Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (4): 831-844.doi: 10.3864/j.issn.0578-1752.2021.04.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs

WANG JinFei1(),YANG GuoYi2,FAN ZiHan2,LIU Qi2,ZHANG PengCheng1,REN YouShe1,YANG ChunHe1,ZHANG ChunXiang1()   

  1. 1College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Shanxi Forestry and Grassland Engineering Station, Taiyuan 030001
  • Received:2020-04-13 Accepted:2020-08-28 Online:2021-02-16 Published:2021-02-16
  • Contact: ChunXiang ZHANG E-mail:15003444648@163.com;zhchx66@126.com

Abstract:

【Objective】The aim of this study was to explore the effects of different proportions of the whole-plant corn silage on growth performance, rumen fermentation, nutrient digestibility, serum biochemical indexes, antioxidative enzymes’ activities, and immune function at different stages of Doper ×Hu crossbred female lambs.【Method】Seventy-two female lambs (Dorper sheep×Hu sheep) with good body condition and an approximate weight (16 ± 1.5) kg were selected and randomly divided into four groups, each group with six replicates, each replicate with three lambs. Group I as the control group was fed with peanut vine as the basis of roughage source in diet, Group Ⅱ, Ⅲ, and Ⅳ for experimental groups were respectively fed 20%, 40%, and 60% the whole-plant corn silage (dry matter basis) instead of peanut vine in the diet. The experiment lasted for 115 days, of which the pre-test period was 15 days and the formal test period was 100 days, including 90 days for a feeding trial and 10 days for a digestibility trial.【Result】(1) Compared with I group, average daily gain in group III increased significantly (P<0.05) from 1 to 30 days, and feed conversion ratio significantly reduced (P<0.05) from 1 to 30 days and 1 to 90 days. (2) The addition of whole-plant corn silage in the diet could improve the rumen fermentation of lambs. With the increase of proportions of whole-plant corn silage, acetate, butyrate, and acetate/propionate decreased significantly in rumen fluid of lambs (P<0.05); the ratio of propionate increased significantly (P<0.05); group IV had a considerably higher concentration of NH3-N than group I, II, and III in rumen fluid of lambs (P<0.05). (3) The apparent digestibility of DM, GE of group III and IV was significantly higher than those of group I (P<0.05), the apparent digestibility of OM, the nitrogen of group II, III, and IV were markedly higher than those of group I (P<0.05). With the increase of proportions of whole-plant corn silage in diet, the fecal nitrogen excretion of lambs decreased significantly (P<0.05). And the fecal nitrogen excretion of group II, III, and IV was markedly lower than that of group I (P<0.05). Lambs in group IV had significantly higher urinary nitrogen excretion (P<0.05), which resulted in a lower nitrogen retention rate than that of group III (P<0.05). (4) Serum glucose concentration in group III was significantly higher than in group I and II on the 90th day (P<0.05). (5) Group III had a considerably higher serum T- AOC and lower serum MDA concentration than group I did on the 90th day (P<0.05); serum SOD and GSH-Px activities in group IV were significantly higher than those in group I on the 60th day and 90th day(P<0.05). Group IV had significantly higher serum IgA and IgM concentration (P<0.05) and significantly lowered the levels of TNF-α than group I did on the 60th day and 90th day (P<0.05).【Conclusion】Forty percentage of whole-plant corn silage in diet could improve the rumen fermentation, increase nutrient digestibility, enhance the antioxidant ability and immunity, and promote the healthy growth of lambs.

Key words: whole-plant corn silage, Dorper ×Hu Crossbred females lambs, growth performance, rumen fermentation, nutrient digestibility, serological parameters

Table 1

Diet compositions and nutrient levels (dry matter basis, %)"

项目 Items
原料 Ingredients
全株玉米青贮
Whole-plant corn silage
0.0 20.0 40.0 60.0
花生秧 Peanut seedling 51.3 33.3 16.3 2.1
玉米 Maize 27.5 24.8 23.0 24.2
麸皮 Wheat bran 9.0 10.4 8.6 0.0
豆粕 Soybean meal 4.0 4.0 3.8 6.5
豆饼 Bean cake 6.8 5.9 6.5 5.3
食盐 Salt 0.5 0.5 0.5 0.5
石粉 Limestone 0.0 0.1 0.2 0.0
磷酸氢钙 CaHPO4 0.0 0.1 0.2 0.5
小苏打 NaHCO3 0.4 0.4 0.4 0.4
预混料 Premix1) 0.5 0.5 0.5 0.5
合计 Total 100 100 100 100
营养水平 Nutrient levels3)
代谢能 ME (Mcal·kg-1) 11.51 11.52 11.53 11.52
粗蛋白 CP 14.88 14.84 14.89 14.90
非纤维性碳水化合物 NFC2) 32.77 34.46 35.99 38.34
中性洗涤纤维 NDF 42.57 41.08 39.29 37.46
酸性洗涤纤维 ADF 26.56 26.14 25.62 22.15
钙 Ca 0.63 0.62 0.59 0.59
磷 P 0.42 0.41 0.38 0.38

