Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (23): 5068-5082.doi: 10.3864/j.issn.0578-1752.2021.23.012

• HORTICULTURE • Previous Articles     Next Articles

Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape

ZHANG Lu1,2(),ZONG YaQi1,2,XU WeiHua2,HAN Lei1,SUN ZhenYu1,2,CHEN ZhaoHui3,CHEN SongLi3,ZHANG Kai1,CHENG JieShan1,TANG MeiLing1,2,3(),ZHANG HongXia1,SONG ZhiZhong1()   

  1. 1The Engineering Research Institute of Agriculture and Forestry, Ludong University/Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Yantai 264025, Shandong
    2Institute of Grape, Yantai Academy of Agricultural Science, Yantai 264000, Shandong
    3Zhaoyuan Dahu Manor Agriculture and Forestry Professional Cooperative, Yantai 264000, Shandong
  • Received:2021-02-08 Accepted:2021-05-05 Online:2021-12-01 Published:2021-12-06
  • Contact: MeiLing TANG,ZhiZhong SONG E-mail:1169464953@qq.com;tmling1999@163.com;szhzh2000@163.com

Abstract:

【Objective】The aim of this study was to isolate and characterize grape Fe-S cluster assembly genes. The tissue-specific expression characteristics and differential response to iron depletion at the transcriptional level were analyzed to screen the dominant and candidate Fe-S cluster assembly genes in grape. 【Method】The Fe-S cluster assembly genes were screened and identified in grape genome by homologous cloning. The detailed characteristics of Fe-S cluster assembly genes and their encoded proteins in grape were analyzed by using a variety of bioinformatics software. The expression patterns of Fe-S cluster assembly genes in different tissues of grape and their corresponding responses to iron deficiency stress were analyzed by using real-time fluorescent quantitative PCR. The phylogenetic trees of ISU1 homologous proteins from different plants were established by using MEGE 7.0 software. 【Result】 In total, 46 Fe-S cluster assembly genes were retrieved and cloned from grape, which were located on a total of 16 chromosomes, containing 1-21 introns with different lengths. Grape Fe-S cluster assembly genes were mainly distributed in plastid, mitochondrion and cytosol, containing 14, 21 and 11 genes, respectively. Grape Fe-S cluster assembly proteins were found with a variety of subcellular structures. Moreover, the subcellular localization of Fe-S cluster assembly proteins with different assembly mechanisms was quite distinct. The sequence identity of ISU1 homologous proteins from 10 plant species was as high as 77%. Phylogenetic tree analysis indicated that ISU1 members belonging to the same genus, such as Arabidopsis and the llungiella of Cruciferae, rice and Brachypodium of Gramineae, and peach and apple of Rosaceae, were tended to be closely clustered together, while grape ISU1 was closely clustered with tomato ISU1. The expression levels of Fe-S cluster assembly genes were different among different tissues of 3-year-old adult tree and tissue culture seedling of Marselan grape, and the differences were significant. In particular, the expression level of ISU1 gene was the most abundant (especially in the mature fruit), followed by HSAC1, ISA2, NFU2, SUFA and SUFB, while the expression levels of SUFE2, NFS1, HSCA2, HSCA6, TAH18 and CIA2 were not detected in tested tissues of grape. Grape Fe-S cluster assembly genes were more sensitive to iron deficiency treatment, and all genes responded to iron deficiency treatment in at least one detected tissue sample. Notably, the expression level of 22 Fe-S cluster assembly genes were significantly regulated by iron deficiency in all tested tissues, and the expression levels in roots were likely to be up-regulated by iron deficiency, while the expression levels in shoots (stems and leaves) were prone to be down-regulated. 【Conclusion】46 Fe-S cluster assembly genes were cloned and identified in grape, which were located in plastid, mitochondrion and cytosol, respectively. The expression levels of Fe-S cluster assembly genes were significantly distinct among different tissues of 3-year-old adult tree and tissue culture seedlings, while the transcription levels in different seedlings tissues were significantly different in response to iron deficiency. The overall expression level of ISU1 gene was the highest in all tested tissues of grape. The genetic evolution distance between grape and tomato ISU1 homologous proteins was the closest.

