Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (7): 1359-1370.doi: 10.3864/j.issn.0578-1752.2022.07.008

• PLANT PROTECTION • Previous Articles     Next Articles

Sensitivity of Corynespora cassiicola to Three Common Fungicides and Its Resistance to Fluopyram from Shandong Province

LI GuiXiang1(),LI XiuHuan1,2(),HAO XinChang1,LI ZhiWen3,LIU Feng2,LIU XiLi1()   

  1. 1State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi
    2College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong
    3Institute for the Control of Agrochemicals of Shaanxi Province, Xi'an 710003
  • Received:2021-10-19 Accepted:2021-12-06 Online:2022-04-01 Published:2022-04-18
  • Contact: XiLi LIU E-mail:lgx2018@nwafu.edu.cn;lixiuhuan2021@nwafu.edu.cn;seedling@nwafu.edu.cn

Abstract:

【Objective】Corynespora target spot caused by Corynespora cassiicola is recognized as one of the three most serious worldwide diseases of cucumber, which seriously affects the yield and quality of cucumber. With the continuous use of commercial fungicides, resistance problem of C. cassiicola increased seriously. The objective of this study is to (i) clarify the resistance profile of C. cassiicola in cucumber from Shandong Province to three common fungicides; (ii) provide a theoretical basis for the fungicide control of Corynespora target spot of cucumber; (iii) provide data support for the screening of highly efficient mixed fungicides for the resistance management of C. cassiicola. 【Method】A total of 140 C. cassiicola isolates were isolated from Shandong Province. The sensitivity of C. cassiicola to difenoconazole, prochloraz and fluopyram was investigated using mycelium growth rate method. The relationship of SdhC-S73P and fluopyram-resistance was analyzed using Modeller v9.19 and AutoDock4.2.6 software. The optimal ratio of fluopyram and prochloraz was also screened using in vitro mycelial growth method and detached leaf assay. 【Result】After data outlier analysis and elimination, the EC50 values of the 121 C. cassiicola isolates to difenoconazole ranged from 0.29 to 6.80 μg·mL -1, and produced an unimodal distribution with a mean of 2.44 μg·mL -1. The EC50 values of the 129 C. cassiicola isolates to prochloraz ranged from 0.01 to 0.57 μg·mL-1 with a mean of 0.16 μg·mL -1, and also produced an unimodal distribution. The EC50 values of the 136 C. cassiicola isolates to fluopyram ranged from 0.56 to 47.54 μg·mL-1, with a mean of 6.94 μg·mL -1. Many fluopyram-resistant isolates with different resistant factors were detected, and the mutation frequency of fluopyram-resistant isolates containing S73P in SdhC was 31.62%. Molecular docking results showed that after the S73P mutation occurred on the SdhC subunit, the rigidity of the amino acid increased, and the steric hindrance became larger, so that the hydrogen bond between fluopyram and Ser73 disappeared, so the affinity was reduced, leading to the occurrence of fluopyram resistance. No cross-resistance was detected between fluopyram and prochloraz. The highest synergistic effect of fluopyram and prochloraz was 1.84 at a ratio of 7﹕3. The control efficacy of the mixture (fluopyram﹕prochloraz=7﹕3) against Corynespora target spot was higher than that of single fungicide (fluopyram or prochloraz) at the same dose. 【Conclusion】The sensitivity of C. cassiicola from different regions to fungicide is different in Shandong Province. Most of C. cassiicola isolates showed fluopyram resistance and many point mutations in SdhB, SdhC and SdhD were detected. Among them, the frequency of S73P mutation in SdhC was the highest. The control efficacy of the mixture of fluopyram and prochloraz in 7﹕3 against Corynespora target spot in cucumber was more excellent compared with that of single fungicide. It is suggested that the fluopyram can be used alternately or in mixture with prochloraz to control the resistance of C. cassiicola to SDHI fungicides such as fluopyram.