Table 2

Effects of whole-plant corn silage ratio in diet on the growth performance of Doper×Hu crossbred female lambs"

项目
Item
组别 Groups 固定效应PP values of fixed effects
Ⅰ组 Ⅱ组 Ⅲ组 Ⅳ组 组别
Groups
时间
Time
组别×时间
Groups×Time
体重 BW (kg)
1 d 18.70±1.10 18.44±1.09 19.08±1.16 19.01±0.96 0.4498
30 d 21.56±1.27 22.10±2.21 23.26±2.28 21.90±1.87 0.1760
60 d 27.92±1.49ab 28.53±2.38ab 29.75±2.89a 26.70±2.52b 0.0256
90 d 34.81±2.15a 35.40±2.60a 36.95±3.01a 32.64±2.42b 0.0019
平均日增重 ADG (g·d-1)
1-90 d 179.07±24.92a 188.43±29.23a 198.57±26.14a 151.39±26.91b 0.0010 <0.0001 0.6596
1-30 d 95.42±31.89b 121.81±41.85ab 139.45±46.59a 96.39±52.88b 0.0500
31-60 d 211.94±48.92 214.31±94.51 216.11±46.47 159.86±42.92 0.0889
61-90 d 229.86±43.89a 229.17±27.89a 240.14±22.18a 197.92±32.86b 0.0175
干物质采食量 DMI (g·d-1)
1-90 d 1.01±0.08 1.00±0.07 0.97±0.14 0.93±0.07 0.5492 <0.0001 0.1053
1-30 d 0.66±0.06 0.65±0.08 0.69±0.16 0.68±0.13 0.9157
31-60 d 1.10±0.10 1.06±0.05 0.98±0.16 0.94±0.08 0.0759
61-90 d 1.29±0.13 1.28±0.13 1.25±0.15 1.19±0.10 0.5408
饲料转化率 F/G
1-90 d 5.89±0.48ab 5.30±0.39bc 4.91±0.78c 6.29±0.55a 0.0020 <0.0001 0.0550
1-30 d 6.89±0.61a 5.34±0.68b 4.97±1.11b 6.99±1.33a 0.0025
31-60 d 5.18±0.48b 4.95±0.25b 4.54±0.74b 5.90±0.47a 0.0017
61-90 d 5.60±0.58 5.60±0.58 5.20±0.64 6.00±0.53 0.1689

Table 3

Effects of whole-plant corn silage ratio in diet on rumen fermentation of Doper × Hu crossbred female lambs"

项目
Item
组别 Groups P
P value
pH 6.60±0.19 6.57±0.16 6.55±0.13 6.45±0.18 0.6757
氨态氮 NH3-N (mg·dL-1) 8.23±1.39b 8.51±2.81b 9.00±1.84b 13.26±4.08a 0.0144
总挥发性脂肪酸 TVFA (mmol·L-1) 110.88±10.78 103.39±9.72 101.69±9.74 99.99±7.70 0.5581
乙酸 Acetate (%) 68.06±1.07a 67.20±0.89a 65.28±1.67b 64.90±1.43b 0.0036
丙酸 Propionate (%) 14.74±1.23c 17.06±0.89b 21.28±1.14a 21.37±0.52a <0.0001
丁酸 Butyrate (%) 14.41±1.78a 13.00±1.51a 10.86±0.74b 11.03±1.45b 0.0030
异丁酸 Isobutyrate (%) 0.92±0.05 0.86±0.08 0.74±0.04 0.84±0.08 0.0696
戊酸 Valerate (%) 0.81±0.07 0.84±0.09 0.78±0.09 0.84±0.05 0.8435
异戊酸 Isovalerate (%) 1.06±0.13 1.04±0.15 1.05±0.10 1.07±0.17 0.9924
乙酸/丙酸 Acetate/Propionate 4.72±0.19a 3.95±0.18b 3.07±0.23c 3.05±0.16c <0.0001

Table 4

Effects of whole-plant corn silage ratio in diet on apparent digestibility of dietary nutrients of Doper×Hu crossbred female lambs"

