Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2229-2238.doi: 10.3864/j.issn.0578-1752.2021.10.018

• SPECIAL FOCUS: YOUNG RUMINANT NUTRITION RESEARCH • Previous Articles     Next Articles

Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves

YANG YunYan1(),WANG QiYan1,PENG DiWei3,PAN YiFan3,GAO XiaoMei1,XUAN ZeYi2,CHEN ShaoMei2,ZOU CaiXia1,CAO YanHong2(),LIN Bo1()   

  1. 1College of Animal Sciences, Guangxi University, Nanning 530004
    2Institute of Animal Husbandry of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Livestock Genetic Improvement
    3Hunan PuFeiKe Biological Technology Co.Ltd, Changsha 410011
  • Received:2020-07-26 Accepted:2020-12-21 Online:2021-05-16 Published:2021-05-24
  • Contact: YanHong CAO,Bo LIN E-mail:1178413798@qq.com;94333966@qq.com;linbo@gxu.edu.cn

Abstract:

【Objective】this study was conducted to research effects of addition of cinnamaldehyde in calf starter on growth performance, health status, rumen fermentation and microflora of calves, so as to provide theoretical basis for applying cinnamaldehyde in calf cultivation. 【Method】Twenty-four healthy Holstein male calves at the age of around 15 days, with similar body weight, were selected, and were divided into control group and experiment group, with three replicates in each group and four calve in each replicate. The control group were fed basic starter, while starter of experimental group was added with 0.3% encapsulated cinnamaldehyde which contained 15% effective cinnamaldehyde. The weaning period contained 6 pre-trail period, and 27 days of formal trail period, both groups were fed same amount of milk, the starter and orts grass were given at libtium, and the ruminal fluid was taken by stomach tube at the end of weaning period. After weaned, the animals were kept for another 51 days with same feeding management mode, the ruminal fluid was taken at the end of the experiment. The feed intake, growth performance, body measurement, fence score and ruminal volatile fatty acids concentrations were measured during the two phase of the experiment, and the ruminal bacterial community composition was measured based on 16SrDNA gene high through put sequencing. 【Result】The results showed that: (1) In terms of feed intake and growth performance, there were no difference in average daily gain, dry matter intake and feed efficiency between experiment and control group at pre-weaning, post-weaning stage and whole experiment period (P>0.05), there were no differences in body measurements parameters between experiment and control group as well (P>0.05); 2) In terms of calf health status, the diarrhea rate of the experimental group was lower than that of the control group, but was not significant (P>0.05). 3) For the rumen fermentation parameters, the concentration of volatile fatty acids of rumen fluid in the experimental group on weaning day was tend to lower than that in the control group (P>0.05). At the end of the experiment, the concentration of volatile fatty acids, including acetate, propionate, butyrate and valerate of experimental group was significantly higher, while acetate/propionate ratio lower than that of control group (P<0.01); 4) At the end of experiment, cinnamaldehyde supplementation increased ruminal bacteria Shannon diversity index, decreased Simpson diversity index; addition of cinnamaldehyde increased abundance of Firmicutes and Actinobacteria at phylum and prevotella at genus level (P<0.01). 【Conclusion】The results showed that addition of 0.3% encapsulated cinnamaldehyde which contained 15% effective cinnamaldehyde had no influence on growth performance, but decreased diarrhea rate, increased ruminal volatile fatty acids concentration and decreased acetate/propionate ratio, increased ruminal bacterial community diversity, and abundance of Firmicutes and Prevotella, indicated addition of high amount of cinnamaldehyde had no adverse effects on calf growth performance, but changed ruminal bacterial community composition and ruminal fermentation mode.

