Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (3): 539-549.doi: 10.3864/j.issn.0578-1752.2019.03.014

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Establishment of a Prediction Model of Metabolizable Protein of Concentrate for Mutton Sheep

FU LiXia1,2,MA Tao1,DIAO QiYu1(),CHENG ShuRu2,SONG YaZhe1,SUN ZhuoLin1   

  1. 1 Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute of Chinese Academy of Agricultural Sciences, Beijing 100081
    2 College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070
  • Received:2018-02-12 Accepted:2018-12-29 Online:2019-02-01 Published:2019-02-14

Abstract:

【Objective】 The aim of this study was to establish a predictive model of metabolizable protein (MP) of concentrates, which is commonly used in feedstuffs of sheep by nutrient or nutrient digestibility. 【Method】 Six 14-month-old Dorper (♂) × thin-tailed Han sheep (♀) sheep with an average body weight of (49.27±3.12) kg fitted with a permanent rumen fistula were selected and used in testing effective degradation rate, rumen undegraded dietary protein (UDP) and intestinal digestibility of UDP by nylon bag method and three-step modified in vitro method. Ten healthy Dorper × thin-tailed Han ram with an average body weight of(47.43±4.41)kg were selected and used in 11 treatment groups including one basic diet group and 10 experimental groups(The Chinese wildrye hay, corn and soybean meal of basic diet were replaced by sorghum, corn, barley, wheat, oat, rapeseed peanut, cottonseed, soybean and DDGS.), respectively. Each period lasted for 20 d (15 d for adaptation and 5 d for trial period). The experimental sheep were prefixed with ear numbers, dewormed with ivermectin, and feed a single column. Due to the differences in the nutrient composition of each group of feeding foods, the amount of feeding in the lowest group was observed and determined during the adaptation as the limit of feeding, fed twice a day, at 8:00 and 16:30, respectively. Feed 600 g, free drinking water. Each ram is a replicate and all rams were used to determine the apparent digestibility of nutrients and microbial synthetic protein (MCP) using the urinary purine derivative method. The MP predictive model was established using proximal analysis of nutrient contents or nutrient digestibility. Using NLIN program in SAS 9.1 to calculate a, b, c values and linear regression and multivariate regression program analysis, MP estimation model was established, and the single factor variance analysis(one-way ANOVA, LSD) was significantly tested. 【Result】 The results showed that the rumen digestibility and digestion rate of CP in different concentrates were different, and CP degradability and intestinal digestibility of UDP of high protein diet were higher. The effective degradation rate of CP rumen in 10 kinds of feed ranged from 43.71% to 60.87%, and intestinal digestibility of UDP ranged from 80.10% to 92.86%. The effective degradation rate of rumen in oat feed was significantly higher than that of other feeds (P<0.001), while intestinal digestibility of UDP was significantly lower than that of other feeds (P<0.001). The diets had different composition and apparent digestibility of different nutrients. The digestion and absorption sites of dietary protein did not affect the apparent digestibility of nutrients. The ratio of MP to DP of 10 feeds in this study ranged from 50.96% to 62.33%, The digestible protein (DP, %) prediction model established by dietary CP (%) content was:DP=0.895×CP-2.663 (R 2=0.994, n=10, P<0.001); The MP (g·kg -1 DM) prediction model established by nutrient contents (%) and apparent nutrient digestibility (%) were: MP=5.323×CP-14.374 (R 2=0.994, n=10, P<0.001) and MP=5.899×DP+2.077 (R 2=0.984, n=10, P<0.001).【Conclusion】Digestible protein had a strong relationship with crude protein in diet. The nutrient content and nutrient digestibility in diets were correlated with the presence of MP, and the MP values of concentrate feed could be estimated more accurately by the nutrient and nutrient digestibility in diets.