Key words: Corynespora cassiicola, Corynespora target spot, fungicide sensitivity, S73P mutation, molecular docking, synergistic effect

Table 1

Primers used in this study"

基因
Gene
引物名称
Primer name
引物序列
Primer sequence (5′-3′)
引物长度
Length of primer (bp)
扩增片段大小
Length of product (bp)
SdhB CcSdhB-F ATGGCTTGCACACGCGCTTT 20 1106
CcSdhB-R CTACGTGAAAGCCATGCTC 19
SdhC CcSdhC-F ATGGCTTCCCAGCGCGTCTT 20 629
CcSdhC-R TAAACAAACAGAGAATAGTA 20
SdhD CcSdhD-F ATGAAGCGCACCTCG CCAATC 21 938
CcSdhD-R AAAGATCCTAATAATCACATGTATCCAAAC 30

Fig. 1

The sensitivity of C. cassiicola isolates collected from different regions in Shandong Province to different fungicides The data in the figure are mean EC50 values, and different letters represent significant difference (LSD, P<0.05)"

Fig. 2

Frequency distribution of sensitivity of C. cassiicola isolates from Shandong Province to different fungicides"

Table 2

Frequency of amino acid point mutations in Sdhs of C. cassiicola isolates from Shandong Province"

点突变类型
Point mutation type
菌株数量
Number of isolates
抑制中浓度
EC50 (μg·mL-1)
比值
Ratio (%)
无突变No mutation 42 0.56-2.42 30.88
SdhB H278Y 9 0.56-1.19 6.62
SdhB I280V 19 1.58-24.63 13.97
SdhC S73P 43 1.88-47.54 31.62
SdhC N75S 5 1.42-11.31 3.68
SdhC H134R 8 0.61-18.84 5.88
SdhD G135V 10 2.66-18.65 7.35

Fig. 3

Binding mode of fluopyram and SDH protein"

Fig. 4

Cross-resistance of fluopyram and difenoconazole (A), prochloraz (B)"

Fig. 5

Determination of the optimal proportion of the binary mixtures with fluopyram and prochloraz"

Fig. 6

Control efficacy of fluopyram, prochloraz and their mixture against Corynespora target spot of cucumber in detached leaves"

