Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (19): 4218-4228.doi: 10.3864/j.issn.0578-1752.2021.19.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Evaluation of Feeding Value for Whole Broussonetia papyrifera Silage in Diet of Wuchuan Black Beef Cattle

CHEN GuangJi1,2,4(),XIONG XianQin1,2(),HE RunXia3,TIAN Xiong3,SHEN YingLong3,ZOU XiaoMin3,YANG Hong3,SHANG YiShun1,ZHAO MingKun1,2,LI XiaoDong1,4,LI ShiGe1,4,ZHANG Rong1,SHU JianHong1   

  1. 1Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang 550006
    2Guizhou Sunshine Grass Technology Co., Ltd, Dushan 558200, Guizhou
    3Wuchuan Gelao and Miao Autonomous County Animal Husbandry and Fisheries Service Center, Wuchuan 564399, Guizhou
    4Guizhou Dingxin Agriculture and Animal Husbandry Technology Co., Ltd, Guiyang 550008
  • Received:2020-08-27 Accepted:2021-04-13 Online:2021-10-01 Published:2021-10-12
  • Contact: XianQin XIONG E-mail:cgjgz09@126.com;362853014@qq.com

Abstract:

【Objective】 This study aimed to explore the feeding value of whole Broussonetia papyrifera silage (WBPS) on Wuchuan black beef cattle, so as to provide a reference for rational utilization of Broussonetia papyrifera as feed.【Method】 A completely randomized trial design was used, and fifty head of black beef cattle with similar weight and age ((108.06±14.51) kg, 9 months) were randomly assigned to five dietary treatments: (A, B, C, D, and E). Each treatment had 1 replicate, with 10 steers in each replicate. Each treatment group was fed diets with the same concentrate to forage ratio () for 288 days, and the ratio of A, B, C, D, and E was 0, 17%, 41%, 66% and 83% WBPS, respectively. The dry matter intake (DMI), daily gain (ADG) and feed to weight ratio (DMI/ADG) were measured at the beginning, the middle stage (175th day and 220th day ) and the end of the experiment (288th day). The body size, rumen fermentation parameters and carcass quality were measured at the end of the experiment. 【Result】 ADG of C and D were higher than those of other groups at 0-175th day, 175-220th day, 220-288 day and the whole period (P<0.05), while DMI/ADG value was lower (P<0.05). In addition, the dietary factors affected the ADG time gradient of each group: with the prolongation of the experimental period, the ADG of A and B decreased significantly, while that of C, D and E increased firstly and then decreased. The increment of body height and oblique length of D was higher than that of other groups, and the second was group C (P<0.05). The ruminal acetic, propionic and total volatile fatty acids of A and B were higher than those of other groups, but the rumen microbial protein production of D was the highest, which was 5.27 times higher than that of A. The trial factor had no significant effect on slaughter rate and net meat rate of Wuchuan black beef cattle (P>0.05), while increasing the proportion of WBPS in the diet decreased the carcass fat percentage and muscle shear force (P<0.05). There was no significant difference in the composition and content of amino acids in muscle of Wuchuan black beef cattle (P>0.05), but WBPS decreased the content of saturated fatty acids and increased the content of polyunsaturated fatty acids (P<0.05). 【Conclusion】 WBPS replacing whole plant corn silage as a dietary component of Wuchuan beef black cattle could improve daily gain, reduce feed to weight ratio, increase rumen microbial protein production, reduce carcass fat rate, and positively change muscle fatty acid composition.

Key words: Whole Broussonetia papyrifera silage, feeding value, Wuchuan beef black cattle

Table 1

Nutritional components of whole plant hybrid Broussonetia papyrifera before and after silage (as DM basis)"

项目
Item
青贮前
Before silage
青贮后
After silage
干物质DM(%) 23.62 21.18
粗蛋白质CP(%) 17.93 18.04
粗灰分Ash(%) 6.39 7.68
粗脂肪EE(%) 3.25 3.38
酸性洗涤纤维ADF(%) 30.69 32.71
中性洗涤纤维NDF(%) 47.64 49.65
钙Ca(%) 1.06 1.27
磷P(%) 0.197 0.211
增重净能 Net energy for gain(MJ·kg-1 3.64 3.72
综合净能Combined net energy(MJ·kg-1 5.16 5.22