Key words: grape, iron metabolism, iron depletion, Fe-S cluster, assembly mechanism, gene cloning and expression

Table 1

Primers used for CDS amplification of grape Fe-S cluster assembly genes"

基因Gene 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′) 产物长度 Product length (bp)
ADX1 ATGTTCGCTTCTAGACTTTCA TTAGTGTGGTTTTGGAATAAA 597
ADXR ATGGCGTTTTGTCGTGCGAAG TCATTCCATGGTAACTTTCAG 1461
ATM3 ATGGCGGGCGTTGCTTCTTGC TCACGCCTCCAATTTAATGGT 2181
CIA1 ATGGATTTCTCGGAAGAGGGC TCAGGTTATAGAAGCCAGCTC 1035
CIA2 ATGTTTTTCCCTGAGGTGGAC TTAGAGTTCATTGGAGTAGAG 360
CIA3 ATGTTCTTAAATCATATTAGA TCAACCATATGATGGAGCCAG 363
DRE2 ATGTTGCAAAATAGCACATTG TTAAATGTCAGCCACAAGAA 819
ERV1 ATGTCTGAAACCCCATTTCAT TTAATGTGATCTCTCACCAAA 597
FH ATGGCTTCTGCTTCTTCTTCC TTAGGAAAGGCTGATGGGTGT 594
GRXS14 ATGCTTATGCTTATATCAATA TCAGGAGCACATCGCCTTCTC 552
GRXS15 ATGGCAAGGTCACTATCTAAC TCATTCGGACTTTTCCTGGGG 513
GRXS16 ATGGCAACAATCAGTCTATCT CTACTTCTTAAATAAACCAAC 894
HCF101 ATGAGGCTAACAAACACTCTT TCATGCCTGTGCAGGAGTTAG 1671
HSCA1 ATGGCTGCCTCCGTTTTGCTC CTACTTCTTCACCTCTTCATA 1842
HSCA2 ATGGCCACTTCGGTGCTTCTT CTACTTCTTGGCCTGCTCATA 1716
HSCA3 ATGTCGGAGTGCCCAGCGATC TCACATCACCATCCGGTCCCTT 1503
HSCA4 ATGTACGGTGCGTGGGGTCTA CTACAGCTCATCATGGGAGTC 1947
HSCA5 ATGGACGAGGTGGGTGAGGA TCACTTGCTCTCGGTGAAGTC 1677
HSCA6 ATGGAAAGCTCGTGGAGAAGA TCAAAGTTCATCATGGGAATC 1821
HSCA7 ATGGCGGTGAAGAACAGGGCG TCAGAACTGGAAGAAGCCCCA 1731
HSCB ATGTGGAAGAAGAATCTATGG TCAGAGTTTCTTCATGATTTC 804
IBA57 ATGGCCTCGCTTCTCAAGTCC CTAAGCGGACGCAGTATCTTG 1113
INDL ATGGAGTCACCGACCCAGGGA TCACAGTGAAATCTCTGGCCG 1026
ISA1 ATGGCATCTTCATTTCTCGCG CTACTTAGCAGCTCCAGGATT 402
ISA2 ATGCCCCAGCCCTCCACTTCG TCACATTTCAGCAGCAAAGGA 453
ISA3 ATGTCAAGATCGGTGCTTCGG CTATTCTTTCACCATGAAAGA 465
ISD11 ATGGCATCAACACCTTCGAAA TTATTCCAACTGCCTTCTGGC 219
ISU1 ATGAAGCTTCAAATCAAGGTC CTACTCAGTCTTTGCTCGCTT 273
MMS19 ATGGCACAACTGAGTCAATTG TCAGAAATGAAGACTTCTGGA 3441
NAR1 ATGTCGGAGAAGTTCTCGGCA TCACCAGTTGTGTAATTGAGA 1437
NBP35-1 ATGGAGAACGGCGACAGCAAT TCAAGTGGTAGACAGTGCCTG 957
NBP35-2 ATGGAGTCACCGACCCAGGGA TCACAGTGAAATCTCTGGCCG 1026
NFS1 ATGGCTTCCAGGCTTCATTCT TTAGGTTATTTGTTTTTGTAG 3267
NFS2 ATGGCAAGTGTTCTGAAATT CTACTTGAAAGAAGAGAAGA 1392
NFU1 ATGGCGTCTCTCACAGCAACA CTAGTCACTGAAGACAACATT 642
NFU2 ATGCAAGGCGTGGTGGTGGCG CTATAGAAGCTGAACTGCTGC 684
NFU3 ATGGGCTTCACAGCATTCACA TTATCCATCTATCAACTGGAC 714
NFU4 ATGTTCATCCAAACTCAATCC TTAATCCATCTGGCCAGATAG 609
SUFA ATGCCCCAGCCCTCCACTTCG TCACATTTCAGCAGCAAAGGA 453
SUFB ATGGCTTCTCTACTGGCCAAC CTAACCGACTGATCCTTCAAGC 1536
SUFC ATGGCTCGATTCTGCTGCGCC TTACAGTTGGGCCTCAGAAAT 966
SUFD ATGGCTGCTACATTGCTTTCA TCATGAGGAACCTTTAAGTGT 1443
SUFE1 ATGTCTCTGTCCAATCTCCAA TCAACATAGATTCCCAAGTTG 1224
SUFE2 ATGGACTCTGCAACTTTGGG TCATATCCTGAAAGGACTCTG 855
SUFE3 ATGGGGTGTACGGCGCAGGTG TCAACTTATTGAAGTTGATC 1806
TAH18 ATGAATGGGAGGGAGAAGCAG TCAAGACCATGCTTCCACATG 1899