[1] 李宝聚, 高苇, 石延霞, 谢学文. 多主棒孢和棒孢叶斑病的研究进展. 植物保护学报, 2012, 39(2):171-176.
LI B J, GAO W, SHI Y X, XIE X W. Progress in researches on Corynespora leaf spot. Journal of Plant Protection, 2012, 39(2):171-176. (in Chinese)
[2] 李长松, 张眉, 李林, 李凡, 齐军山, 徐作珽, 张博. 山东省黄瓜棒孢叶斑病(褐斑病)病原菌鉴定和防治. 中国蔬菜, 2009(18):29-33.
LI C S, ZHANG M, LI L, LI F, QI J S, XU Z T, ZHANG B. Identification of cucumber target leaf spot (brown spot) pathogen and its control. China Vegetables, 2009(18):29-33. (in Chinese)
[3] 邹庆道, 傅俊范, 朱勇, 房德纯. 黄瓜褐斑病病原菌鉴定及生物学特性研究. 沈阳农业大学学报, 2002, 33(4):258-261.
ZOU Q D, FU J F, ZHU Y, FANG D C. Identification of pathogen from cucumber target leaf spot and research on biological characteristics. Journal of Shenyang Agricultural University, 2002, 33(4):258-261. (in Chinese)
[4] 于淑晶, 王满意, 田芳, 赵卫光, 边强, 李宝聚. 黄瓜棒孢叶斑病的防治及抗药性研究进展. 农药, 2014, 53(1):7-11.
YU S J, WANG M Y, TIAN F, ZHAO W G, BIAN Q, LI B J. Progress in research on control of cucumber Corynespora leaf spot and fungicide resistance. Agrochemicals, 2014, 53(1):7-11. (in Chinese)
[5] 孙炳学, 石延霞, 朱发娣, 谢学文, 柴阿丽, 李宝聚. 多主棒孢SdhB-H278R突变位点AS-real-time PCR定量检测体系的建立. 中国农业科学, 2018, 51(24):4647-4658.
SUN B X, SHI Y X, ZHU F D, XIE X W, CHAI A L, LI B J. Establishment of AS-real-time PCR for quantitatively detecting the H278R allele in the SdhB associated with Corynespora cassiicola in cucumber. Scientia Agricultura Sinica, 2018, 51(24):4647-4658. (in Chinese)
[6] DUAN Y B, XIN W J, LU F, LI T, LI M X, WU J, WANG J X, ZHOU M G. Benzimidazole- and QoI-resistance in Corynespora cassiicola populations from greenhouse-cultivated cucumber: An emerging problem in China. Pesticide Biochemistry and Physiology, 2019, 153:95-105.
doi: 10.1016/j.pestbp.2018.11.006
[7] HASAMA W, SATO M. Occurrence and distribution of fungicide- resistant field isolates of Corynespora cassiicola, causal fungus of target leaf spot of cucumber, in Kyushu and Okinawa districts. Kyushu Plant Protection Research, 1996, 42:26-30.
doi: 10.4241/kyubyochu.42.26
[8] DATE H, KATAOKA E, TANINA K, SASAKI S, INOUE K, NASU H, KASUYAMA S. Sensitivity of Corynespora cassiicola, causal agent of Corynespora leaf spot of cucumber, to thiophanate-methyl, diethofencarb and azoxystrobin. Japanese Journal of Phytopathology, 2004, 70(1):10-13.
doi: 10.3186/jjphytopath.70.10
[9] AVOZANI A, REIS E M, TONIN R B. Sensitivity loss by Corynespora cassiicola, isolated from soybean, to the fungicide carbendazim. Summa Phytopathologica, 2014, 40(3):273-276.
doi: 10.1590/0100-5405/1928
[10] 黄大野. 基于微管蛋白靶标的几种蔬菜主要病原真菌耐药性与抗药性机理的研究[D]. 沈阳: 沈阳农业大学, 2012.
HUANG D Y. Tolerance and resistance mechanism of several main pathogenic fungi of vegetable base on tubulin[D]. Shenyang: Shenyang Agricultural University, 2012. (in Chinese)
[11] ZHU F D, SHI Y X, XIE X W, CHAI A L, LI B J. Occurrence, distribution and characteristics of boscalid-resistant Corynespora cassiicola in China. Plant Disease, 2019, 103(1):69-76.
doi: 10.1094/PDIS-11-17-1760-RE
[12] MIYAMOTO T, ISHII H, SEKO T, KOBORI S, TOMITA Y. Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture, Japan. Plant Pathology, 2009, 58(6):1144-1151.
doi: 10.1111/j.1365-3059.2009.02151.x
[13] ISHII H, MIYAMOTO T, USHIO S, KAKISHIMA M. Lack of cross-resistance to a novel succinate dehydrogenase inhibitor, fluopyram, in highly boscalid-resistant isolates of Corynespora cassiicola and Podosphaera xanthii. Pest Management Science, 2011, 67(4):474-482.
doi: 10.1002/ps.2092
[14] SHI Y X, SUN B X, XIE X W, CHAI A L, LI L, LI B J. Site-directed mutagenesis of the succinate dehydrogenase subunits B and D from Corynespora cassiicola reveals different fitness costs and sensitivities to succinate dehydrogenase inhibitors. Environmental Microbiology, 2021, 23(10):5769-5783.