Table 2

Ingredient and nutrient composition of the total mixed ratio (as DM basis)"

项目 Item A B C D E
玉米 Corn grain (%) 10.06 10.06 10.06 10.06 10.06
麦麸 Wheat middlings(%) 2.35 2.35 2.35 2.35 2.35
豆粕 Soybean meal(%) 2.60 2.60 2.60 2.60 2.60
玉米脱水酒精糟 DDGS(%) 1.21 1.21 1.21 1.21 1.21
碳酸钙 Calcium bicarbonate(%) 0.13 0.13 0.13 0.13 0.13
磷酸氢钙 Dicalcium phosphate(%) 0.13 0.13 0.13 0.13 0.13
碳酸氢钠 Sodium bicarbonate(%) 0.08 0.08 0.08 0.08 0.08
食盐 Sodium chloride(%) 0.13 0.13 0.13 0.13 0.13
预混料 Premix1) 0.06 0.06 0.06 0.06 0.06
玉米青贮 Corn silage(%) 83.23 66.17 42.12 17.06 0.00
全株构树青贮Whole Broussonetia papyrifera silage(%) 0 17.06 41.12 66.17 83.23
合计 Total 100 100 100 100 100
营养水平2) Nutrient level(%)
干物质DM(%) 37.97 38.31 38.8 39.3 39.63
粗蛋白质CP(%) 10.65 11.63 13.35 15.47 17.17
粗灰分Ash(%) 4.84 4.94 5.11 5.32 5.49
粗脂肪EE(%) 3.26 3.32 3.42 3.54 3.64
酸性洗涤纤维ADF(%) 22.74 22.80 22.93 23.08 23.20
中性洗涤纤维NDF(%) 39.94 40.29 40.93 41.70 42.33
钙Ca(%) 0.50 0.58 0.73 0.92 1.06
磷P(%) 0.36 0.35 0.34 0.32 0.31
NFC/NDF值 1.03 0.99 0.91 0.81 0.73
增重净能 Net energy for gain(MJ·kg-1 4.90 4.82 4.71 4.60 4.53
综合净能Combined net energy(MJ·kg-1 6.56 6.47 6.36 6.24 6.16

Table 3

Comparison of growth performance of each treatment in each trial period"

试验期
Trial period
指标
Index
处理 Treatment 标准误
SEM
P
A B C D E
0-175 d 始重 Initial BW (kg) 110.67 105.33 106.56 108.90 108.70 2.12 0.950
末重 Final BW (kg) 207.44 207.33 205.56 215.60 200.40 3.38 0.713
日增重 ADG (kg·d-1) 0.55 0.58 0.57 0.61 0.52 0.01 0.441
干物质采食量DMI (kg·d-1) 4.20a 4.27a 3.70b 4.00ab 4.05ab 0.07 0.025
DMI/ADG 7.60a 7.32a 6.55b 6.57b 7.72a 0.07 0.018
175-220 d 始重 Initial BW (kg) 207.44 207.33 205.56 215.60 200.40 3.38 0.713
末重 Final BW (kg) 228.78 232.00 233.67 245.50 226.60 3.60 0.493
日增重 ADG (kg·d-1) 0.47d 0.55c 0.62ab 0.66a 0.58bc 0.02 0.001
干物质采食量 DMI (kg·d-1) 5.77a 5.70a 5.18bc 5.33ab 5.08c 0.93 0.035
DMI/ADG 12.17a 10.40b 8.30de 8.02e 8.72cd 1.96 0.003
220-288 d 始重 Initial BW (kg) 228.78 232.00 233.67 245.50 226.60 3.40 0.493
末重 Final BW (kg) 260.44 268.11 272.33 286.30 262.50 3.63 0.220
日增重 ADG (kg·d-1) 0.47c 0.53bc 0.57ab 0.60a 0.53bc 0.01 0.014
干物质采食量 DMI (kg·d-1) 5.57ab 5.76a 5.41b 5.59ab 5.19c 1.64 0.039
DMI/ADG 11.96a 10.85b 9.51c 9.31c 9.83c 1.62 0.013
0-288d(全期 )
Whole period
始重 Initial BW (kg) 110.67 105.33 106.56 108.90 108.70 2.12 0.950
末重 Final BW (kg) 260.44 268.11 272.33 286.30 262.50 3.63 0.220
日增重 ADG (kg·d-1) 0.520 0.565 0.576 0.616 0.534 0.013 0.138
干物质采食量 DMI (kg·d-1) 4.64a 4.72a 4.05c 4.48ab 4.39b 0.63 0.007
DMI/ADG 8.92a 8.36ab 7.03c 7.27c 8.22b 0.82 0.004