项目
Item
组别 Groups P
P value
干物质 DM (%) 59.40±2.50b 66.00±4.08ab 67.67±3.45a 67.33±2.85a 0.0482
有机物 OM (%) 65.83±3.18b 71.83±3.27a 73.33±3.10a 73.50±3.45a 0.0238
中性洗涤纤维 NDF (%) 51.83±3.67 56.17±4.72 52.33±4.63 50.83±4.18 0.5641
总能 GE (%) 64.17±2.26b 70.33±3.86ab 71.67±2.23a 72.50±3.19a 0.0446
摄入氮 Nitrogen intake (g·d-1) 30.48±3.13 30.36±3.15 29.56±3.67 28.09±2.48 0.5417
粪氮 Fecal nitrogen (g·d-1) 11.08±1.98a 8.69±1.26b 7.93±0.93b 7.59±1.15b 0.0014
尿氮 Urinary nitrogen (g·d-1) 6.46±1.76ab 6.21±1.64ab 5.28±1.10b 8.28±1.06a 0.0456
总排泄氮 Total nitrogen excretion (g·d-1) 17.54±3.02 14.90±2.12 13.21±2.50 15.87±2.96 0.1189
可消化氮 Digestible nitrogen (g·d-1) 19.41±3.23 21.67±3.65 21.63±2.98 20.50±3.20 0.5922
氮表观消化率 Apparent digestibility of nitrogen (%) 63.17±3.68b 71.17±3.18a 73.00±2.19a 72.67±2.54a 0.0156
氮沉积率 Nitrogen retention rate (%) 41.87±4.08b 50.38±3.04ab 54.97±2.65a 43.40±2.98b 0.0441

Table 5

Effects of whole-plant corn silage ratio in diet on serum biochemical index of Doper×Hu crossbred female lambs"

项目
Item
组别 Groups 固定效应PP values of fixed effects
组别
Groups
时间
Time
组别×时间
Groups×Time
谷草转氨酶 AST (U·L-1)
1-90 d 101.76±13.83 103.39±11.90 101.19±11.05 101.70±11.22 0.9496 <0.0001 0.4419
60 d 101.57±12.30 100.57±14.45 98.37±15.78 98.96±12.41 0.9418
90 d 91.89±8.36 99.33±11.99 98.53±12.41 99.70±11.76 0.3247
谷丙转氨酶 ALT (U·L-1)
1-90 d 21.39±4.33 20.28±3.91 22.41±5.34 18.91±4.96 0.1526 <0.0001 0.2301
30 d 24.27±4.34 23.42±4.44 24.87±5.75 21.22±6.10 0.2364
60 d 20.89±3.21 18.89±3.97 22.23±6.07 18.80±5.09 0.1609
90 d 19.01±4.65 18.55±3.51 20.14±2.93 16.73±5.02 0.0845
尿素氮 UREA (mmol·L-1)
1-90 d 2.95±0.68 2.86±0.63 2.75±0.62 2.92±0.50 0.8244 0.1550 0.8626
30 d 2.99±0.47 2.92±0.59 2.96±0.65 2.95±0.59 0.9907
60 d 2.94±0.57 2.86±0.59 2.67±0.53 2.95±0.62 0.5489
90 d 2.92±0.95 2.81±0.90 2.61±0.87 2.86±0.70 0.8268
总胆固醇 TC (mmol·L-1)
1-90 d 0.58±0.18 0.63±0.21 0.62±0.20 0.68±0.19 0.5245 0.0791 0.3326
30 d 0.55±0.14 0.63±0.18 0.62±0.24 0.69±0.24 0.0952
60 d 0.59±0.23 0.59±0.23 0.64±0.23 0.71±0.19 0.3343
90 d 0.61±0.15 0.66±0.17 0.61±0.18 0.64±0.14 0.8108
甘油三酯 TG (mmol·L-1)
1-90 d 0.28±0.05 0.26±0.05 0.26±0.05 0.27±0.04 0.6427 0.0099 0.9691
30 d 0.30±0.06 0.27±0.07 0.28±0.08 0.30±0.07 0.5781
60 d 0.28±0.07 0.26±0.07 0.26±0.05 0.28±0.07 0.8323
90 d 0.27±0.07 0.26±0.07 0.25±0.05 0.25±0.06 0.8958
总蛋白 TP (g·L-1)
1-90 d 54.43±3.20 54.29±2.92 52.77±2.93 52.51±2.35 0.1926 0.9255 0.6605
30 d 53.61±3.92 54.33±3.74 52.31±4.32 52.07±2.44 0.3674
60 d 54.30±4.17 54.36±3.81 53.27±3.16 52.39±3.62 0.5247
90 d 55.37±3.94 54.19±3.18 52.72±4.07 53.06±3.47 0.0970
白蛋白 ALB (g·L-1)
1-90 d 25.90±1.58 24.82±1.30 24.69±1.44 24.58±0.96 0.1492 0.8958 0.3019
30 d 26.60±3.49 24.37±1.66 24.56±2.47 24.15±1.22 0.1003
60 d 25.38±1.53 25.54±1.33 24.99±1.79 24.78±1.84 0.4662
90 d 25.71±2.07 26.14±2.16 25.58±2.23 25.73±1.51 0.8788
葡萄糖 GLU (mmol·L-1)
1-90 d 3.03±0.38 3.09±0.38 3.30±0.41 3.01±0.40 0.1164 0.0784 0.1010
30 d 3.07±0.49 3.16±0.37 3.15±0.48 3.00±0.50 0.7553
60 d 2.84±0.47 2.98±0.55 3.28±0.51 3.09±0.55 0.1064
90 d 2.94±0.27c 3.12±0.36bc 3.48±0.27a 3.19±0.23b 0.0041
碱性磷酸酶 ALP (U·L-1)
1-90 d 364.47±85.99 353.91±87.62 383.54±93.17 336.48±67.87 0.3050 <0.0001 0.0791
30 d 413.51±82.72 394.57±67.51 440.92±78.30 397.00±75.03 0.3452
60 d 356.37±99.68 373.15±97.18 393.12±78.55 309.79±69.65 0.3118
90 d 296.11±70.46 294.00±75.72 344.00±97.87 302.66±68.78 0.2233

