Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (16): 3451-3460.doi: 10.3864/j.issn.0578-1752.2021.16.008

• PLANT PROTECTION • Previous Articles     Next Articles

Screening and Function of Plant Immune Proteins from Bacillus velezensis LJ02

WEI YanXia1(),LI ZhuoRan1,ZHANG Bin1,YUAN YuJin1,YU WeiWei1,CHANG RuoKui2(),WANG YuanHong1()   

  1. 1Department of Horticulture, Tianjin Agricultural University, Tianjin 300384
    2College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300384
  • Received:2020-12-03 Accepted:2021-01-11 Online:2021-08-16 Published:2021-08-24
  • Contact: RuoKui CHANG,YuanHong WANG E-mail:1486981814@qq.com;changrl@163.com;wangyh@tjau.edu.cn

Abstract:

【Objective】Bacillus velezensis LJ02 induces the immune response of cucumbers and other crops. The objective of this study is to screen and identify the immune proteins of LJ02, and further analyze the immune signalling pathways by verifying their functions.【Method】The LJ02 fermentation broth was precipitated with ammonium sulfate precipitation method, and the crude proteins of LJ02 were obtained by centrifugation. Then crude proteins were gel chromatographed and separated by high performance liquid chromatography (HPLC) to collect protein components at different peaks. The immune components were tested with tobacco mosaic virus (TMV) to obtain the immune components in plant. Liquid-phase mass spectrometry (LC-MS) detection and analysis revealed that the component F-23 contained flagellin (FlgLJ02). Purified recombinant protein FlgLJ02 produced from Escherichia coli expression system was infiltrated into tobacco leaves and its immune function was verified by hypersensitive reaction (HR) and immune resistance analysis. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect salicylic acid (SA) and ethylene (ET) key synthetase genes ICS1, PAL, ACS1 and immune-related resistance genes NPR1, PR-1, EIN2 and EIN3. The relative expression of its immune-related resistance genes was tested to identify the Flg LJ02-induced immune signal transduction pathway.【Result】Sixty exocrine protein components (from F-1 to F-60) of LJ02 were separated from HPLC, and components F-20, F-23, F-41, F-44 had strong immune effect against TMV in tobacco, among which, component F-23 showed the most significant anti-TMV effect, with an inhibition rate of 81.7%. Further mass spectrometry analysis found that this component contained flagellin FlgLJ02 and other 6 substances. The FlgLJ02expression vector was constructed, and then transformed into E. coli BL21, the cells were broken after inducing the expression of Flg LJ02. The crude protein was eluted with Ni column purification, further dialyzed, then injected FlgLJ02 into tobacco leaves, hypersensitive reactions appeared about 24 h. Tobacco leaves was infiltrated with 50, 100 and 200 μg·mL -1 FlgLJ02, and then TMV was inoculated 24 hours post FlgLJ02inoculation (hpi). The inhibition rate of FlgLJ02against TMV was 65.6%, 76.1% and 88.1%, respectively. The qRT-PCR determined that the expressions of SA and ET via defense-related genes ICS1, PAL, NPR1, PR-1, ACS1, EIN2, and EIN3 in tobacco plants were significantly up-regulated in 24-48 h.【Conclusion】The Flg LJ02 secreted by the B. velezensis LJ02 activates the SA and ET signalling immune pathway, thereby improving plants disease resistance to TMV.

Key words: Bacillus velezensis, flagellin, immune protein, Nicotiana tabacum var. xanthi, tobacco mosaic virus (TMV)

Table 1

Primers for qRT-PCR of relevant expressed genes"

登录号 ID 基因名称Gene name 正向引物 Forward primer (5′-3′) 反向引物 Reverse primer (5′-3′)
X12737 PR-1 GCTGCTAAGGCCGTTGAGAT ACATCCAACACGAACCGAGT
AF480488 NPR1 CGGCGGCATGACTGAATTTT TTAGCGTCGGCGAAGTAGTC
AB289452 PAL GGAGAACCAAGAACGGTGGT CTGCCCTTGTCCCTGATTGT
HQ693477 EIN2 CCACCACAAGCAAAACAGGG GGTTGCCATCTCCACGTCTT
AY740529 ICS1 GCTCGTAGCACCAGAGTTGT TCCAATGAATGCCGCTGACT
AF247568.1 EIN3 TAATGCGATTCCGGGCAAGA CCAACGGAAATCGCCTCTGA
NM_001326261.2 ACS1 AGGGCCATTGCCAACTTTCA AGTTGCACCACCAGCCATAA
U60495 β-actin ATGCCTATGTGGGTGACGAAG TCTGTTGGCCTTAGGGTTGAG

Fig. 1

Inhibition rate of different effective protein components against TMV Different lowercase letters on the bars indicate significance difference using one-way analysis of variance (P≤0.05). The same as Fig. 4-B"