Table 4

Comparison of increment of body measurements of each treatment"

项目
Item
处理组Treatment 标准误
SEM
P
A B C D E
试验初
Beginning of trial
体高 Body height 94.44 90.00 91.11 93.17 92.71 0.74 0.358
体斜长Body oblique length 98.67 92.38 93.33 90.83 93.29 0.89 0.070
胸围Chest measurement 113.78 111.25 114.11 114.33 113.14 0.93 0.898
试验末
End of trial
体高Body height 113.78 112.88 114.33 118.33 113.29 1.03 0.446
体斜长Body oblique length 137.78 132.63 135.00 136.17 132.00 1.22 0.503
胸围Chest measurement 156.33 155.38 160.89 158.33 154.86 1.03 0.439
体高增量 Increment of body height 19.33d 22.88b 23.22b 25.17a 20.57cd 0.99 0.035
体斜长增量 Increment of body oblique length 39.11cd 40.25bc 41.67b 45.33a 38.71d 1.07 0.046
胸围增量 Increment of chest measurement 42.56 44.13 46.78 44.67 41.71 0.79 0.412

Table 5

Changes of rumen fermentation parameters and microbial protein concentration of each treatment"

项目
Item
处理组Treatment 标准误
SEM
P
A B C D E
pH值 pH value 6.24 6.28 6.26 6.26 6.21 0.02 0.524
挥发性脂肪酸VFAs (mmol·L-1)
乙酸 Acetate 27.04a 20.76b 13.36c 18.08b 12.82c 0.48 0.015
丙酸 Propionate 5.94a 5.79a 3.21c 4.82b 2.95c 0.61 0.039
异丁酸 Isobutyric acid 1.12a 1.09a 0.74c 0.97a 0.74c 0.08 0.005
丁酸 Butyrate 3.41a 2.52b 1.73c 2.40b 0.99d 0.36 0.017
异戊酸 Isovaleric acid 1.65 1.61 1.10 1.47 1.22 0.12 0.164
戊酸 Valeric acid 0.39a 0.30ab 0.14c 0.24b 0.14c 0.04 0.026
乙酸/丙酸值 Acetate/Propionat ratio 4.50ab 3.64c 4.22b 3.86c 4.83a 0.20 0.013
总挥发性脂肪酸 TVFA 40.21a 32.75b 20.91d 28.36c 19.17d 0.61 <0.001
微生物蛋白MCP mg·mL-1 0.15e 0.25d 0.51c 0.79a 0.61b 0.06 <0.001

Table 6

Comparison of slaughter performance, muscle drip loss and shear force of each treatment"

项目
Item
处理组 Treatment 标准误
SEM
P
A B C D E
屠宰率 Slaughter rate (%) 54.66 52.82 55.58 52.77 53.53 0.006 0.443
净肉率 Net meat rate (%) 46.04 45.92 48.20 45.50 46.98 0.005 0.610
骨重率 Bone weight rate (%) 8.62a 6.90bc 7.38b 7.27c 6.56c 0.226 0.013
头重率Head weight rate (%) 2.95a 2.70b 2.90a 2.81ab 2.48c 0.054 0.015
尾重率 Tail weight rate (%) 0.26 0.24 0.23 0.26 0.24 0.008 0.718
皮重率 Tare weight rate (%) 9.59 8.31 7.98 8.29 6.98 0.317 0.113
脂肪率 Fat rate (%) 7.28a 7.25a 5.07c 5.18c 6.47b 0.343 0.040
滴水损失率 Drip loss rate (%) 2.08 1.96 2.75 2.44 2.79 0.180 0.051
剪切力 Shear force (N·cm-2) 44.52a 38.02c 39.69bc 41.06b 41.16b 0.710 0.020