Table 6

Effects of whole-plant corn silage ratio in diet on serum antioxidant index of Doper × Hu crossbred female lambs"

项目
Item
组别 Groups 固定效应PP values of fixed effects
组别
Groups
时间
Time
组别×时间
Groups×Time
总抗氧化能力 T-AOC (U·mL-1)
1-90 d 10.40±1.32 10.30±1.57 11.49±2.15 10.04±1.28 0.0666 <0.0001 0.0701
30 d 8.77±1.39 9.20±1.56 10.34±2.14 8.85±1.59 0.0515
60 d 11.19±2.01 10.49±1.78 11.51±2.88 9.54±1.59 0.1276
90 d 11.24±0.74b 11.22±1.61b 12.62±1.93a 11.73±1.63ab 0.0433
过氧化氢酶 CAT (U·mL-1)
1-90 d 50.83±6.87 50.56±6.50 50.93±5.32 51.52±4.62 0.9700 <0.0001 0.0751
30 d 44.33±5.51 44.30±5.73 45.11±4.57 47.32±5.35 0.2514
60 d 50.30±5.06 49.14±7.52 47.97±5.76 50.15±4.68 0.7542
90 d 57.84±9.41 58.25±7.49 59.71±6.08 57.11±7.06 0.8067
丙二醛 MDA (nmol·mL-1)
1-90 d 4.17±0.74 4.16±0.42 3.90±0.43 4.29±0.45 0.1887 <0.0001 0.0089
30 d 4.67±0.81 4.42±0.74 4.30±0.31 4.92±0.75 0.0886
60 d 4.00±0.87 4.15±0.69 4.05±0.57 4.24±0.55 0.7544
90 d 3.84±0.66a 3.89±0.41a 3.35±0.51b 3.71±0.51ab 0.0169
超氧化物歧化酶 SOD (U·mL-1)
1-90 d 63.83±7.89 64.05±6.81 65.51±9.59 69.92±5.60 0.1143 <0.0001 0.3322
30 d 58.51±11.74 57.53±14.09 55.42±14.34 62.84±10.96 0.4554
60 d 64.60±5.88b 66.73±6.67ab 69.29±8.03ab 70.55±6.38a 0.0462
90 d 68.39±6.25b 67.88±8.23b 71.80±7.25ab 76.38±8.39a 0.0369
谷胱甘肽过氧化物酶 GSH-Px (U·mL-1)
1-90 d 540.99±54.65b 564.43±51.22ab 563.30±47.33ab 589.49±49.89a 0.0457 <0.0001 0.0033
30 d 520.76±48.33 520.79±53.74 509.51±49.74 536.41±40.03 0.5275
60 d 517.19±81.34b 558.50±68.09ab 559.12±67.32ab 607.55±56.12a 0.0134
90 d 585.00±35.53b 613.99±35.56a 621.28±34.43a 624.53±41.40a 0.0041