Table 2

Specific expression primers used in this study"

基因 Gene 上游引物 Forward primer (5′-3′) 下游引物 Reverse primer (5′-3′) 产物长度 Product length (bp)
ADX1 AACCACAATCGGGGACCAAG GTGGAACAGGCAAGTGAACC 250
ADXR TGGGCATCCAGACTGCAAAA TGGTCCACGTCTTCCTACCA 211
ATM3 CACCGACACCCTAGTTGGAC TAGCCCCAACCAAGAAACCC 232
CIA1 GCAACGTTCTCCCTCCACTT GACCCGGATGCATTCCAAGA 231
CIA2 TGTTTTTCCCTGAGGTGGACAT GCCAATTACTGTTGCCATGCT 164
CIA3 AAACTTCTGCGCAGTTTGCC GGAGCCAGACATTCATCAACC 167
DRE2 ATAGCACATTGGCCCTCACA TGTCCCACCAGGCTTCAAAA 248
ERV1 TCGGCAGCAGAAGAAGGATG CCCCACCTTGCATCAACTCT 222
FH GGCCGCCATTGATTACAGTTC GCTCACAGGAGAGGACAACC 235
GRXS14 GGAACCAAGGAGTTCCCACA CGCCTTCTCCAACTGTTCCT 243
GRXS15 TGAAAGGGGTGCCTGATGTG TTGTGGAAATGTGGGCCAGT 158
GRXS16 AAACTGAGCCGATTCCCCTG CTCTGGCACCGATTTCCTGT 167
HCF101 GAGTGGGGAGAGCTGGACTA AACAACAGCAACACAGGGGA 192
HSCA1 CTCGCTTCCCCTTCTCTCTC CCACTGATGGTGTAGTCCGAG 235
HSCA2 CCATTCAGCTCAAAGCCTGC GGGAGCTCTGAGTTTAGTTCCA 243
HSCA3 AGAGAGGTTTGCAAAGGAGGA GTCCCTTTCCTGATGACTTTCC 244
HSCA4 ACCAATGACAAGGAGGAAGACA CACTCGAGGGCCTCTTTCAC 176
HSCA5 CAGAGACTGCCGAGAAAGCA GCGTTGAACCACCAACAAGG 246
HSCA6 GTCAAGGCTGAGGACAAGGG GACAGCTTCCACCTCATCAATC 165
HSCA7 TACACGAGTTTGCAGAAGAGG AGCCCCACCACTCCTCATAAA 177
HSCB TCCATGTTCCTCAACTGCCC ACAAGAGTCGCAAGCCAGAA 181
IBA57 GTGGATGCCACTGTCTTGGA ATGTGCCAGCAGGATCAACA 202
INDL AGTGGTTCTGCGGGGTTTAG ATCAGCATCAAGCACACCCA 168
ISA1 CCTAACCCTAACGGACGCTG CCAATGACATGCATGAGAGCC 213
ISA2 GCCCTCCACTTCGGTTTCTC CCAGAGCATCCACCCTGTTT 219
ISA3 TTGAGTGTCGAGACTGGTGG TGCTCACCAGGAAAGCAGAA 193
ISD11 ACGCGATTTCTCGGACTACAAT TATTCCAACTGCCTTCTGGC 156
ISU1 CCATCGCCTCTTCCTCTGTT AGTCTTTGCTCGCTTGGCT 188
MMS19 AGCTTGCTGTTGGGAGTTGT GGGTTTGAGGACGAACTGCT 231
NAR1 AAAGCTGAGGTTGTGACGGG AAAGGAAGCCCTTGACTGGG 204
NBP35-1 TTCCTAGTGGTTGATGCCCC ACACCTCACTGAAATCTGTCAC 232
NBP35-2 AGTGGTTCTGCGGGGTTTAG ATCAGCATCAAGCACACCCA 168
NFS1 GACAAATCAAAAAGCCATTTTCCAA CACGTACTGCTCTCGGGTT 150
NFS2 GTTCAGGTGGGGTTCCGTAG AGGCTTCTGTGAGGTTGCTG 183
NFU1 CAAAACTCAGCGTTTCGCCT ATTTGTGGGCCGAGTAGAGC 163
NFU2 CCTACTGCTGCAGAGCCAAA GCAACAGCCTTGACAACTCG 172
NFU3 AAACACGCCCTAGAGCCTTC AGCCTTGACAACTCGGCTAC 150
NFU4 GGGAAGCCACTGTTCCTTGA CGATACTCGATGTCCCCACC 152
SUFA GCCCTCCACTTCGGTTTCTC CCAGAGCATCCACCCTGTTT 219
SUFB ACAAAGTTTGCAGATGACAGGA CTAGCCCCACTGCATAGACC 221
SUFC CCATGCAGTCATGGGGAAGA ACCTGGGATCTCTACTGGGG 190
SUFD AATTGCCCACTGGCGTTTTC ATATCCCCACCCTCAACGGA 217
SUFE1 TGGACATGCAGGTGTTAGGG TTCCCAAGTTGATTTCCCTGTCT 219
SUFE2 TGATTCGGGTTTTGGACGGA AGATATTGCAGTGCCAGAGACA 227
SUFE3 TCCTGAGGTCCAAGGTGTCT GCATCTGCCAAAGAGCAACC 243
TAH18 GCGCTATTTCTTTGAGGCAAG AATGGCATTTGCACTGAAGGG 174