Table 7

Comparison of composition and content of amino acids in beef cattle muscle of each treatment (g/100g)"

项目
Item
处理组 Treatment 标准误
SEM
P
A B C D E
天冬门氨基酸 Asparagine 2.08 2.03 2.07 2.10 2.14 0.030 0.879
苏氨酸 Threonine 1.01 0.97 0.97 0.99 1.01 0.015 0.899
丝氨酸 Serine 0.85 0.84 0.83 0.83 0.86 0.013 0.955
谷氨酸 Glutamate 3.64 3.50 3.56 3.59 3.69 0.057 0.894
甘氨酸 Glycine 0.91 0.91 0.90 0.92 0.94 0.011 0.833
丙氨酸 Alanine 1.31 1.26 1.24 1.26 1.30 0.018 0.779
缬氨酸 Valine 1.05 1.03 1.04 1.06 1.07 0.013 0.907
异亮氨酸 Isoleucine 1.05 1.01 1.03 1.04 1.06 0.016 0.907
亮氨酸 Leucine 1.85 1.81 1.83 1.85 1.91 0.026 0.887
酪氨酸 Tyrosine 0.88 0.83 0.86 0.88 0.88 0.009 0.388
苯丙氨酸 Phenylalanine 0.93 0.90 0.91 0.93 0.91 0.011 0.891
赖氨酸 Lysine 2.00 1.96 2.05 2.05 2.08 0.029 0.752
组氨酸 Histidine 0.91 0.88 0.87 0.90 0.88 0.011 0.864
精氨酸 Arginine 1.33 1.36 1.42 1.38 1.49 0.023 0.232
脯氨酸 Proline 0.74 0.73 0.76 0.77 0.80 0.012 0.523
蛋氨酸 Methionine 0.63 0.60 0.59 0.60 0.61 0.010 0.823
16种氨基酸总量 Total 16 amino acids 21.17 20.62 20.95 21.17 21.64 0.282 0.887

Table 8

Comparison of composition and content of fatty acids in beef cattle muscle of each treatment (g/100 g)"