Fig. 1

Effects of whole-plant corn silage ratio in diet on serum MDA of Doper × Hu crossbred female lambs indicates significant difference between groups(P0.05). The same as below"

Fig. 2

Effects of whole-plant corn silage ratio in diet on serum GSH-Px of Doper × Hu crossbred female lambs"

Table 7

Effects of whole-plant corn silage ratio in diet on serum immunity index of Doper × Hu crossbred female lambs"

项目
Item
组别 Groups 固定效应PP values of fixed effects
Ⅰ组 Ⅱ组 Ⅲ组 Ⅳ组 组别
Groups
时间
Time
组别×时间
Groups×Time
免疫球蛋白A IgA (g·L-1)
1-90 d 0.64±0.04c 0.66±0.04bc 0.68±0.03ab 0.70±0.02a <0.0001 0.0016 0.8686
30 d 0.63±0.07b 0.64±0.06b 0.67±0.05ab 0.69±0.04a 0.0169
60 d 0.65±0.03c 0.67±0.02bc 0.68±0.02b 0.70±0.02a <0.0001
90 d 0.64±0.05c 0.66±0.06bc 0.69±0.04ab 0.71±0.01a 0.0004
免疫球蛋白M IgM (g·L-1)
1-90 d 1.04±0.08b 1.07±0.06b 1.07±0.04b 1.11±0.03a 0.0038 0.2169 0.0825
30 d 1.09±0.09 1.06±0.09 1.05±0.04 1.10±0.04 0.3398
60 d 1.02±0.17b 1.12±0.14ab 1.08±0.12a 1.14±0.10a 0.0355
90 d 1.02±0.05c 1.04±0.07bc 1.09±0.04ab 1.10±0.05a 0.0013
免疫球蛋白G IgG (g·L-1)
1-90 d 17.42±1.88 17.42±1.56 17.63±1.42 18.50±1.26 0.1263 <0.0001 0.1939
30 d 17.08±1.79 17.08±1.40 16.94±0.73 18.10±1.39 0.1827
60 d 17.28±1.93 17.70±1.77 18.07±1.98 18.60±1.41 0.2629
90 d 17.89±1.41 17.49±1.67 17.86±1.75 18.80±1.24 0.0782
肿瘤坏死因子 TNF-α (pg·ml-1)
1-90 d 62.43±9.34a 59.82±7.65ab 55.44±7.19b 53.94±8.24b 0.0238 <0.0001 0.0676
30 d 70.83±13.56 64.85±13.23 60.61±7.23 60.27±9.62 0.0699
60 d 61.05±6.62a 59.87±5.80a 57.88±5.72ab 55.23±5.78b 0.0491
90 d 55.42±8.73a 54.75±6.10a 47.82±9.30b 46.32±9.45b 0.0036
[1] 张永根, 张广宁, 房新鹏, 赵超. 发酵全混合日粮的研究进展. 饲料工业, 2019,40(20):1-5.
ZHANG Y G, ZHANG G N, FANG X P, ZHAO C. Research progress in fermented fotal mixed ration. Feed Industry, 2019,40(20):1-5. (in Chinese)
[2] CORFIELD J, BAHAR S, LISSON S, RACHMAN R. Improving forage and feeding management options for smallholders: recent lessons from eastern indonesia. Prosiding Seminar Nasional Sapi Potong- Palu, 2008,11(24):20-29.
[3] FERRARETTO L F, SHAVER R D, LUCK B D. Silage review: recent advances and future technologies for whole-plant and fractionated corn silage harvesting. Journal of Dairy Science, 2018,101(5):3937-3951.
[4] FERRARETTO L, SHAVER R D. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation and lactation performance by dairy cows through a meta-analysis. Journal of Dairy Science, 2015,98(4):2662-2675.
[5] 张洁, 张晨, 张崇玉, 曲绪仙, 战汪涛, 杨景晁, 王英楠, 张桂国. 全株玉米青贮饲喂小尾寒羊和不同组合杂交羊生产性能的比较. 中国农业科学, 2018,51(10):2004-2012.
ZHANG J, ZHANG C, ZHANG C Y, QU X X, ZHAN W T, YANG J C, WANG Y N, ZHANG G G. Study on production performance of Small-Tail Han sheep and different combinations of hybrid sheep fed whole-plant corn silage. Scientia Agricultura Sinica, 2018,51(10):2004-2012. (in Chinese)
[6] BASSO F C, ADESOGAN A T, LARA E C, RABELO C H S, BERCHIELLI T T, TEIXEIRA I A M A, SIQUEIRA G R, REIS R A. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation,nicrobial protein yield and growth performance of lambs. Journal of Animal Science, 2014,92(12):5640-5650.
[7] MUCK R E, NADEAU E M G, MCALLISTER T A, CONTRERAS F E, SANTOS M C, KUNG L. Silage review: recent advances and future uses of silage additives. Journal of Dairy Science, 2018,101(5):3980-4000.
[8] 包健鹏. 全株玉米青贮型日粮对育肥羔羊生产性能、血液生化指标及肉品质的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.
BAO J P. Effects of whole-plant corn silage type ration on growth performance, blood biochemical indicators, and meat quality in fattening lambs[D]. Huhehaote: Inner Mongolia Agricultural University, 2019. (in Chinese)
