Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2759-2768.doi: 10.3864/j.issn.0578-1752.2021.13.006
• PLANT PROTECTION • Previous Articles Next Articles
ZHANG ChengQi(),WANG XiaoYan,CHEN Li()
[1] |
DEAN R, VAN KAN J A L, PRETORIUS Z A, HAMMOND-KOSACK K E, DI PIETRO A, SPANU P D, RUDD J J, DICKMAN M, KAHMANN R, ELLIS J, FOSTER G D. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13(4):414-430.
doi: 10.1111/j.1364-3703.2011.00783.x |
[2] |
AUDENAERT K, VANHEULE A, HOFTE M, HAESAERT G. Deoxynivalenol: A major player in the multifaceted response of Fusarium to its environment. Toxins, 2013, 6(1):1-19.
doi: 10.3390/toxins6010001 |
[3] |
BIANCHINI A, HORSLEY R, JACK M M, KOBIELUSH B, RYU D, TITTLEMIER S, WILSON W W, ABBAS H K, ABEL S, HARRISON G, MILLER J D, SHIER W T, WEAVER G. DON occurrence in grains: A north American perspective. Cereal Foods World, 2015, 60(1):32-56.
doi: 10.1094/CFW-60-1-0032 |
[4] |
PESTKA J J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 2010, 84(9):663-679.
doi: 10.1007/s00204-010-0579-8 |
[5] | 陈云, 王建强, 杨荣明, 马忠华. 小麦赤霉病发生危害形势及防控对策. 植物保护, 2017, 43(5):11-17. |
CHEN Y, WANG J Q, YANG R M, MA Z H. Current situation and management strategies of Fusarium head blight in China. Plant Protection, 2017, 43(5):11-17. (in Chinese) | |
[6] | 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014, 47(18):3641-3654. |
SHI J R, LIU X, QIU J B, JI F, XU J H, DONG F, YIN X C, RAN J J. Deoxynivalenol contamination in wheat and its management. Scientia Agricultura Sinica, 2014, 47(18):3641-3654. (in Chinese) | |
[7] |
TANG G F, CHEN Y, XU J R, KISTLER H C, MA Z H. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathogens, 2018, 14(1):e1006827.
doi: 10.1371/journal.ppat.1006827 |
[8] |
ZHANG C Q, CHEN Y, YIN Y N, JI H H, SHIM W B, HOU Y P, ZHOU M G, LI X D, MA Z H. A small molecule species specifically inhibits Fusarium myosin I. Environmental Microbiology, 2015, 17(8):2735-2746.
doi: 10.1111/1462-2920.12711 |
[9] | BEREPIKI A, LICHIUS A, READ N D. Actin organization and dynamics in filamentous fungi. Nature Reviews. Microbiology, 2011, 9(12):876-887. |
[10] |
GARCIA B, STOLLAR E J, DAVIDSON A R. The importance of conserved features of yeast actin-binding protein 1 (Abp1p): The conditional nature of essentiality. Genetics, 2012, 191(4):1199-1211.
doi: 10.1534/genetics.112.141739 |
[11] | DRUBIN D G, MILLER K G, BOTSTEIN D. Yeast actin-binding proteins: Evidence for a role in morphogenesis. Journal of Cell Biology, 1988, 107(6):2551-2561. |
[12] |
LAPPALAINEN P, KESSELS M M, COPE M J, DRUBIN D G. The ADF homology (ADF-H) domain: A highly exploited actin-binding module. Molecular Biology of the Cell, 1998, 9(8):1951-1959.
doi: 10.1091/mbc.9.8.1951 |
[13] |
STOLLAR E J, GARCIA B, CHONG P A, RATH A, LIN H, FORMAN-KAY J D, DAVIDSON A R. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Journal of Biological Chemistry, 2009, 284(39):26918-26927.
doi: 10.1074/jbc.M109.028431 |
[14] | GOODE B L, RODAL A A, BARNES G, DRUBIN D G. Activation of the Arp2/3 complex by the actin filament binding protein Abp1p. Journal of Cell Biology, 2001, 153(3):627-634. |
[15] |
FAZI B, COPE M, DOUANGAMATH A, FERRACUTI S, SCHIRWITZ K, ZUCCONI A, DRUBIN D G, WILMANNS M, CESARENI G, CASTAGNOLI L. Unusual binding properties of the SH3 domain of the yeast actin-binding protein Abp1: Structural and functional analysis. Journal of Biological Chemistry, 2002, 277(7):5290-5298.