Key words: cinnamaldehyde, growth performance, diarrhea, rumen fermentation, dairy calves

Table 1

Composition and nutrition level of base diets for starters feed (%,air dry basis)"

项目Items 含量Content 营养水平Nutritional ingredients 含量Content
玉米Corn 54.40 干物质DM 90.00
豆粕Soybean meal 22.00 粗蛋白质CP 18.42
膨化大豆Expanded soybean 5.00 粗脂肪EE 3.54
米糠粕Rice bran meal 6.00 粗灰分Ash 10.00
玉米胚芽粕Corn germ meal 4.00 钙Ca 1.09
磷酸氢钙 CaHPO4 2.50 磷P 0.87
氯化钠NaCl 0.50
乳清粉Whey powder 2.50
红糖Brown sugar 2.50
预混料Premix 0.60
合计Total 100.00

Table 2

Effects of cinnamaldehyde on daily gain, dry matter intake and feed efficiency of dairy calves"

项目Items 试验组Treatment group 对照组Control group SEM P
哺乳期Weaning period
初重IBW (kg) 49.85 51.96 3.17 0.513
日增重ADG (kg·d-1) 0.39 0.46 0.07 0.315
开食料干物质采食量DMIS (kg·d-1) 0.55 0.57 0.08 0.857
燕麦草干物质采食量DMIOG (kg·d-1) 0.12 0.12 0.01 0.116
还原奶干物质采食量DMIMR (kg·d-1) 0.39 0.39 0.00 1.000
饲料转化比(Feed/Gain) 3.02 2.57 0.19 0.243
断奶后Post weaning
初重IBW (kg) 64.92 69.08 4.42 0.367
日增重ADG (kg·d-1) 0.95 1.01 0.09 0.532
开食料干物质采食量DMIS (kg·d-1) 2.31 2.18 0.35 0.519
燕麦草干物质采食量DMIOG (kg·d-1) 0.23 0.24 0.04 0.574
饲料转化比(Feed/Gain) 2.67 2.40 0.14 0.062
试验全期Whole experiment period
末重FBW (kg) 104.0 110.5 7.52 0.401
日增重ADG (kg·d-1) 0.69 0.75 0.08 0.417
开食料干物质采食量DMIS (kg·d-1) 1.52 1.42 0.13 0.523
燕麦草干物质采食量DMIOG (kg·d-1) 0.18 0.18 0.00 0.055
还原奶干物质采食量DMIMR (kg·d-1) 0.18 0.18 0.00 1.000
饲料转化比(Feed/Gain) 2.72 2.37 0.29 0.083

Table 3

Effect of cinnamaldehyde on body size growth of dairy calves"

项目Items 试验组Treatment group 对照组Control group SEM P
试验初Initial experiment
体高Body height(cm) 81.25 81.20 1.32 0.975
体长Body length(cm) 65.15 66.3 1.70 0.495
体斜长Body oblique length(cm) 75.60 77.50 1.78 0.308
胸围Chest circumference(cm) 85.35 88.00 1.60 0.114
管围Cannon circumference(cm) 11.70 11.50 0.25 0.387
断奶日Weaning Age
体高Body height(cm) 86.60 87.70 1.71 0.525
体长Body length(cm) 75.05 78.05 1.65 0.088
体斜长Body oblique length(cm) 82.60 84.00 1.94 0.477
胸围(cm) Chest circumference 93.95 97.60 2.54 0.169
管围(cm) Cannon circumference 12.19 12.10 0.28 0.838
试验末End of experiment
体高Body height(cm) 94.85 96.25 1.85 0.458
体长Body length(cm) 88.10b 93.67a 2.53 0.038
体斜长Body oblique length(cm) 94.60 101.2 2.92 0.069
胸围Chest circumference(cm) 111.6 113.1 2.32 0.279
管围Cannon circumference(cm) 13.87 13.67 0.30 0.512

Table 4

Effects of cinnamaldehyde on diarrhea rate (%) and feces score in dairy calves"