Fig. 1

The proposed function and distribution model of Fe-S cluster assembly genes in grape"

Table 3

Complete list of Fe-S cluster assembly genes in grape, Arabidopsis and peach species"

位置
Location
基因
Gene
登录号 Locus ID
拟南芥 Arabidopsis 葡萄Grape 桃 Peach 水稻 Rice
质体
Plastid
NFS2 At1g08490 GSVIVT01037384001 ppa005298m Os12g18900
SUFE1 At4g26500 GSVIVT01014835001 ppa007330m Os09g09790
SUFE2 At1g67810 GSVIVT01000550001 ppa017530m -
SUFE3 At5g50210 GSVIVT01007621001 ppa001921m Os12g19304
SUFA At1g10500 GSVIVT01022247001 ppa012351m Os06g05400
SUFB At4g04770 GSVIVT01012742001 ppa003788m Os01g61400
SUFC At3g10670 GSVIVT01036588001 - Os03g21490
SUFD At1g32500 GSVIVT01013180001 ppa004982m Os01g03650
NFU1 At4g01940 GSVIVT01028158001 ppa011214m Os03g20010
NFU2 At5g49940 GSVIVT01023274001 ppa011050m Os11g07916
NFU3 At4g25910 GSVIVT01029242001 ppa010743m Os06g47940
HCF101 At3g24430 GSVIVT01015424001 ppa006650m Os01g52170
GRXS14 At3g54900 GSVIVT01032936001 ppa012220m Os03g63420
GRXS16 At2g38270 GSVIVT01011178001 ppa009373m Os12g07650
线粒体
Mitochondria
NFS1 At5g65720 GSVIVT01003603001 ppa005512m Os09g16910
ISD11 At5g61220 GSVIVT01007919001 ppa013993m Os08g14070
ISU1 At4g22220 GSVIVT01013764001 ppa012356m Os01g47340
ISU2 At3g01020 - - Os05g49300
ISU3 At4g04080 - - -
ISA1 At2g16710 GSVIVT01033834001 ppa013203m Os12g30030
ISA2 At2g36260 GSVIVT01022247001 ppa12351m Os01g01610
ISA3 At5g03905 GSVIVT01033842001 ppa012679m Os08g28230
NFU4 At3g20970 GSVIVT01011272001 ppa009781m Os05g06330
NFU5 At1g51390 - - -
ADX1 At4g21090 GSVIVT01015024001 ppa012568m Os09g26650
ADX2 At4g05450 - ppa012238m Os07g01930
ADXR At4g32360 GSVIVT01015352001 ppa004960m Os02g17700
FH At4g03240 GSVIVT01000441001 ppa011940m Os01g57460
HSCA1 At4g37910 GSVIVT01038517001 ppa002402m Os02g53420
HSCA2 At5g09590 GSVIVT01006769001 ppa001973m Os03g02260
HSCA3 - GSVIVT01008331001 ppa002222m Os09g31486
HSCA4 - GSVIVT01038580001 ppa002489m -
HSCA5 - GSVIVT01026014001 ppa002572m -
HSCA6 - GSVIVT01019607001 - -
HSCA7 - GSVIVT01031125001 - -
HSCB At5g06410 GSVIVT01022555001 ppa016242m Os12g27070
INDL At4g19540 GSVIVT01000762001 ppa019981m Os03g42880
IBA57 At4g12130 GSVIVT01004911001 ppa006632m Os06g04380
GRXS15 At3g15660 GSVIVT01017244001 ppa012405m Os01g07950
细胞质
Cytosol
ATM3 At5g58270 GSVIVT01024527001 ppa002114m Os06g03770
ERV1 At1g49880 GSVIVT01037859001 ppa012227m Os03g10850
NAR1 At4g16440 GSVIVT01007214001 ppa005089m Os03g53750
NBP35-1 At5g50960 GSVIVT01001845001 ppa005998m Os04g40880
NBP35-2 - GSVIVT01000762001 ppa007759m -
TAH18 At3g02280 GSVIVT01031054001 ppa002941m Os01g53250
DRE2 At5g18400 GSVIVT01010181001 ppa009994m Os04g57810
CIA1 At2g26060 GSVIVT01033839001 ppa007909m Os07g14830
CIA2 At1g68310 GSVIVT01018962001 ppa012624m Os04g50864
CIA3 - GSVIVT01034035001 ppa012667m -
MMS19 At5g48120 GSVIVT01016980001 ppa023072m Os07g08050