[9] HUMER E, PETRI R M, ASCHENBACH J R, BRADFORD B J, PENNER G B, TAFAJ M, SÜDEKUM K H, ZEBELI Q,. Invited review: Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. Journal of Dairy Science, 2018,101(2):872-888.
[10] NATION RESEARCH COUNCIL. Nutrient requirements of small ruminants, sheep, goats, cervids and new world camelids. Washington,D C:National Academy Press, 2007.
[11] VANSOEST P J, ROBERTSON J B, LEWIS B A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysacch arides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3587.
[12] AOAC. Official methods of analysis of the association of official analytical chemists[S]. 17th ed. Arlington: AOAC, 2000.
[13] 张丽英. 饲料分析及饲料质量检测技术. 北京: 北京中国农业大学出版社, 2016.
ZHANG L Y. Feed Analysis and Quality Test Technology. Beijing: China Agricultural University Press, 2016. (in Chinese)
[14] 刘蓓一, 宦海琳, 顾洪如, 许能祥, 沈琴, 丁成龙. 不同发酵时期大麦青贮品质和微生物多样性变化. 江苏农业学报, 2019,35(03):653-660.
LIU B Y, HUAN H L, GU H R, XU N X, SHEN Q, DING C L. Changes of silage quality and microbial diversity in barley during different fermentation periods. Jiangsu Journal of Agricultural Sciences. 2019,35(03):653-660. (in Chinese)
[15] 梁艾东. 全株青贮玉米饲喂比例对肉羊增重效果和瘤胃发酵的影响[D]. 沈阳: 沈阳农业大学, 2017.
LIANG A D. Effects of feeding proportion of whole silage corn on weight gain result and ruminal fermentation of sheep[D]. Shenyang: Shenyang Agricultural University, 2017. (in Chinese)
[16] KANANI M, KARGAR S, ZAMIRI M J, GHOREISHI S M, MIRZAEI M. Reciprocal combinations of alfalfa hay and corn silage in the starter diets of holstein dairy calves:Effects on growth performance, nutrient digestibility,rumen fermentation and selected blood metabolites. Animal:an International Journal of Animal Bioscience, 2019,13(11):2501-2509.
[17] 刘泽. 全株玉米青贮与花生秧不同配比对小尾寒羊生长性能及营养物质表观消化率的影响[D]. 保定: 河北农业大学, 2018.
LIU Z. Effects of different ratio between the whole corn silage and peanut vine on growth performance and nutrients apparent digestibility of small Tail Han sheep[D]. Baoding: Agricultural University of Hebei, 2018. (in Chinese)
[18] KLJAK K, PINO F, HEINRICHS A J. Effect of forage to concentrate ratio with sorghum silage as a source of forage on rumen fermentation, N balance and purine derivative excretion in limit-fed dairy heifers. Journal of Dairy Science, 2017,100(1):213-223.
[19] KMICIKEWYCZ A D, HARVATINE K J, HEINRICHS A J. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference and milk fat profile of dairy cattle 1. Journal of Dairy Science, 2015,98(7):4850-4868.
[20] 张立涛, 王金文, 李艳玲, 张立霞, 屠焰, 崔旭奎, 孟宪锋, 刁其玉. 35-50 kg黑头杜泊羊×小尾寒羊F1代杂交羊饲粮中适宜NFC/NDF比例研究. 中国农业科学, 2013,46(21):4620-4632.
ZHANG L T, WANG J W, LI Y L, ZHANG L X, TU Y, CUI X K, MENG X F, DIAO Q Y. Research on proper dietary NFC/NDF ratio for 35-50 kg Dorper×Small Tail Han crossbred lambs. Scientia Agricultura Sinica, 2013,46(21):4620-4632. (in Chinese)
[21] 丁静美, 邓凯东, 张蓉, 马涛, 刁其玉, 成述儒, 周丽雪, 屠焰. 不同NDF与NFC比例饲粮对肉用绵羊瘤胃发酵参数及甲烷排放动态变化的影响. 家畜生态学报, 2018,39(01):31-36.
DING J M, DENG K D, ZHANG R, MA T, DIAO Q Y, CHEN S R, ZHOU L X, TU Y. Effect of different NDF and NFC dietary on dynamic changes of rumen fermentation parameters and methane emissions in sheep. Journal of Domestic Animal Ecology, 2018,39(01):31-36. (in Chinese)
[22] SONG S D, CHEN G J, GUO C H, RAO K Q, GAO Y H, PENG Z L, ZHANG Z F, BAI X, WANG Y, WANG B X, CHEN Z H, FU X S, ZHU W L. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Animal Feed Science and Technology, 2018,236:170-177.