项目
Item
处理组 Treatment 标准误
SEM
P
A B C D E
肉豆蔻油酸 Myristoleic (C14:1n5) 0.035 0.052 0.020 0.021 0.020 0.008 0.688
十五(烷)酸 Pentadecanoic (C15:0) 0.010 0.016 0.011 0.010 0.013 0.002 0.910
棕榈酸 Palmitic(C16:0) 0.942 1.288 0.945 0.870 1.119 0.196 0.976
棕榈油酸 Palmitoleic (C16:1n7) 0.154 0.198 0.103 0.104 0.128 0.029 0.877
十七碳酸 Heptadecanoic (C17:0) 0.000 0.017 0.030 0.028 0.039 0.007 0.438
硬脂酸 Stearic (C18:0) 0.485 0.358 0.655 0.612 0.735 0.115 0.895
油酸 Oleic (C18:1n9c) 1.781 1.903 1.301 1.181 1.537 0.324 0.966
亚油酸 Linoleic (C18:2n6c) 0.081 0.092 0.080 0.075 0.080 0.008 0.985
二十碳一烯酸 Eicosaenoic (C20:1) 0.011a 0.007b 0.004c 0.005b 0.005b 0.002 0.021
α-亚麻酸 α-Linolenic (C18:3n3) 0.007d 0.011c 0.012bc 0.013ab 0.016a 0.001 0.006
二十碳三烯酸 Eicosapentaenoic (C20:3n6) 0.007a 0.006a 0.005ab 0.005ab 0.004b 0.001 0.043
花生四烯酸 Arachidonic (C20:4n6) 0.000c 0.016b 0.017b 0.021a 0.021a 0.003 0.031
总脂肪酸 Total fatty acids (TFA) 3.622 4.144 3.301 3.061 3.852 0.667 0.072
饱和脂肪酸 Saturated fatty acids (SFA) 1.545 1.860 1.759 1.636 2.040 0.015 0.065
单不饱和脂肪酸 Monounsaturated fatty acids (MUFA) 1.982a 2.160a 1.427c 1.311c 1.690b 0.061 0.024
多不饱和脂肪酸 Polyunsaturated fatty acids (PUFA) 0.095c 0.125a 0.115ab 0.113b 0.122a 0.002 0.031
[1] BOWMAN J G P, SOWELL B F, SURBER L M M, DANIELS T K. Nonstructural carbohydrate supplementation of yearling heifers and range beef cows. Journal of Animal Science, 2004, 82(9):2724-2733.
doi: 10.2527/2004.8292724x
[2] ZHANG Y C, LI D X, WANG X K, LIN Y L, ZHANG Q, CHEN X Y, YANG F Y. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Annals of Microbiology, 2019, 69(3):233-240.
doi: 10.1007/s13213-018-1398-z
[3] 谭桂华, 刘子琦, 肖华, 曹洋. 构树的饲用价值及应用. 中国饲料, 2017(20):32-35.
TAN G H, LIU Z Q, XIAO H, CAO Y. Feeding value and application of Broussonetia papyrifera. China Feed, 2017(20):32-35. (in Chinese)
[4] 陈志雄, 陈郭平, 孙加节, 陈婷, 张永亮. 四种木本饲料在畜禽养殖中的应用. 广东饲料, 2019, 28(3):38-41.
CHEN Z X, CHEN G P, SUN J J, CHEN T, ZHANG Y L. Application of four kinds of woody forages in livestock and poultry breeding. Guangdong Feed, 2019, 28(3):38-41. (in Chinese)
[5] 张秋玉, 李远发, 梁芳. 构树资源研究利用现状及其展望. 广西农业科学, 2009, 40(2):217-220.
ZHANG Q Y, LI Y F, LIANG F. The research and utilization status of Broussonetia papyvifera resources and its prospect. Guangxi Agricultural Sciences, 2009, 40(2):217-220. (in Chinese)
[6] 杨祖达, 陈华, 叶要妹, 吴静清. 构树叶资源利用潜力的初步研究. 湖北林业科技, 2002, 31(1):1-3.
YANG Z D, CHEN H, YE Y M, WU J Q. Preliminary study on the potential for utilizing the leaf resources of Broussonetia papyrifera, vent. Hubei Forestry Science and Technology, 2002, 31(1):1-3. (in Chinese)
[7] 黄彦兴, 黄静, 许小斌, 蓝晓明, 潘木水. 无抗日粮中添加发酵构树粉对肉猪生长性能及健康度的影响. 广东饲料, 2019, 28(4):41-43.
HUANG Y X, HUANG J, XU X B, LAN X M, PAN M S. Effect of fermented powder of Broussonetia papyrifera supplementation in antibiotic free diet on growth performance and health of swine. Guangdong Feed, 2019, 28(4):41-43. (in Chinese)
[8] 李玉莲, 吴买生, 谭红, 李朝晖, 夏敏. 构树生物发酵饲料饲喂妊娠后期母猪效果研究. 养猪, 2019(5):13-14.
LI Y L, WU M S, TAN H, LI Z H, XIA M. Study on the effect of bio-fermentation feed with Broussonetia papyrifera on swine in late pregnancy. Swine Production, 2019(5):13-14. (in Chinese)
[9] 杨旸, 杨嘉麟. 构树作为青贮饲料投喂黑山羊的应用效果研究. 畜禽业, 2019, 30(5):19.
YANG Y, YANG J L. Study on the application of Broussonetia papyrifera as silage to black goat. Livestock and Poultry Industry, 2019, 30(5):19. (in Chinese)