Table 4

Information of Fe-S cluster assembly genes in grape"

位置
Location
基因
Gene
GenBank登录号
GenBank No.
染色体定位
Chromosome location
编码区
CDS (bp)
氨基酸数目
Amino acid No.
内含子数目
Intron No.
质体
Plastid
NFS2 GSVIVT01037384001 chr6:14614433..14627074 forward 1392 463 9
SUFE1 GSVIVT01014835001 chr19:10332463..10337676 reverse 1224 407 5
SUFE2 GSVIVT01000550001 chr1:7199706..7203084 forward 855 284 2
SUFE3 GSVIVT01007621001 chr17:11153636..11159809 reverse 1806 601 6
SUFA GSVIVT01022247001 chr7:17815443..17819261 forward 453 150 2
SUFB GSVIVT01012742001 chr10:1165899..1176476 reverse 1536 511 3
SUFC GSVIVT01036588001 chr13:18723793..18744366 forward 966 321 5
SUFD GSVIVT01013180001 chr2:7019468..7043516 forward 1443 480 2
NFU1 GSVIVT01028158001 chr7:4298897..4301308 forward 642 213 2
NFU2 GSVIVT01023274001 chr12:20249550..20254467 reverse 684 227 3
NFU3 GSVIVT01029242001 chr11:18133595..18136869 forward 714 237 3
HCF101 GSVIVT01015424001 chr11:3539907..3550291 forward 1671 556 14
GRXS14 GSVIVT01032936001 chr14:24341805..24359981 reverse 552 183 3
GRXS16 GSVIVT01011178001 chr8:7822419..7828262 reverse 894 297 1
线粒体
Mitochondria
NFS1 GSVIVT01003603001 chrUn:11176164..11189530 forward 3267 1088 8
ISD11 GSVIVT01007919001 chr17:7527950..7530932 reverse 219 72 1
ISU1 GSVIVT01013764001 chr1:7813881..7823597 forward 273 90 2
ISA1 GSVIVT01033834001 chr8:17357057..17361779 forward 402 133 2
ISA2 GSVIVT01022247001 chr7:17815443..17819261 forward 453 150 2
ISA3 GSVIVT01033842001 chr8:17302334..17306498 forward 465 154 3
NFU4 GSVIVT01011272001 chr13:10306616..10320274 reverse 609 202 4
ADX1 GSVIVT01015024001 chr11:532570..538242 forward 597 198 6
ADXR GSVIVT01015352001 chr11:2891542..2897423 reverse 1461 486 12
FH GSVIVT01000441001 chr12:8053062..8056733 reverse 594 197 4
HSCA1 GSVIVT01038517001 chr3:10899748..10904643 forward 1842 613 7
HSCA2 GSVIVT01006769001 chrUn:28290681..28295479 forward 1716 571 8
HSCA3 GSVIVT01008331001 chr17:3189753..3194345 forward 1503 500 9
HSCA4 GSVIVT01038580001 chr16:21738678..21742840 reverse 1947 648 8
HSCA5 GSVIVT01026014001 chr18:25847096..25853527 forward 1677 558 7
HSCA6 GSVIVT01019607001 chr2:1900757..1904873 forward 1821 606 8
HSCA7 GSVIVT01031125001 chr14:1920620..1924241 forward 1731 576 8
HSCB GSVIVT01022555001 chr8:4909017..4918207 forward 804 267 5
INDL GSVIVT01000762001 chr7:498142..504281 reverse 1026 341 8
IBA57 GSVIVT01004911001 chr2:4748585..4752156 forward 1113 370 4
GRXS15 GSVIVT01017244001 chr9:5862839..5867495 reverse 513 170 5
细胞质
Cytosol
ATM3 GSVIVT01024527001 chr6:9155464..9213374 reverse 2181 726 19
ERV1 GSVIVT01037859001 chr3:7051150..7055710 forward 597 198 7
NAR1 GSVIVT01007214001 chrUn:30906448..30911807 forward 1437 478 10
NBP35-1 GSVIVT01001845001 chr14:26263495..26271378 reverse 957 318 3
NBP35-2 GSVIVT01000762001 chr7:498142..504281 reverse 1026 341 8
TAH18 GSVIVT01031054001 chr14:21477906..21501706 reverse 1899 632 11
DRE2 GSVIVT01010181001 chr1:16897462..16906512 reverse 819 272 6
CIA1 GSVIVT01033839001 chr8:17322989..17332968 forward 1035 344 9
CIA2 GSVIVT01018962001 chr4:18301283..18304437 reverse 360 119 5
CIA3 GSVIVT01034035001 chr8:15682406..15687298 forward 363 120 3
MMS19 GSVIVT01016980001 chr9:3133979..3155012 forward 3441 1146 21