[23] GUO G, SHEN C, LIU Q, ZHANG S L, SHAO T, WANG C, WANG Y X, XU Q F, HUO W J. The effect of lactic acid bacteria inoculums on in vitro rumen fermentation, methane production, ruminal cellulolytic bacteria populations and cellulase activities of corn stover silage. Journal of Integrative Agriculture, 2020,19(03):838-847.
[24] SABRINA M S, JOHANNA O Z, MICHAEL K, CARLA R S. Methane conversion rate of bulls fattened on grass or maize silage as compared with the IPCC default values and the long-term methane mitigation efficiency of adding acacia tannin, garlic, maca and lupine. Agriculture,Ecosystems and Environment, 2011,148:111-120.
[25] JONKER A, MUETZEL S, MOLANO G, PACHECO D. Effect of fresh pasture quality, feeding level and supplementation on methane emissions from growing beef cattle. Animal Production Science, 2016,56:1714-1721.
[26] 孙雪丽, 李秋凤, 刘英财, 曹玉凤, 王增林, 李艺, 赵洋洋, 葛瀚聪, 刘桃桃, 赵立新. 全株青贮玉米对西门塔尔杂交牛生产性能、表观消化率及血液生化指标的影响. 草业学报, 2018,27(09):201-209.
SUN X L, LI Q F, LIU Y C, CAO Y F, WANG Z L, LI Y, ZHAO Y Y, GE H C, LIU T T, ZHAO L X. Effects of whole-plant corn silage on performance, digestibility and blood biochemical parameters in simmental crossbred bulls. Acta Prataculturae Sinica, 2018,27(09):201-209. (in Chinese)
[27] BRUNETTE T, BAURHOO B, MUSTAFA A F. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion and ruminal fermentation of lactating dairy cows. Journal of Dairy Science, 2016,99(1):268-279.
[28] 王尧悦, 赵钊艳, 王兴涛, 陈玉林, 杨雨鑫. 日粮营养水平对150~180日龄滩羊瘤胃相关微生物菌群数量、pH和VFA含量的影响. 畜牧兽医学报, 2016,47(10):2060-2070.
WANG Y Y, ZHAO Z Y, WANG X T, CHEN Y L, YANG Y X. Effect of dietary nutrient levels on the number of related microbes, pH and VFA levels in rumen of Tan sheep aged from 150 to 180 days. Acta Veterinaria et Zootechnica Sinica, 2016,47(10):2060-2070. (in Chinese)
[29] 高立鹏, 孟梅娟, 白云峰, 涂远璐, 严少华, 刘建. 不同粗饲料组合对山羊饲粮养分表观消化率及氮平衡的影响. 动物营养学报, 2016,28(08):2396-2403.
GAO L P, MENG M J, BAI Y F, TU Y L, YAN S H, LIU J. Effects of different roughage combinations on dietary nutrient apparent digestibility and nitrogen balance of goats. Chinese Journal of Animal Nutrition. 2016,28(08):2396-2403. (in Chinese)
[30] NOZAD S, RAMIN A G, MOGHADAM G, SIAMAK A R, AZADEH B. Relationship between blood urea, protein, creatinine, triglycerides and macro-mineral concentrations with the quality and quantity of milk in dairy Holstein cows. Veterinary Research Forum:an International Quarterly Journal, 2012,3(1):55-59.
[31] MOHAMMADI V, ANASSORI E, JAFARI S. Measure of energy related biochemical metabolites changes during peri-partum period in Makouei breed sheep. Veterinary Research Forum:an International Quarterly Journal, 2016,7(1):35-39.
[32] RUSSELL K E, ROUSSEL A J. Evaluation of the ruminant serum chemistry profile. The Veterinary Clinics of North America. Food Animal Practice, 2007,23(3):403-426.
[33] POUPUN N. Liver alkaline phosphatase: a missing link between cholevesis and biliary inflammation. Hepatology, 2015,61(6):2080-2090.
[34] KARGER S, KANANI M. Substituting corn silage with reconstituted forage or nonforage fiber sources in the starter feed diets of Holstein calves: Effects on intake, meal pattern, sorting and health. Journal of Dairy Science, 2019,102(8):7168-7178.