doi: 10.1111/1462-2920.15361
[15] SHI Y X, ZHU F D, SUN B X, XIE X W, CHAI A L, LI B J. Two adjacent mutations in the conserved domain of SdhB confer various resistance phenotypes to fluopyram in Corynespora cassiicola. Pest Management Science, 2021, 77(9):3980-3989.
doi: 10.1002/ps.6420
[16] ISHII H, YANO K, DATE H, FURUTA A, SAGEHASHI Y, YAMAGUCHI T, SUGIYAMA T, NISHIMURA K, HASAMA W. Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology, 2007, 97(11):1458-1466.
doi: 10.1094/PHYTO-97-11-1458
[17] MACKENZIE K J, XAVIER K V, WEN A, TIMILSINA S, ADKISON H M, DUFAULT N S, VALLAD G E. Widespread QoI fungicide resistance revealed among Corynespora cassiicola tomato isolates in Florida. Plant Disease, 2020, 104(3):893-903.
doi: 10.1094/PDIS-03-19-0460-RE
[18] RONDON M N, LAWRENCE K S. Corynespora cassiicola isolates from soybean in Alabama detected with G143A mutation in the cytochrome b gene. Plant Health Progress, 2019, 20(4):247-249.
doi: 10.1094/PHP-07-19-0046-BR
[19] LI X H, LI C C, LI G X, ZHU J M, LIU F, JIANG L, MU W, LIU X L. Detection of a point mutation (G143A) in Cyt b of Corynespora cassiicola that confers pyraclostrobin resistance. Horticulturae, 2021, 7(6):155.
doi: 10.3390/horticulturae7060155
[20] TERAMOTO A, MEYER M C, SUASSUNA N D, CUNHA M G D. In vitro sensitivity of Corynespora cassiicola isolated from soybean to fungicides and field chemical control of target spot. Summa Phytopathologica, 2017, 43(4):281-289.
doi: 10.1590/0100-5405/2195
[21] SHIMIZU H, OSANAI A, SAKAMOTO K, INAOKA D K, SHIBA T, HARADA S, KITA K. Crystal structure of mitochondrial quinol-fumarate reductase from the parasitic nematode Ascaris suum. Journal of Biochemistry, 2012, 151(6):589-592.
doi: 10.1093/jb/mvs051
[22] SALI A, BLUNDELL T L. Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 1993, 234(3):779-815.
doi: 10.1006/jmbi.1993.1626
[23] MAIER J, MARTINEZ C, KASAVAJHALA K, WICKSTROM L, HAUSER K, SIMMERLING C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 2015, 11(8):3696-3713.
doi: 10.1021/acs.jctc.5b00255
[24] MORRIS G M, HUEY R, LINDSTROM W, SANNER M F, BELEW R K, GOODSELL D S, OLSON A J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 2009, 30(16):2785-2791.
doi: 10.1002/jcc.21256
[25] STEWART J J. MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 1990, 4(1):1-103.
doi: 10.1007/BF00128336
[26] STEWART J J. Optimization of parameters for semiempirical methods. III. Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. Journal of Computational Chemistry, 1991, 12(3):320-341.
doi: 10.1002/jcc.540120306
[27] SANNER M F. Python: A programming language for software integration and development. Journal of Molecular Graphics and Modelling, 1999, 17(1):57-61.
[28] 毕秋艳, 赵建江, 张诗琪, 韩秀英, 吴杰, 路粉, 王文桥. 河北省梨树褐斑病菌对不同机制杀菌剂的敏感性及其与戊唑醇敏感性的关系. 植物病理学报, 2021, 51(2):248-257.
BI Q Y, ZHAO J J, ZHANG S Q, HAN X Y, WU J, LU F, WANG W Q. Sensitivity of Septoria piricoladesm from pear in Hebei Province to different classes of fungicides and correlation coefficient with tebuconazole. Acta Phytopathologica Sinica, 2021, 51(2):248-257. (in Chinese)
[29] 禾丽菲, 李晓旭, 朱佳美, 慕卫, 刘峰. 不同杀菌剂对黄瓜靶斑病菌的毒力作用特性比较. 农药学学报, 2018, 20(1):25-32.
HE L F, LI X X, ZHU J M, MU W, LIU F. Comparison of toxicity properties of different types of fungicides against Corynespora cassiicola on cucumber. Chinese Journal of Pesticide Science, 2018, 20(1):25-32. (in Chinese)
[30] 张乃楼, 李亚美, 康文强, 孙青彬, 祁之秋. 辽宁省黄瓜靶斑病菌对苯醚甲环唑和戊唑醇的敏感性. 农药学学报, 2014, 16(4):452-456.