Fig. 2

Gene structure of Fe-S cluster assembly genes in grape"

Table 5

Subcellular localization prediction of Fe-S cluster assembly gene"

蛋白位置
Protein location
蛋白
Protein
亚细胞定位 Subcellular localization (%)
叶绿体Chloroplast 线粒体Mitochondria 细胞质Cytosol 细胞核Nucleus 内质网膜
Endoplastic reticulum
液泡膜
Vacular membrane
细胞质膜
Plasma membrane
高尔基体
Golgi
质体
Plastid
NFS2 71.43 28.57 - - - - - -
SUFE1 7.14 - 21.43 57.15 - 7.14 7.14 -
SUFE2 92.86 7.14 - - - - - -
SUFE3 7.14 - 64.29 14.29 7.14 - 7.14 -
SUFA 85.72 7.14 7.14 - - - - -
NFU1 72 28 - - - - - -
NFU2 85.72 - - 7.14 7.14 - - -
NFU3 57.15 - 21.43 7.14 - - 14.28 -
SUFB 57.50 32.50 - 10.00 - - - -
SUFC 85.71 14.29 - - - - - -
SUFD 68.3 21.95 - 9.75 - - - -
HCF101 57.14 14.29 - - - 21.43 - 7.14
GRXS14 92.86 - - - - 7.14 - -
GRXS16 83.72 16.28 - - - - - -
线粒体
Mitochondria
NFS1 35.71 35.71 - 28.58 - - - -
ISD11 - 77.42 - 16.13 - - 6.45 -
ISU1 85.72 - 14.28 - - - - -
ISA1 92.85 7.15 - - - - - -
ISA2 78.57 7.15 14.28 - - - - -
ISA3 21.63 45.94 27.03 5.40 - - - -
NFU4 50 14.28 - 14.28 - 7.14 - -
ADX1 14.28 78.58 - 7.14 - - - -
ADXR 50 35.72 7.14 7.14 - - - -
FH 50 35.72 - 14.28 - - - -
HSCA1 14.28 85.72 - - - - - -
HSCA2 14.28 85.72 - - - - - -
HSCA3 21.42 - 78.58 - - - - -
HSCA4 - - - - 100 - - -
HSCA5 7.14 7.14 78.58 - - - 7.14 -
HSCA6 - - - - 100 - - -
HSCA7 43.76 - 15.62 15.62 - 12.5 - 12.5
HSCB 71.44 14.28 - 14.28 - - - -
INDL 14.28 - 78.58 7.14 - - - -
IBA57 64.30 14.28 7.14 7.14 - - 7.14 -
GRXS15 42.86 57.14 - - - - - -
细胞质
Cytosol
ATM3 7.14 7.14 - - 28.57 - 57.15 -
ERV1 14.28 - 14.28 57.16 - 7.14 7.14 -
NAR1 21.42 7.14 42.88 21.42 - 7.14 - -
NBP35-1 57.16 - 21.42 21.42 - - - -
NBP35-2 14.28 - 78.58 7.14 - - - -
TAH18 7.14 - 35.71 57.15 - - - -
DRE2 21.42 - 21.42 57.16 - - - 7.14
CIA1 14.28 - 28.58 53 - 7.14 - -
CIA2 7.14 - 64.30 21.42 - - - 7.14
CIA3 - - 100 - - - - -
MMS19 14.28 - 28.57 35.73 - 14.28 - 7.14