[35] ZHANG Y W, ZHAO X W, CHEN W B, ZHOU Z M, MENG Q X, WU H. Effects of adding various silage additives to whole corn crops at ensiling on performance,rumen fermentation and serum physiological characteristics of growing-finishing cattle. Animals:an Open Access Journal from MDPI, 2019,9(9):695-707.
[36] SIES H. Oxidative stress:oxidants and antioxidants. Experimental Physiology, 1997,82(2):291-295.
[37] KHOSRAVI M, ROUZBEHAN Y, REZAEI M, REZAEI J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. Journal of Dairy Science, 2018,101(12):10953-10961.
[38] GAO D W, GAO Z R, ZHU G H. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food and Function, 2013,4(6):982-989.
[39] SONG W, SONG C, SHAN Y J. The antioxidative effects of three lactobacilli on high-fat diet induced obese mice. Royal Society of Chemistry Advances, 2016,6(70):65808-65815.
[40] KULLISAAR T, SONGISEPP E, AUNAPUU M, KILK K, AREND A, MIKELSAAR M, REHEMA A, ZILMER M. Complete glutathione system in probiotic Lactobacillus fermentum ME-3. Applied Biochemistry and Microbiology, 2010,46(5):481-486.
[41] 张兴夫, 杜瑞平, 王丽芳, 宋利文, 朱春侠, 祁云霞, 杨坤, 金海. 全株玉米青贮混合日粮对育肥羔羊胃肠道形态及抗氧化能力的影响. 饲料工业, 2020,41(13):34-38.
ZHANG X F, DU R P, WANG L F, SONG L W, ZHU C X, QI Y X, YANG K, JIN H. Effect of corn silage mixed diet on gastrointestinal morphology and antioxidant capacity in fattening lambs. Feed Industry, 2020,41(13):34-38. (in Chinese)
[42] LV R, EL-SABAGH M, OBISTU T. Effects of ensiling with lactic acid bacteria or fomic acid on functional component contents in enslled Italian ryegrass grown with different fetilizer levels. Proceeding of The 17th AAAP Animal Science Congress. Fukuoka, Japan: AAPA, 2016.
[43] SIEBERT B D, KRUK Z A, DAVIS J, PITCHFORD W S, HARPER G S, BOTTEMA C D K. Effect of low vitamin A status on fat deposition and fatty acid desaturation in beef cattle. Lipids, 2006,41(4):365-370.
[44] JIN L, YAN S M, SHI B L, BAO H Y, GONG J, GUO X Y, LI J L. Effects of vitamin A on the milk performance, antioxidant functions and immune functions of dairy cows. Animal Feed Science and Technology, 2014,192:15-23.
[1] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[2] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[3] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[4] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[5] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[6] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[7] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[8] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[9] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[10] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[11] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[12] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[13] KONG FanLin,LI Yuan,TANG MengQi,MA ManPeng,FU Tong,DIAO QiYu,CHENG SiYuan,TU Yan. Effects of Amino Acid Deficiency on Growth Development, Dietary Nutrients Digestion and Metabolism in Heifers [J]. Scientia Agricultura Sinica, 2020, 53(2): 418-430.
[14] REN ChunYan,BI YanLiang,GUO YanLi,DU HanChang,YU Bo,TU Yan,DIAO QiYu. Effects of NDF Level of Starter on Growth Performance, Serum Biochemical Parameters and Antioxidant Indices in Calves [J]. Scientia Agricultura Sinica, 2020, 53(2): 440-450.
[15] WANG ShiQin,BI YanLiang,ZHAO GuoHong,CUI Kai,HUANG WenQin,ZHANG NaiFeng,LI FaDi,TU Yan,DIAO QiYu. Growth Performance, Nutrient Digestibility and Serum Parameters in 0-2 Months Old Hu Lambs [J]. Scientia Agricultura Sinica, 2020, 53(2): 451-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!