Table 2

Mass spectrometry results of proteins in F-23"

名称
Name
序列
Sequence
匹配率
Score (%)
氨基酸数目
Number of amino acid (aa)
蛋白分子量
Molecular weight (kD)
鞭毛蛋白Flagellin (Fragment) TAIDTVSSER 1.80 306 32.6
肌苷5′-单磷酸脱氢酶Inosine-5′-monophosphate dehydrogenase VIEFPNSSK 1.79 488 52.9
未知蛋白Uncharacterized protein LGAESI 1.34 327 36.7
TetR 家族转录调节因子
TetR family transcriptional regulator
VILL 0 385 44.8
P型ATP酶 ATPase P LAAAAETGSEHPLGEAIVSGAEK 0 811 86.6
未知蛋白Uncharacterized protein IANDDQINEIIPSEWENVYLYAEIL 0 161 19.2
UPF0348 protein AX282_03230 FLNL 0 415 47.1

Fig. 2

FlgLJ02 protein expression and purification"

Fig. 3

FlgLJ02 HR response on tobacco leaves"

Fig. 4

FlgLJ02 induced resistance against TMV in tobacco"

Fig. 5

Relative expression of key genes in SA immune signalling pathway after FlgLJ02 induction"

Fig. 6

Relative expression of key genes in ET immune signalling pathway after FlgLJ02 induction"