[10] 李光全, 邓位喜, 李佳剑, 田锋, 肖贵榜, 田雄. 务川黑牛不同杂交组合屠宰性能及肉质研究. 中国畜牧杂志, 2019, 55(7):63-66.
LI G Q, DENG W X, LI J J, TIAN F, XIAO G B, TIAN X. Study on meat yield and meat quality of different hybrid combinations of Wuchuan black cattle. Chinese Journal of Animal Science, 2019, 55(7):63-66. (in Chinese)
[11] 张丽英. 饲料分析及饲料质量检测技术. 3版. 北京: 中国农业大学出版社, 2007.
ZHANG L Y. Feed Analysis and Feed Quality Detection Technology. 3rd ed. Beijing: China Agricultural University Press, 2007. (in Chinese)
[12] VAN SOEST P J, SNIFFEN C J, MERTENS D R R. A net protein system for system for cattle: the rumen submodel for nitrogen// OWENS F N. Protein Requirements for Cattle: Proceedings of an International Symposium. Stillwater: Oklahoma State University, 1981: 265.
[13] 张沅. 家畜育种学. 北京: 中国农业出版社, 2001: 98-105.
ZHANG Y. Animal Breeding. Beijing: Chinese Agriculture Press, 2001: 98-105. (in Chinese)
[14] 曹庆云, 周武艺, 朱贵钊, 颜惜玲, 叶慧. 气相色谱测定羊瘤胃液中挥发性脂肪酸方法研究. 中国饲料, 2006(24):26-28.
CAO Q Y, ZHOU W Y, ZHU G Z, YAN X L, YE H. Study on the methods of determination of volatile fatty acid in the rumen liquid of lambs by gas chromatography. China Feed, 2006(24):26-28. (in Chinese)
[15] 王洪荣, 陈旭伟, 王梦芝. 茶皂素和丝兰皂苷对山羊人工瘤胃发酵和瘤胃微生物的影响. 中国农业科学, 2011, 44(8):1710-1719.
WANG H R, CHEN X W, WANG M Z. Effect of Yucca schidigera saponin and tea saponin mixture on the rumen fermentation and its fibrolytic bacterial activity in the rusitec substrates with different concentrate to forage ratio. Scientia Agricultura Sinica, 2011, 44(8):1710-1719. (in Chinese)
[16] 贾建斌, 赵熙和. GB/T 5009.124-2003, 食品中氨基酸的测定. 北京: 中国国家标准化管理委员会, 2003.
JIA J B, ZHAO X H. GB/T 5009.124-2003, Determination of amino acids in foods. Beijing: China National Standardization Management Committee. 2003. (in Chinese)
[17] 何梅, 李东, 陈晓月. GB 5009.168-2016, 食品中脂肪酸的测定. 北京: 国家食品药品监督管理总局, 2016.
HE M, LI D, CHEN X Y. GB 5009.168-2016, determination of fatty acids in foods. Beijing: China Food and Drug Administration. 2016. (in Chinese)
[18] TIAN K, LIU J H, SUN Y W, WU Y J, CHEN J C, ZHANG R M, HE T L, DONG G Z. Effects of dietary supplementation of inulin on rumen fermentation and bacterial microbiota, inflammatory response and growth performance in finishing beef steers fed high or low-concentrate diet. Animal Feed Science and Technology, 2019, 258. DOI: 10.1016/j.anifeedsci.2019.114299.
doi: 10.1016/j.anifeedsci.2019.114299
[19] JALALI A R, WEISBJERG M R, NADEAU A T, RANDBY B O, RUSTAS M, EKNES P, NØRGAAR D. Effects of forage type, animal characteristics and feed intake on faecal particle size in goat, sheep, llama and cattle. Animal Feed Science and Technology, 2015, 208:53-65. DOI: 10.1016/j.anifeedsci.2015.07.003.
doi: 10.1016/j.anifeedsci.2015.07.003
[20] CHAIL A, LEGAKO J F, PITCHER L R, WARD R E, MARTINI S, MACADAM J W. Consumer sensory evaluation and chemical composition of beef gluteus Medius and triceps brachii steaks from cattle finished on forage or concentrate diets. Journal of Animal Science, 2017, 95(4):1553-1564.
[21] ANDREINI E, AUGENSTEIN S, FALES C, SAINZ R, OLTJEN J. Effects of feeding level on performance and heat production of high and low residual feed intake beef steers. Journal of Animal Science, 2018, 96:401-401. DOI: 10.1093/jas/sky404.880.
doi: 10.1093/jas/sky404.880
[22] 梁永虎, 朱波, 金生云, 宝金山, 徐凌洋, 陈燕, 高雪, 张路培, 高会江, 李俊雅. 肉用西门塔尔牛群体生长曲线拟合及体重与体尺相关性分析的研究. 畜牧兽医学报, 2018, 49(3):497-506.
