Sapphire’和北高丛品种‘Berkeley’正反交后代果实糖酸组分含量的遗传倾向. 中国农业科学, 2014, 47(24): 4878-4885.
LIU Y C, WEI Y X, WANG X D, LIU C, JIANG M S, ZHANG D, YUAN X F, TAO C G. Inheritance tendency of sugar and acid contents in the reciprocal cross progenies' fruits of southern × northern high bush blueberry (Vaccinium). Scientia Agricultura Sinica, 2014, 47(24): 4878-4885. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!