[1] RABBEE M F, ALI M S, CHOI J, HWANG B S, JEONG S C, BAEK K H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6):1046.
doi: 10.3390/molecules24061046
[2] RAHMAN A, UDDIN W, WENNER N G. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Molecular Plant Pathology, 2015, 16(6):546-558.
doi: 10.1111/mpp.2015.16.issue-6
[3] FAN B, BLOM J, KLENK H P, BORRISS R. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “Operational Group B. amyloliquefaciens” within the B. subtilis species complex. Frontiers in Microbiology, 2017, 8:22.
[4] FAN B, WANG C, SONG X F, DING X L, WU L M, WU H J, GAO X F, BORRISS R. Bacillus velezensis FZB42 in 2018: The Gram-positive model strain for plant growth promotion and biocontrol. Frontiers in Microbiology, 2018, 9:2491.
doi: 10.3389/fmicb.2018.02491
[5] PANDIN C, DARSONVAL M, MAYEUR C, LE COQ D, AYMERICH S, BRIANDET R. Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Applied and Environmental Microbiology, 2019, 85(12):e00327-19.
[6] CHEN M, WANG J, LIU B, ZHU Y, XIAO R, YANG W, GE C, CHEN Z. Biocontrol of tomato bacterial wilt by the new strain Bacillus velezensis FJAT-46737 and its lipopeptides. BMC Microbiology, 2020, 20(1):160.
doi: 10.1186/s12866-020-01851-2
[7] WANG N B, LIU M J, GUO L H, YANG X F, QIU D W. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. International Journal of Biological Sciences, 2016, 12(6):757-767.
doi: 10.7150/ijbs.14333
[8] RANF S, GISCH N, SCHAFFER M, ILLIG T, WESTPHAL L, KNIREL Y A, SANCHEZ-CARBALLO P M, ZAHRINGER U, HUCKELHOVEN R, LEE J, SCHEEL D. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 2015, 16(4):426-433.
doi: 10.1038/ni.3124
[9] HE P, SHAN L, SHEEN J. Elicitation and suppression of microbe- associated molecular pattern-triggered immunity in plant-microbe interactions. Cellular Microbiology, 2007, 9(6):1385-1396.
doi: 10.1111/cmi.2007.9.issue-6
[10] NEWMAN M A, SUNDELIN T, NIELSEN J T, ERBS G. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 2013, 4:139.
[11] NAVEED Z A, WEI X, CHEN J, MUBEEN H, ALI G S. The PTI to ETI continuum in Phytophthora-plant interactions. Frontiers in Plant Science, 2020, 11:593905.
doi: 10.3389/fpls.2020.593905
[12] KUMAR D. Salicylic acid signaling in disease resistance. Plant Science, 2014, 228:127-134.
doi: 10.1016/j.plantsci.2014.04.014
[13] SUMAYO M S, SON J S, GHIM S Y. Exogenous application of phenylacetic acid promotes root hair growth and induces the systemic resistance of tobacco against bacterial soft-rot pathogen Pectobacterium carotovorum subsp. carotovorum. Functional Plant Biology, 2018, 45(11):1119-1127.
doi: 10.1071/FP17332
[14] ZHENG X Y, ZHOU M, YOO H, PRUNDA-PAZ J L, SPIVEY N W, KAY S A, DONG X. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9166-9173.
[15] BACKER R, NAIDOO S, VAN DEN BERG N. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: Mechanistic insights in plant disease resistance. Frontiers in Plant Science, 2019, 10:102.
doi: 10.3389/fpls.2019.00102
[16] LINCOLN J E, SANCHEZ J P, ZUMSTEIN K, GILCHRIST D G. Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Molecular Plant Pathology, 2018, 19(9):2111-2123.
doi: 10.1111/mpp.2018.19.issue-9
[17] FRANKOWSKI K, KESY J, KOTARBA W, KOPCEWICZ J. Ethylene signal transduction pathway. Postepy Biochemii, 2008, 54(1):99-106.
[18] PETRUZZELL L, CORAGGIO I, LEUBNER-METZGER G. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta, 2000, 211(1):144-149.
doi: 10.1007/s004250000274
[19] ZHANG F, WANG L, QI B, ZHAO B, KO E E, RIGGAN N D, CHIN K, QIAO H. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38):10274-10279.
[20] WEN X, ZHANG C, JI Y, ZHAO Q, HE W, AN F, JIANG L, GUO H. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Research, 2012, 22(11):1613-1616.
doi: 10.1038/cr.2012.145
[21] AN F, ZHAO Q, JI Y, LI W, JIANG Z, YU X, ZHANG C, HAN Y, HE W, LIU Y, ZHANG S, ECKER J R, GUO H. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-box 1 and 2 that requires EIN2 in Arabidopsis. The Plant Cell, 2010, 22(7):2384-2401.
doi: 10.1105/tpc.110.076588
[22] KIM M, LEE C, PARK J, JEON B Y, HONG M. Crystal structure of Bacillus cereus flagellin and structure-guided fusion-protein designs. Scientific Reports, 2018, 8(1):5814.
doi: 10.1038/s41598-018-24254-w
[23] MOHARI B, THOMPSON M A, TRINIDAD J C, SETAYESHGAR S, FUQUA C. Multiple flagellin proteins have distinct and synergistic roles in Agrobacterium tumefaciens motility. Journal of Bacteriology, 2018, 200(23):e00327-18.
[24] BERG H C, ANDERSON R A. Bacteria swim by rotating their flagellar filaments. Nature, 1973, 245(5425):380-382.
doi: 10.1038/245380a0
[25] FORSTNERIC V, IVICAK-KOCJAN K, LJUBETIC A, JERALA R, BENCINA M. Distinctive recognition of flagellin by human and mouse toll-like receptor 5. PLoS ONE, 2016, 11(7):e0158894.
doi: 10.1371/journal.pone.0158894
[26] MCNAMARA N, GALLUP M, SUCHER A, MALTSEVA I, MCKEMY D, BASBAUM C. AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2. American Journal of Respiratory Cell and Molecular Biology, 2006, 34(6):653-660.
doi: 10.1165/rcmb.2005-0441OC