项目
Items
腹泻率 Diarrhea rate 粪便评分Feces scores
试验组 Treatment group 对照组
Control group
SEM P 试验组 Treatment group 对照组
Control group
SEM P
哺乳期Weanning period
第7-14天 Day 7-14 5.94 7.12 2.79 0.667 1.52b 1.94a 0.05 <0.001
第14-21天 Day 14-21 5.49 5.94 2.80 0.876 1.59 1.56 0.08 0.748
第21-28天 Day 14-28 4.39 9.52 3.15 0.127 1.68 1.69 0.11 0.893
断奶后 Post weaning
第7-14天 Day 7-14 7.69 4.74 2.52 0.261 1.71 1.66 0.09 0.892
第14-21天 Day 14-21 4.39 8.33 3.04 0.217 1.53 1.86 0.13 0.259
第21-28天 Day 14-28 3.90 4.74 2.15 0.702 1.43b 1.7a 0.11 0.008
第28-35天 Day 28-35 2.60 3.56 2.05 0.648 1.46 1.53 0.06 0.546

Table 5

Effect of Cinnamaldehyde on rumen fermentation of dairy calves(mmol·L-1)"

项目Items 试验组Treatment group 对照组 Control group SEM P
断奶日 Weaning day
乙酸Acetic acid 20.94 23.24 2.88 0.447
丙酸Propionic acid 16.28 18.49 2.92 0.463
丁酸Butyric acid 3.18 3.59 0.54 0.652
戊酸Valeric acid 1.41 1.56 0.24 0.524
异丁酸Iso-Butyric acid 0.38 0.46 0.05 0.237
异戊酸Iso-valeric acid 0.52 0.64 0.09 0.234
乙酸/丙酸Acetate/Propionate 1.31 1.28 0.07 0.682
总挥发性脂肪酸Toal VFA 42.73 48.00 6.45 0.431
试验末 end of experiment
乙酸Acetic acid 39.33 26.91 3.18 0.001
丙酸Propionic acid 31.80 17.62 4.16 0.001
丁酸Butyric acid 7.96 3.94 0.98 0.001
戊酸Valeric acid 2.48 1.59 0.28 0.001
异丁酸Iso-Butyric acid 0.58 0.57 0.12 0.923
异戊酸Iso-valeric acid 0.75 0.81 0.12 0.794
乙酸/丙酸Acetate/Propionate 1.34 1.57 0.21 0.293
总挥发性脂肪酸Toal VFA 82.92 51.63 7.40 <0.0001

Table 6

Effect of Cinnamaldehyde on rumen bacteria community at both Phylum and genus levels of dairy calves (%)"