doi: 10.1074/jbc.M109848200 |
[16] |
STEFAN C J, PADILLA S M, AUDHYA A, EMR S D. The phosphoinositide phosphatase Sjl2 is recruited to cortical actin patches in the control of vesicle formation and fission during endocytosis. Molecular and Cellular Biology, 2005, 25(8):2910-2923.
doi: 10.1128/MCB.25.8.2910-2923.2005 |
[17] |
HAYNES J, GARCIA B, STOLLAR E J, RATH A, ANDREWS B J, DAVIDSON A R. The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context. Genetics, 2007, 176(1):193-208.
doi: 10.1534/genetics.106.070300 |
[18] | KESSELS M M, ENGQVIST-GOLDSTEIN A E Y, DRUBIN D G, QUALMANN B. Mammalian Abp1, a signal-responsive F-actin- binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. Journal of Cell Biology, 2001, 153(2):351-366. |
[19] |
MISE-OMATA S, MONTAGNE B, DECKERT M, WIENANDS J, ACUTO O. Mammalian actin binding protein 1 is essential for endocytosis but not lamellipodia formation: Functional analysis by RNA interference. Biochemical and Biophysical Research Communications, 2003, 301(3):704-710.
doi: 10.1016/S0006-291X(02)02972-8 |
[20] |
KESSELS M M, ENGQVIST-GOLDSTEIN A E Y, DRUBIN D G. Association of mouse actin-binding protein 1 (mAbp1/SH3P7), an Src kinase target, with dynamic regions of the cortical actin cytoskeleton in response to Rac1 activation. Molecular Biology of the Cell, 2000, 11(1):393-412.
doi: 10.1091/mbc.11.1.393 |
[21] |
CORTESIO C L, PERRIN B J, BENNIN D A, HUTTENLOCHER A. Actin-binding protein-1 interacts with WASp-interacting protein to regulate growth factor-induced dorsal ruffle formation. Molecular Biology of the Cell, 2010, 21(1):186-197.
doi: 10.1091/mbc.e09-02-0106 |
[22] |
FENSTER S D, KESSELS M M, QUALMANN B, CHUNG W J, NASH J, GUNDELFINGER E D, GARNER C C. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. Journal of Biological Chemistry, 2003, 278(22):20268-20277.
doi: 10.1074/jbc.M210792200 |
[23] |
HAN J, KORI R, SHUI J W, CHEN Y R, YAO Z B, TAN T H. The SH3 domain-containing adaptor HIP-55 mediates c-Jun N-terminal kinase activation in T cell receptor signaling. Journal of Biological Chemistry, 2003, 278(52):52195-52202.
doi: 10.1074/jbc.M305026200 |
[24] | HOLTZMAN D A, YANG S, DRUBIN D G. Synthetic-lethal interactions identify two novel genes, SLA1and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae. Journal of Cell Biology, 1993, 122(3):635-644. |
[25] |
TUO S, NAKASHIMA K, PRINGLE J R. Role of endocytosis in localization and maintenance of the spatial markers for bud-site selection in yeast. PLoS ONE, 2013, 8(9):e72123.
doi: 10.1371/journal.pone.0072123 |
[26] | COPE M J, YANG S, SHANG C, DRUBIN D G. Novel protein kinases Ark1p and Prk1p associate with and regulate the cortical actin cytoskeleton in budding yeast. Journal of Cell Biology, 1999, 144(6):1203-1218. |
[27] |
WESP A, HICKE L, PALECEK J, LOMBARDI R, AUST T, MUNN A L, RIEZMAN H. End4p/Sla2p interacts with actin-associated proteins for endocytosis in Saccharomyces cerevisiae. Molecular Biology of the Cell, 1997, 8(11):2291-2306.
doi: 10.1091/mbc.8.11.2291 |
[28] |
AGHAMOHAMMADZADEH S, SMACZYNSKA-DE ROOIJ I I, AYSCOUGH K R. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited. PLoS ONE, 2014, 9(7):e103311.