[27] VANTHANA M, NAKKEERAN S, MALATHI V G, RENUKADEVI P, VINODKUMAR S. Induction of in planta resistance by flagellin (Flg) and elongation factor-TU (EF-Tu) of Bacillus amyloliquefaciens (VB7) against groundnut bud necrosis virus in tomato. Microbial Pathogenesis, 2019, 137:103757.
doi: 10.1016/j.micpath.2019.103757
[28] 刘秀霞, 梁宇宁, 张伟伟, 霍艳红, 冯守千, 邱化荣, 何晓文, 吴树敬, 陈学森. 超表达MdFLS2的拟南芥fls2突变体识别细菌鞭毛蛋白提高对轮纹病菌的抗性. 园艺学报, 2018, 45(5):827-844.
LIU X X, LIANG Y N, ZHANG W W, HUO Y H, FENG S Q, QIU H R, HE X W, WU S J, CHEN X S. MdFLS2 recognizes bacterial flagellin flg22 and enhances immune resistance against apple ring rot causal fungi in Arabidopsis fls2 mutant. Acta Horticulturae Sinica, 2018, 45(5):827-844. (in Chinese)
[29] RAJAMANICKAM S, NAKKEERAN S. Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Archives of Virology, 2020, 165(7):1585-1597.
doi: 10.1007/s00705-020-04645-z
[30] 谷医林, 王远宏, 常若葵, 李宁, 李娟, 徐明珠. 解淀粉芽孢杆菌LJ1诱导黄瓜抗白粉病的研究. 农药学学报, 2013, 15(3):293-298.
GU Y L, WANG Y H, CHANG R K, LI N, LI J, XU M Z. Characterization of powdery mildew resistance induced by Bacillus amyloliquefaciens LJ1 in cucumber. Chinese Journal of Pesticide Science, 2013, 15(3):293-298. (in Chinese)
[31] 柴庆凯, 张斌, 常若葵, 刘慧芹, 田小卫, 王远宏. 解淀粉芽孢杆菌LJ02对黄瓜抗灰霉病菌的生防效果及其诱导抗性机理的初步研究. 植物病理学报, 2019, 49(6):828-835.
CHAI Q K, ZHANG B, CHANG R K, LIU H Q, TIAN X W, WANG Y H. Preliminary study on the effect of the induced resistance in cucumber with Bacillus amyloliquefaciens LJ02 against Botrytis cinerea. Acta Phytopatholgica Sinica, 2019, 49(6):828-835. (in Chinese)
[32] LI Y L, GU Y L, LI J, XU M Z, WEI Q, WANG Y H. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology, 2015, 6:883.
[33] GOODING G V, HEBERT T T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology, 1967, 57(11):1285.
[34] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262
[35] ALONSO J M, HIRAYAMA T, ROMAN G, NOURIZADEH S, ECKER J R. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 1999, 284(5423):2148-2152.
doi: 10.1126/science.284.5423.2148
[36] SOLANO R, STEPANOVA A, CHAO Q, ECHER J R. Nuclear events in ethylene signaling: A transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and Development, 1998, 12(23):3703-3714.
doi: 10.1101/gad.12.23.3703
[37] WANG S, HAN K, PENG J, ZHAO J, JIANG L, LU Y, ZHENG H, LIN L, CHEN J, YAN F. NbALD1 mediates resistance to turnip mosaic virus by regulating the accumulation of salicylic acid and the ethylene pathway in Nicotiana benthamiana. Molecular Plant Pathology, 2019, 20(7):990-1004.
doi: 10.1111/mpp.2019.20.issue-7
[38] SHAH C P, KHARKAR P S. Inosine 5′-monophosphate dehydrogenase inhibitors as antimicrobial agents: Recent progress and future perspectives. Future Science Medicinal Chemistry, 2015, 7(11):1415-1429.
[39] SHUKLA D, HUDA K M, BANU M S, GILL S S, TUTEJA R, TUTEJA N. OsACA6, a P-type 2B Ca2+ ATPase functions in cadmium stress tolerance in tobacco by reducing the oxidative stress load. Planta, 2014, 240(4):809-824.
doi: 10.1007/s00425-014-2133-z
[40] LU Y, SWARTZ J R. Functional properties of flagellin as a stimulator of innate immunity. Scientific Reports, 2016, 6:18379.
doi: 10.1038/srep18379
[41] FELIX G, DURAN J D, VOLKO S, BOLLER T. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999, 18(3):265-276.
doi: 10.1046/j.1365-313X.1999.00265.x
[42] LOPEZ M, MIRANDA E, RAMOS C, GARCIA H, NEIRA- CATTILLO A. Activation of early defense signals in seedlings of Nicotiana benthamiana treated with chitin nanoparticles. Plants, 2020, 9(5):607.
doi: 10.3390/plants9050607
[43] LU D, WU S, GAO X, ZHANG Y, SHAN L, HE P. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(1):496-501.
[44] TSUDA K, SATO M, STODDARD T, GLAZEBROOK J, KATAGIRI F. Network properties of robust immunity in plants. PLoS Genetics, 2009, 5(12):e1000772.
doi: 10.1371/journal.pgen.1000772
[1] PEI YueHong,LI FengWei,LIU WeiNa,WEN YuXia,ZHU Xin,TIAN ShaoRui,FAN GuangJin,MA XiaoZhou,SUN XianChao. Characteristics of Cysteine Proteinase Gene Family in Nicotiana benthamiana and Its Function During TMV Infection [J]. Scientia Agricultura Sinica, 2022, 55(21): 4196-4210.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[4] LIU ChangYun,LI XinYu,TIAN ShaoRui,WANG Jing,PEI YueHong,MA XiaoZhou,FAN GuangJin,WANG DaiBin,SUN XianChao. Cloning, Expression and Anti-Virus Function Analysis of Solanum lycopersicum SlN-like [J]. Scientia Agricultura Sinica, 2021, 54(20): 4348-4357.
[5] SHA YueXia,SUI ShuTing,ZENG QingChao,SHEN RuiQing. Biocontrol Potential of Bacillus velezensis Strain E69 Against Rice Blast and Other Fungal Diseases [J]. Scientia Agricultura Sinica, 2019, 52(11): 1908-1917.
[6] SUN XiaoHan, ZHANG BiCheng, ZHANG Qiang, HE KongWang, ZHANG XueHan. Adjuvant Effects of Flagellin from Non-Pathogenic E.coli on FMDV [J]. Scientia Agricultura Sinica, 2017, 50(9): 1714-1722.
[7] WEI ZhouLing, PENG HaoRan, PAN Qi, ZHANG YongZhi, PU YunDan, WU GenTu, QING Ling, SUN XianChao. Subcellular Localization of the Ribosome-Inactivating Protein α-MC and Its Antiviral Effect on TMV [J]. Scientia Agricultura Sinica, 2017, 50(5): 840-848.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!