ZHANG N L, LI Y M, KANG W Q, SUN Q B, QI Z Q. Sensitivity of Corynespora cassiicola to difenoconazole and tebuconazole in Liaoning Province. Chinese Journal of Pesticide Science, 2014, 16(4):452-456. (in Chinese)
[31] 纪明山, 龙怡云, 祁之秋. 辽宁省黄瓜褐斑病菌对咪鲜胺的敏感性检测. 江苏农业科学, 2010(2):127-128.
JI M S, LONG Y Y, QI Z Q. Sensitivity of Corynespora cassiicola to prochloraz in Liaoning Province. Jiangsu Agricultural Sciences, 2010(2):127-128. (in Chinese)
[32] MIYAMOTO T, ISHII H, STAMMLER G, KOCH A, OGAWARA T, TOMITA Y, FOUNTAINE J M, USHIO S, SEKO T, KOBORI S. Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathology, 2010, 59(5):873-881.
doi: 10.1111/j.1365-3059.2010.02321.x
[33] ZHU J M, ZHANG L Y, LI H, GAO Y Y, MU W, LIU F. Development of a LAMP method for detecting the N75S mutant in SDHI-resistant Corynespora cassiicola. Analytical Biochemistry, 2020, 597:113687.
doi: 10.1016/j.ab.2020.113687
[1] XiaoHe LIU,GuiSheng QIU,ZhaoGuo TONG,HuaiJiang ZHANG,WenTao YAN,Qiang YUE,LiNa SUN. Ligands Binding Characteristics of Chemosensory Protein CsasCSP16 of Carposina sasakii [J]. Scientia Agricultura Sinica, 2021, 54(5): 945-958.
[2] QIN JianHui,LI JinQiao,ZHAO Xu,LI KeBin,CAO YaZhong,YIN Jiao. Expression, Purification and Functional Analysis of Odorant Binding Protein 11 (OBP11) in Anomala corpulenta [J]. Scientia Agricultura Sinica, 2021, 54(14): 3017-3028.
[3] LI ZuRen,LUO DingFeng,BAI HaoDong,XU JingJing,HAN JinCai,XU Qiang,WANG RuoZhong,BAI LianYang. Cloning and Expression Analysis of Light Harvesting Chlorophyll a/b Protein Gene CcLhca-J9 in Conyza canadensis [J]. Scientia Agricultura Sinica, 2021, 54(1): 86-94.
[4] CHUAI HongYun,SHI YanXia,CHAI ALi,YANG Jie,XIE XueWen,LI BaoJu. Development of 10% Diethofencarb·Procymidone Micropowder and Its Control Efficacy to Cucumber Corynespora Leaf Spot [J]. Scientia Agricultura Sinica, 2019, 52(6): 1009-1020.
[5] WEI ShiPing,WU Meng,LI GuiLong,JIANG ChunYu,LIU Ming,CHEN RuiRui,LI ZhongPei. Slow-Release Synergistic Effect of Humic Acid on Low Concentration Chlorothalonil [J]. Scientia Agricultura Sinica, 2019, 52(1): 65-72.
[6] SUN BingXue,SHI YanXia,ZHU FaDI,XIE XueWen,CHAI ALi,LI BaoJu. Establishment of AS-real-time PCR for Quantitatively Detecting the H278R Allele in the SdhB Associated with Corynespora cassiicola in Cucumber [J]. Scientia Agricultura Sinica, 2018, 51(24): 4647-4658.
[7] TAN Jing, SONG XinMi, FU XiaoBin, TANG MingZhu, WU Fan, HUA QiYun, LI HongLiang. Functional Mode and Immunocytochemical Localization of Chemosensory Protein 1 (CSP1) in Apis cerana cerana [J]. Scientia Agricultura Sinica, 2017, 50(15): 3052-3062.
[8] ZHANG Xiao, HU Xiao-dan, ZHONG Jian-feng, WU Ai-hua, XU Chong-xin, LIU Yuan, ZHANG Cun-zheng, XIE Ya-jing, LIU Xian-jin. Expression and Molecular Simulation of Alkaline Phosphatase Receptor of Plutella xyllostella [J]. Scientia Agricultura Sinica, 2016, 49(23): 4555-4565.
[9] LI Mao-ye, CHEN De-xin, LIN Hua-feng, LI Shi-guang, PAN Jing, WU Sheng-yong. Integration of Emulsifiable Formulation Metarhizium flavoviride with Low-Rate Abamectin for Control of Bemisia tabaci Q Biotype [J]. Scientia Agricultura Sinica, 2016, 49(13): 2553-2560.
[10] LI Hong-Liang, ZHANG Lin-Ya, ZHUANG Shu-Lin, NI Cui-Xia, HAN Bao-Yu, SHANG Han-Wu. Interpretation of Odorant Binding Function and Mode of General Odorant Binding Protein ASP2 in Chinese Honeybee (Apis cerana cerana) [J]. Scientia Agricultura Sinica, 2013, 46(1): 154-161.
[11] . Synergistic effect in the process of restoration between nature and society eco-system in the small watershed under the erosion envirnment [J]. Scientia Agricultura Sinica, 2008, 41(4): 1108-1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!