项目Items 试验组Treatment group 对照组Control group SEM P
多样性指数Diversity indices
香农指数Shannon index 5.72a 4.56 0.46 <0.001
辛普森指数Simpson index 0.93a 0.87 0.03 <0.001
chao1 index 731.1b 781.4a 15.32 0.004
门水平Phylum level
拟杆菌门Bacteroidetes 29.38b 48.21a 7.51 0.037
厚壁菌门Firmicutes 46.60 37.09 5.43 0.118
放线菌门Actinobacteria 20.15 7.30 9.41 0.209
变形杆菌门Proteobacteria 2.59 6.24 3.52 0.330
蓝藻菌门Cyanobacteria 0.29a 0.05b 0.09 0.027
属水平Genus level
普雷沃氏菌属Prevotella 48.95 41.60 6.82 0.309
琥珀酸菌属Succiniclasticum 9.08 8.69 2.29 0.871
欧氏菌属Olsenella 7.80 11.31 6.58 0.627
毛螺旋菌属LachnosPiraceae 6.55 7.05 2.43 0.842
醋酸弧菌属Acetivibrio 3.24 4.09 0.81 0.323
假丁酸菌属Oribacterium 2.03 2.72 0.91 0.468
双歧杆菌属Bifidobacterium 1.83 1.11 1.17 0.555
[1] 刁其玉. 微生物制剂在幼龄反刍动物营养与饲料中的应用. 中国饲料营养学术研讨会, 2014.
DIAO Q Y. Application of microbial preparation in nutrition and feed of young ruminants. Symposium on feed nutrition in China, 2014. (in Chinese)
[2] 李贞, 王波, 李鹤琼, 罗海玲. 反刍动物肠道发育过程及影响因素. 现代畜牧兽医, 2018(11):30-33.
LI Z, WANG B, LI H Q, LUO H L. Intestinal development in ruminants and its influencing factors. Modern Journal of Animal Husbandry and Veterinary Medicine, 2018(11):30-33. (in Chinese)
[3] 高艳霞, 王加启. 新生犊牛消化功能的发育及影响因素. 中国奶牛, 2006(8):6-9.
GAO Y X, WANG J Q. Development and influencing factors of digestive function of newborn calves. China Dairy Cattle, 2006(8):6-9. (in Chinese)
[4] 刁其玉. 益生菌在幼龄家畜营养与饲料中的应用. 饲料工业, 2014,35(16):1-4.
DIAO Q Y. Application of probiotics in nutrition and feed of young livestock. Feed Industry, 2014,35(16):1-4. (in Chinese)
[5] 刁其玉, 屠焰. 幼畜健康培育是畜牧业可持续发展的基础. 中国农业科学, 2020,53(2):395-397. doi: 10.3864/j.issn.0578-1752.2020.02.013.
DIAO Q Y, TU Y. Scientific rearing of preruminants is the basis of sustainable development of livestock industry. Scientia Acricultura Sinica, 2020,53(2):395-397. doi: 10.3864/j.issn.0578-1752.2020.02.013. (in Chinese)
[6] BRENES A, ROURA E. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology, 2010,158(1-2):1-14.
doi: 10.1016/j.anifeedsci.2010.03.007
[7] 耿文静, 王改琴, 邬本成. 植物精油在畜牧养殖中的应用及机理研究进展. 黑龙江畜牧兽医, 2017(1):178-181.
GENG W J, WANG G Q, WU B C. Application and mechanism of plant essential oils in animal husbandry. Heilongjiang Animal Science and Veterinary Medicine, 2017(1):178-181. (in Chinese)
[8] 黄敏欣, 赵文红, 白卫东. 肉桂醛抑菌作用的研究进展. 中国调味品, 2015(4):137-140.
HUANG M X, ZHAO W H, BAI W D. Research progress on bacteriostatic effect of cinnamaldehyde. China Condiment, 2015(4):137-140. (in Chinese)
[9] SHREAZ S, WANI W A, BEHBEHANI J M. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia, 2016: S0367326X1630123X.
[10] 周明, 陈征义, 申书婷. 肉桂醛的制备方法和生物学功能. 动物营养学报, 2014,26(8):2040-2045.
ZHOU M, CHEN Z Y, SHEN S T. Preparation method and biological function of cinnamaldehyde. Chinese Journal of Animal Nutrition, 2014,26(8):2040-2045. (in Chinese)
[11] CHAO L K, HUA K F, HSU H Y. Cinnamaldehyde inhibits Pro- inflammatory cytokines secretion from monocytes/macroPhages through suppression of intracellular signaling. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 2008,46(1):0-231.
[12] 张卫兵, 张蓉, 毕研亮. 白藜芦醇和血根碱对2~6月龄犊牛生长性能和血清生化指标的影响. 畜牧兽医学报, 2018,49(9):143-154.
ZHANG W B, ZHANG R, BI Y L. Effects of resveratrol and rhombine on growth performance and serum biochemical parameters of 2-6 months old calves. Chinese Journal of Animal and Veterinary Sciences, 2018,49(9):143-154. (in Chinese)
[13] 昝林森. 牛生产学, (第二版). 中国农业出版社, 2007.
ZAN L S. Cattle production, (second edition). China Agricultural Press, 2007. (in Chinese)