Fig. 3

Tissue specific expression pattern analysis of Fe-S cluster assembly genes in grape A: Plastid SUF machinery genes; B: Mitochondria ISC machinery genes; C: Cytosol CIA machinery genes"

Fig. 4

Analysis of differential responses of Fe-S cluster assembly genes under iron deficiency in grape tissue culture seedlings"

Table 6

Orthologs analysis of ISU and NFU members in 9 species of higher plants"

基因
Gene
拟南芥
Arabidopsis thaliana
盐芥
Thellungiella halophila
短柄草
Brachypodium sylvaticum
水稻
Rice
番茄
Tomato
柑橘
Orange
苹果
Apple

Peach
葡萄
Grape
ISU1 At4g22220 Thhalv10026418m Bra020855 Os01g47340 Solyc03g112900 orange1.1g030644m MDP0000778166 ppa012356m GSVIVT01013764001
ISU2 At3g01020 Thhalv10028164m Bra013601 Os05g49300 Solyc07g007450 - - - -
ISU3 At4g04080 Thhalv10029418m Bra029483 - - - - - -
NFU1 At4g01940 Thhalv10028839m Bra000905 Os03g20010 Solyc01g079220 orange1.1g027469m MDP0000245391 ppa011214m GSVIVT01028158001
NFU2 At5g49940 Thhalv10014572m Bra037947 Os11g07916 Solyc01g103710 orange1.1g026830m MDP0000285539 ppa011050m GSVIVT01023274001
NFU3 At4g25910 Thhalv10026125m Bra013933 Os06g47940 Solyc05g044630 orange1.1g038446m MDP0000952041 ppa010743m GSVIVT01029242001
NFU4 At3g20970 Thhalv10021272m Bra031245 Os05g06330 Solyc11g007120 orange1.1g023823m MDP0000150995 ppa009781m GSVIVT01011272001
NFU5 At1g51390 Thhalv10011711m Bra018906 - - - - - -

Fig. 5

Identity analysis of ISU1 protein sequences from different species"

Fig. 6

Phylogenetic tree construction of ISU1 protein from different species"