doi: 10.1371/journal.pone.0103311 |
[29] |
LI L W, ZHANG S P, LIU X Y, YU R, LI X R, LIU M X, ZHANG H F, ZHENG X B, WANG P, ZHANG Z G. Magnaporthe oryzae Abp1, a MoArk1 kinase-interacting actin binding protein, links actin cytoskeleton regulation to growth, endocytosis, and pathogenesis. Molecular Plant-Microbe Interactions, 2019, 32(4):437-451.
doi: 10.1094/MPMI-10-18-0281-R |
[30] |
NICHOLSON P. The Fusarium laboratory manual. Plant Pathology, 2007, 56(6):1037.
doi: 10.1111/ppa.2007.56.issue-6 |
[31] |
YU J H, HAMARI Z, HAN K H, SEO J A, REYES-DOMINGUEZ Y, SCAZZOCCHIO C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41(11):973-981.
doi: 10.1016/j.fgb.2004.08.001 |
[32] |
PROCTOR R H, HOHN T M, MCCORMICK S P. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions, 1995, 8(4):593-601.
doi: 10.1094/MPMI-8-0593 |
[33] |
BRUNO K S, TENJO F, LI L, HAMER J E, XU J R. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryotic Cell, 2004, 3(6):1525-1532.
doi: 10.1128/EC.3.6.1525-1532.2004 |
[34] |
CHEN Y, ZHENG S Y, JU Z Z, ZHANG C Q, TANG G F, WANG J, WEN Z Y, CHEN W, MA Z H. Contribution of peroxisomal docking machinery to mycotoxin biosynthesis, pathogenicity and pexophagy in the plant pathogenic fungus Fusarium graminearum. Environmental Microbiology, 2018, 20(9):3224-3245.
doi: 10.1111/emi.2018.20.issue-9 |
[35] |
TANG G F, ZHANG C Q, JU Z Z, ZHENG S Y, WEN Z Y, XU S, CHEN Y, MA Z H. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum. Molecular Plant Pathology, 2018, 19(7):1595-1611.
doi: 10.1111/mpp.2018.19.issue-7 |
[36] |
TRAIL F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiology, 2009, 149(1):103-110.
doi: 10.1104/pp.108.129684 |
[37] |
MENKE J, DONG Y H, KISTLER H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Molecular Plant-Microbe Interactions, 2012, 25(11):1408-1418.
doi: 10.1094/MPMI-04-12-0081-R |
[38] |
WINDER S J, AYSCOUGH K R. Actin-binding proteins. Journal of Cell Science, 2005, 118(4):651-654.
doi: 10.1242/jcs.01670 |
[39] |
DOS REMEDIOS C G, CHHABRA D, KEKIC M, DEDOVA I V, TSUBAKIHARA M, BERRY D A, NOSWORTHY N J. Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiological Reviews, 2003, 83(2):433-473.
doi: 10.1152/physrev.00026.2002 |
[40] |
ARAUJO-BAZAN L, PENALVA M A, ESPESO E A. Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Molecular Microbiology, 2008, 67(4):891-905.
doi: 10.1111/mmi.2008.67.issue-4 |
[41] | QUALMANN B, KESSELS M M, KELLY R B. Molecular links between endocytosis and the actin cytoskeleton. Journal of Cell Biology, 2000, 150(5):F111-F116. |
[42] |
MATSUO K, HIGUCHI Y, KIKUMA T, ARIOKA M, KITAMOTO K. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae. Fungal Genetics and Biology, 2013, 56:125-134.
doi: 10.1016/j.fgb.2013.03.007 |
[43] |
ZHENG Z T, HOU Y P, CAI Y Q, ZHANG Y, LI Y J, ZHOU M G. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Scientific Reports, 2015, 5:8248.
doi: 10.1038/srep08248 |
[44] |
CHEN Y, KISTLER H C, MA Z H. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology, 2019, 57:15-39.
doi: 10.1146/annurev-phyto-082718-100318 |
[1] | ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903. |
[2] | TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870. |
[3] | WANG BaoBao,GUO Cheng,SUN SuLi,XIA YuSheng,ZHU ZhenDong,DUAN CanXing. The Genetic Diversity, Pathogenicity, and Toxigenic Chemotypes of Fusarium graminearum Species Complex Causing Maize Ear Rot [J]. Scientia Agricultura Sinica, 2020, 53(23): 4777-4790. |
|