[14] University of Wisconsin, School of Veterinary Medicine. Calf Health Scoring Chart. (2011-10-12).
[15] 李岚捷. 不同NFC/NDF水平日粮对公犊牛生产性能、瘤胃发育及微生物区系的影响[D]. 兰州: 甘肃农业大学, 2017.
LI L J. Effects of different NFC/NDF diets on performance, rumen development and microflora of male calves[D]. Lanzhou: Gansu Agricultural University, 2017. (in Chinese)
[16] MORIEL P, SILVA G M, PICCOLO M B. Supplementation of encapsulated cinnamaldehyde and garlic oil on pre- and postweaning growth performance of beef cattle fed warm-season forages. The Professional Animal Scientist, 2018,34(3):275-283.
doi: 10.15232/pas.2017-01707
[17] YANG W Z, AMETAJ B N, BENCHAAR C, HE M L, BEAUCHEMIN K A. Cinnamaldehyde in feedlot cattle diets: Intake, growth performance, carcass characteristics, and blood metabolites. Journal of Animal Science, 2010,88(3):1082-1092.
doi: 10.2527/jas.2008-1608
[18] FERNANDA R, SEBASTIANO B, AVAROMA F C. Transcriptional changes detected in fecal RNA of neonatal dairy calves undergoing a mild diarrhea are associated with inflammatory biomarkers. PLoS One, 2018,13(1):e0191599.
doi: 10.1371/journal.pone.0191599
[19] 李京晶, 籍保平, 周峰. 丁香和肉桂挥发油的提取、主要成分测定及其抗菌活性研究. 食品科学, 2006,27(8):64-68.
LI J J, JI B P, ZHOU F. Extraction, determination of main components and antibacterial activity of volatile oil from clove and cinnamon. Food Science, 2006,27(8):64-68. (in Chinese)
[20] 王新伟, 刘欢, 魏静. 牛至油、香芹酚、柠檬醛和肉桂醛抑菌作用研究. 食品工业, 2010(5):13-16.
WANG X W, LIU H, WEI J. Study on the bacteriostatic effects of oregano oil, carvinol, citral and cinnamaldehyde. The Food Industry, 2010(5):13-16. (in Chinese)
[21] 汪水平. 植物提取物调控瘤胃发酵的研究进展. 畜牧兽医学报, 2015,46(1):12-19.
WANG S P. Advances in studies on the regulation of rumen fermentation by plant extracts. Chinese Journal of Animal and Veterinary Sciences, 2015,46(1):12-19. (in Chinese)
[22] 郭玉琴. 蛋氨酸和赖氨酸过瘤胃保护及其效果评价研究[D]. 北京: 中国农业科学院, 2006. DOI: 10.7666/d.Y1057396.
GUO Y Q. Study on methionine and lysine protection through rumen and its effect evaluation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[23] AL-ALO K Z K, BRUJENI G N, LOTFOLLAHZADEH S, MOOSAKHANI F, GHARABAGHI A. Correlation between neonatal calf diarrhea and the level of maternally derived antibodies. Iranian Journal of Veterinary Research, 2018,19(1):3-8.
[24] CHAVES A V, STANFORD K, DUGAN M E R, GIBSON L L, MCALLISTER T A, VAN HERK F, BENCHAAR C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livestock Science, 2008,117:215-224.
doi: 10.1016/j.livsci.2007.12.013
[25] 李艳玲, 贾淼, 鲁琳. 不同植物精油对体外瘤胃发酵及甲烷产量影响的比较研究. 动物营养学报, 2017,29(7):2448-2459.
LI Y L, JIA M, LU L. Comparative study on the effects of different plant essential oils on rumen fermentation and methane production in vitro. Chinese Journal of Animal Nutrition, 2017,29(7):2448-2459. (in Chinese)
[26] YE D, KARNATI S, WAGNER B. Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture. Journal of Dairy Science, 2018,101(6):5069-5081.
doi: 10.3168/jds.2017-13646
[27] BLANCH M, CARRO M D, RANILLA M J. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Animal Feed Science and Technology, 2016 DOI: 10.1016/j.anifeedsci.2016.07.002.
[28] MATEOS I, RANILLA M J, TEJIDO M L, SARO C, KAMEL C, CARRO TRAVIESO M D. The influence of diet tyPe (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Animal Production Science, 2013,53(4):299-307.
doi: 10.1071/AN12167