LIANG Y H, ZHU B, JIN S Y, BAO J S, XU L Y, CHEN Y, GAO X, ZHANG L P, GAO H J, LI J Y. The growth curve fitting and the correlation analysis between body weight and body measurements in Chinese Simmental beef cattle population. Acta Veterinaria et Zootechnica Sinica, 2018, 49(3):497-506. (in Chinese)
[23] BEAUCHEMIN K A, YANG W Z, RODE L M. Effects of barley grain processing on the site and extent of digestion of beef feedlot finishing diets. Journal of Animal Science, 2001, 79(7):1925-1936.
doi: 10.2527/2001.7971925x
[24] SONG S D, CHEN G J, GUO C H, RAO K Q, GAO Y H, PENG Z L, ZHANG Z F, BAI X, WANG Y, WANG B X, CHEN Z H, FU X S, ZHU W L. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility and ruminal fermentation in Chinese domesticated black goats. Animal Feed Science and Technology, 2018(236):170-177.
[25] 周芯宇, 王之盛, 胡瑞, 王雪莹, 祝伊枭, 曹广, 代秦丹, 师俊华, 汪成, 彭全辉, 邹华围, 薛白, 王立志. 不同类型白酒糟对奶公牛生长性能、养分表观消化率、血清生化指标和瘤胃发酵参数的影响. 动物营养学报, 2020, 32(8):3708-3716.
ZHOU X Y, WANG Z S, HU R, WANG X Y, ZHU Y X, CAO G, DAI Q D, SHI J H, WANG C, PENG Q H, ZOU H W, XUE B, WANG L Z. Effects of different types of white distiller’s grains on growth performance, nutrient apparent digestibility, serum biochemical indices and rumen fermentation parameters of dairy bulls. Chinese Journal of Animal Nutrition, 2020, 32(8):3708-3716. (in Chinese)
[26] 韩继福, 冯仰廉, 张晓明, 莫放, 赵广永, 杨雅芳. 日粮类型和羊草细度对肉牛瘤胃挥发性脂肪酸比例及能量转化效率的影响. 畜牧兽医学报, 1998(2):97-104.
HAN J F, FENG Y L, ZHANG X M, MO F, ZHAO G Y, YANG Y F. Effects of different diets and different particle sizes of hay on proportion of acetic, propionic and butyric acids in the rumen and on energy conversion in steers feeding. Chinese Journal of Animal and Veterinary Sciences, 1998(2):97-104. (in Chinese)
[27] National Research Council. Nutrient Requirements of Beef Cattle: Eighth Revised Edition. National Academy Press, 2016.
[28] ATASOGLU C, NEWBOLD C J, WALLACE R J. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17. Applied and Environmental Microbiology, 2001, 67(6):2819-2822. Doi: 10.1128/AEM.67.6.2819-2822.2001.
doi: 10.1128/AEM.67.6.2819-2822.2001
[29] MAY S G, MIES W L, EDWARDS J W, WILLIAMS F L, WISE J W, MORGAN J B, SAVELL J W, CROSS H R. Beef carcass composition of slaughter cattle differing in frame size, muscle score, and external fatness. Journal of Animal Science, 1992, 70(8):2431-2445. Doi: 10.2527/1992.7082431x.
doi: 10.2527/1992.7082431x
[30] SULTAN A, MOHD WA K, NAWAF A, AMAL A, IKRAM A, IBRAHIM A A, ESAM A B, YASMIN A, AL-T, HANI T, FAHAD A H, SALIH A, HANAN A, WALEED T. Correlations between direct and calculated low-density lipoprotein cholesterol measurements in children and adolescents. Journal of Clinical Laboratory Analysis, 2020, 34(6). DOI: 10.1002/jcla.23236.
doi: 10.1002/jcla.23236
[31] NGUYEN T H, MARTIN W A, VERSTEGEN W H, HENDRIKS W F, PELLIKAAN. Sainfoin(Onobrychis viciifolia) silage in dairy cow rations reduces ruminal biohydrogenation and increases transfer efficiencies of unsaturated fatty acids from feed to milk. Animal Nutrition, 2020. Doi: 10.1016/j.aninu.2020.05.001.
doi: 10.1016/j.aninu.2020.05.001
[1] QIN Meng-Zhen, SHEN Yi-Xin. Effects of Maturity Stage on Fermentation Quality of Whole Crop Wheat Silage [J]. Scientia Agricultura Sinica, 2012, 45(8): 1661-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!