[1] 李俊成, 于慧, 杨素欣, 冯献忠. 植物对铁元素吸收的分子调控机制研究进展. 植物生理学报, 2016, 52(6):835-842.
LI J C, YU H, YANG S X, FENG X Z. Research progress of molecular regulation of iron uptake in plants. Plant Physiology Journal, 2016, 52(6):835-842. (in Chinese)
[2] BARTON L L, ABADIA J. Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer-Verlag, New York, 2006: 85-101.
[3] COUTURIER J, TOURAINE B, BRIAT J F, GAYMARD F, ROUHIER N. The iron-sulfur cluster assembly machineries in plants: Current knowledge and open questions. Frontiers in Plant Science, 2013, 4:259.
[4] TAGLIAVINI M, ABADÍA J, ROMBOLÀ A D, ABADÍA A, TSIPOURIDIS C, MARANGONI B. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. Journal of Plant Nutrition, 2000, 23(11/12):2007-2022.
doi: 10.1080/01904160009382161
[5] JIMÉNEZ S, GOGORCENA Y, HÉVIN C, ROMBOLÀ A D, OLLAT N. Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant and Soil, 2007, 290(1):343-355.
doi: 10.1007/s11104-006-9166-4
[6] CHEN Y, BARAK P. Iron Nutrition of pants in calcareous soils. Advances in Agronomy, 1982, 35:217-240.
[7] PESTANA M, BEJA P, CORREIA P J, DE VARENNES A, FARIA E A. Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil. Tree Physiology, 2005, 25(6):761-767.
doi: 10.1093/treephys/25.6.761
[8] NETZ D J A, MASCARENHAS J, STEHLING O, PIERIK A J, LILL R. Maturation of cytosolic and nuclear iron-sulfur proteins. Trends in Cell Biology, 2013, 24(5):303-312.
doi: 10.1016/j.tcb.2013.11.005
[9] BALK J, LOBRÉAUX S. Biogenesis of iron-sulfur proteins in plants. Trends in Plant Science, 2005, 10(7):324-331.
doi: 10.1016/j.tplants.2005.05.002
[10] 杜璟, 李艳纯, 任雪营, 谭国强, 吕建新. 真核细胞中铁硫簇的组装机制及相关铁硫蛋白疾病. 中国细胞生物学学报, 2015, 37(9):1323-1333.
DU J, LI Y C, REN X Y, TAN G Q, LÜ J X. Mechanisms of iron-sulfur clusters assemble in eukaryotes and related diseases. Chinese Journal of Cell Biology, 2015, 37(9):1323-1333. (in Chinese)
[11] LILL R. Function and biogenesis of iron-sulphur proteins. Nature, 2009, 460(7257):831-838.
doi: 10.1038/nature08301
[12] BALK J, PILON M. Ancient and essential: The assembly of iron-sulfur clusters in plants. Trends in Plant Science, 2011, 16(4):218-226.
doi: 10.1016/j.tplants.2010.12.006
[13] JOHNSON D C, DEAN D R, SMITH A D, JOHNSON M K. Structure, function, and formation of biological iron-sulfur clusters. Annual Review of Biochemistry, 2005, 74:247-281.
doi: 10.1146/biochem.2005.74.issue-1
[14] LILL R, MÜHLENHOFF U. Iron-sulfur protein biogenesis in eukaryotes: Components and mechanisms. Annual Review of Cell and Developmental Biology, 2006, 22:457-486.
doi: 10.1146/cellbio.2006.22.issue-1
[15] ROUAULT T A, TONG W H. Iron-sulfur cluster biogenesis and human disease. Trends in Genetics, 2008, 24(8):398-407.
doi: 10.1016/j.tig.2008.05.008
[16] BERNARD D G, NETZ D J A, LAGNY T J, PIERIK A J, BALK J. Requirements of the cytosolic iron-sulfur cluster assembly pathway in Arabidopsis. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2013, 368(1622):20120259.
[17] LIANG X J, QIN L, LIU P W, WANG W H, YE H. Genes for iron-sulphur cluster assembly are targets of abiotic stress in rice, Oryza sativa. Plant, Cell & Environment, 2014, 37(37):780-794.
[18] QIN L, WANG M H, CHEN L Y, LIANG X J, WU Z G, LIN Z H, ZUO J, FENG X Y, ZHAO J, LIAO H, YE H. Soybean Fe-S cluster biosynthesis regulated by external iron or phosphate fluctuation. Plant Cell Reports, 2015, 34(3):411-424.
doi: 10.1007/s00299-014-1718-0
[19] SONG Z Z, MA R J, ZHANG B B, GUO S L, YU M L, KORIR N K. Differential expression of iron-sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying. Scientia Horticulturae, 2016, 207:73-81.
doi: 10.1016/j.scienta.2016.05.024
[20] SONG Z Z, YANG Y, XU J L, MA R J, YU M L. Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach (Prunus persica L.) seedlings. Plant Cell Tissue & Organ Culture, 2014, 117(3):419-430.
[21] 王壮伟, 王庆莲, 夏瑾, 王西成, 宋志忠, 吴伟民. 葡萄KEA家族基因的克隆、鉴定及表达分析. 中国农业科学, 2018, 51(23):4522-4534.
WANG Z W, WANG Q L, XIA J, WANG X C, SONG Z Z, WU W M. Cloning, characterization and expression analysis of K+/H+ antiporter genes in grape. Scientia Agricultura Sinica, 2018, 51(23):4522-4534. (in Chinese)
[22] 沈静沅, 唐美玲, 杨庆山, 高雅超, 刘万好, 程杰山, 张洪霞, 宋志忠. 葡萄钾离子通道基因VviSKOR的克隆、表达及电生理功能. 中国农业科学, 2020, 53(15):3158-3168.
SHEN J Y, TANG M L, YANG Q S, GAO Y C, LIU W H, CHENG J S, ZHANG H X, SONG Z Z. Cloning, expression and electrophysiological function analysis of potassium channel gene VviSKOR in grape. Scientia Agricultura Sinica, 2020, 53(15):3158-3168. (in Chinese)
[23] DENG W K, WANG Y B, LIU Z X, CHENG H, XUE Y. HemI: A toolkit for illustrating heatmaps. PLoS ONE, 2014, 9(11):e111988.
doi: 10.1371/journal.pone.0111988
[24] MURTHY U M N, OLLAGNIER-DE-CHOUDENS S, SANAKIS Y, ABDEL-GHANY S E, ROUSSET C, YE H, FONTECAVE M, PILON-SMITS E A H, PILON M. Characterization of Arabidopsis thaliana SufE2 and SufE3: Functions in chloroplast iron-sulfur cluster assembly and Nad synthesis. The Journal of Biological Chemistry, 2007, 282(25):18254-18264.
doi: 10.1074/jbc.M701428200
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[10] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[15] SUN Lei,WANG XiaoYue,WANG HuiLing,YAN AiLing,ZHANG GuoJun,REN JianCheng,XU HaiYing. The Influence of Rootstocks on the Growth and Aromatic Quality of Two Table Grape Varieties [J]. Scientia Agricultura Sinica, 2021, 54(20): 4405-4420.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!