[29] ISHLAK A, GÜNAL, M, ABUGHAZALEH A A. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Animal Feed Science and Technology, 2015,207:31-40.
doi: 10.1016/j.anifeedsci.2015.05.023
[30] CHAUCHEYRAS-DURAND, FRÉDÉRIQUE, OSSA F. REVIEW: The rumen microbiome: ComPosition, abundance, diversity, and new investigative tools. The Professional Animal Scientist, 2014,30(1):1-12.
doi: 10.15232/S1080-7446(15)30076-0
[31] WANG L Z, XU Q, KONG F L, YANG Y, YING L. Exploring the goat rumen microbiome from seven days to two years. PLoS One, 2016,11(5):e0154354.
doi: 10.1371/journal.pone.0154354
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[3] CHE DaLu,ZHAO LiChen,CHENG SuCai,LIU AiYu,LI XiaoYu,ZHAO ShouPei,WANG JianCheng,WANG Yuan,GAO YuHong,SUN XinSheng. Effect of Litter Bed on Growth Performance and Odor Emission in Fattening Lamb [J]. Scientia Agricultura Sinica, 2022, 55(24): 4943-4956.
[4] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[5] LIU WangJing,TANG DeFu,AO ChangJin. Effect of Allium mongolicum Regel and Its Extracts on the Growth Performance, Carcass Characteristics, Meat Quality and Serum Biochemical Indices of Captive Small-Tailed Han Sheep [J]. Scientia Agricultura Sinica, 2022, 55(17): 3461-3472.
[6] CHEN ZhiMin,CHANG WenHuan,ZHENG AiJuan,CAI HuiYi,LIU GuoHua. Effect of Expanded Feather Powder on Growth Performance, Slaughter Performance and Serum Biochemical Index of Broiler [J]. Scientia Agricultura Sinica, 2022, 55(13): 2643-2653.
[7] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[8] ZHANG Lan,WANG LiangZhi,HUANG YanLing,LIAO XiuDong,ZHANG LiYang,LÜ Lin,LUO XuGang. Effects of Dietary Supplemental Pattern of Trace Eloments on the Growth Performance, Carcass Traits and Meat Quality of Broilers [J]. Scientia Agricultura Sinica, 2021, 54(22): 4906-4916.
[9] LIU Jiao,CHEN ZhiMin,ZHENG AiJuan,LIU GuoHua,CAI HuiYi,CHANG WenHuan. Effects of Glucose Oxidase on Growth Performance, Immune Functions and Intestinal Health of Ducks Challenged by Escherichia coli [J]. Scientia Agricultura Sinica, 2021, 54(22): 4917-4930.
[10] YANG NingZhi,LI Ting,WANG Yan,CHEN Zhuo,MA YiCheng,REN QiangLin,LIU JiaJia,YANG HuiGuo,YAO Gang. Comparison of Growth Physiology and Gut Microbiota Between Healthy and Diarrheic Lambs in Pre- and Post-Weaning Period [J]. Scientia Agricultura Sinica, 2021, 54(2): 422-434.
[11] WANG Chen,ZHANG HongWei,WANG HuCheng,SUN XiaoPing,LI FaDi,YANG BoHui. Energy and Protein Requirements of Alpine Merino Growing Sheep [J]. Scientia Agricultura Sinica, 2021, 54(16): 3537-3548.
[12] HUANG WenQin,LÜ XiaoKang,ZHUANG YiMin,CUI Kai,WANG ShiQing,DIAO QiYu,ZHANG NaiFeng. The Effects of Early Weaning and NDF Levels of Finishing Diets on Growth Performance, Nutrient Digestion and Metabolism of Hu Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2217-2228.
[13] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[14] ZHANG MeiQi,LI Yan,LI ShuJing,GAO YanXia,LI JianGuo,CAO YuFeng,LI QiuFeng. Effects of Dietary Energy Levels on Production Performance, Blood Index, Slaughter Performance and Meat Quality of Holstein Steers [J]. Scientia Agricultura Sinica, 2021, 54(1): 203-212.
[15] KONG FanLin,LI Yuan,TANG MengQi,MA ManPeng,FU Tong,DIAO QiYu,CHENG SiYuan,TU Yan. Effects of Amino Acid Deficiency on Growth Development, Dietary Nutrients Digestion and Metabolism in Heifers [J]. Scientia Agricultura Sinica, 2020, 53(2): 418-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!