Key words: mutton sheep, concentrate, microbial synthetic protein, small intestinal digestibility, metabolizable protein, prediction model

"

项目 Items 含量 Content
原料 Ingredients
羊草 Chinese wildrye hay 55.00
玉米 Corn 29.40
豆粕 Soybean meal 14.00
磷酸氢钙 CaHPO4 0.86
食盐 NaCl 0.50
预混料Premix1) 0.24
合计 Total 100
营养水平 Nutrient levels2)
干物质 Dry matter, DM 95.55
有机物 Organic matter, OM 93.68
总能 Gross energy, GE(MJ·kg-1 16.34
粗蛋白质 Crude protein, CP 11.90
中性洗涤纤维 Neutral detergent fiber, NDF 59.12
酸性洗涤纤维 Acid detergent fibre, ADF 25.22
粗脂肪 Ether digestible organic matter extract, EE 2.21
钙 Ca 0.93
磷 P 0.41

"

项目
Items
组成 Ingredient
基础
饲粮
Basal diet
高粱
饲粮
Sorghum
diet
玉米
饲粮
Corn diet
大麦
饲粮Barley diet
小麦
饲粮Wheat diet
燕麦
饲粮
Oat diet
菜籽粕
饲粮Rapeseed diet
花生粕
饲粮
Peanut meal diet
棉籽粕
饲粮Cottonseed meal diet
豆粕
饲粮Soybean meal diet
玉米酒
糟饲粮
DDGS diet
不同精料替换比例 Different concentrate replacement ratio 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
玉米corn 19.0 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2
豆粕Soybean mean 12.2 8.46 8.46 8.46 8.46 8.46 8.46 8.46 8.46 8.46 8.46
羊草Chinese wildrye hay 66.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0
磷酸氢钙CaHPO4 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41 1.41
石粉Limestone 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
食盐NaCl 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
预混料Premix1) 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24
合计Total 100 100 100 100 100 100 100 100 100 100 100
营养水平Nutrient levels2)
干物质DM 92.13 90.92 90.79 91.62 91.51 91.58 91.87 91.55 93.96 93.89 91.32
有机物OM 90.15 93.10 93.45 93.77 93.51 94.74 89.06 89.38 92.34 92.07 90.30
总能 GE (MJ·kg-1) 17.92 17.78 17.81 17.75 17.63 17.93 18.25 18.40 18.43 18.21 18.81
粗蛋白质CP 12.03 11.06 10.56 11.50 11.96 12.68 22.12 26.89 20.36 22.55 17.06
中性洗涤纤维NDF 33.20 33.56 33.33 37.84 37.15 33.29 40.13 36.19 41.33 33.55 40.74
酸性洗涤纤维ADF 18.05 17.71 16.82 19.66 19.03 17.43 22.35 19.44 23.67 19.67 19.42
粗脂肪EE 2.70 2.16 2.19 2.01 2.24 2.77 2.04 1.13 1.40 1.65 3.89
灰分 Ash 9.85 6.90 6.55 6.23 6.49 5.26 10.94 10.62 7.66 7.93 9.70
钙 Ca 0.94 1.05 0.94 0.82 0.96 0.96 1.45 1.06 1.03 0.99 0.82
总磷 TP 0.35 0.24 0.29 0.25 0.26 0.29 0.36 0.27 0.32 0.31 0.39

Table 3

Concentrates nutrient levels (DM basis) (%)"

项目
Items
高粱Sorghum 玉米
Corn
大麦
Barley
小麦
Wheat
燕麦
Oat
菜籽粕
Rapeseed
meal
花生粕
Peanut meal
棉籽粕
Cottonseed
meal
豆粕Soybean meal 玉米酒糟DDGS
干物质 DM 89.59 89.94 90.60 89.64 90.31 91.60 91.97 92.28 91.74 91.65
有机物 OM 98.27 98.79 95.75 98.33 98.22 93.04 94.39 92.66 92.50 95.19
粗蛋白 CP 10.48 8.88 10.35 13.57 15.15 40.50 58.36 44.99 47.92 30.45
中性洗涤纤维 NDF 14.97 16.98 18.58 14.87 10.25 17.45 12.24 20.17 12.93 23.97
酸性洗涤纤维 ADF 3.01 4.06 8.69 4.66 3.30 13.19 6.65 14.60 7.05 8.66

Table 4

Ruminal degradability of crude protein and intestinal digestibility of undegraded dietary protein of concentrates (%)"

项目
Items
高粱Sorghum 玉米Corn 大麦
Barley
小麦
Wheat
燕麦
Oat
菜籽粕
Rapeseed
meal
花生粕
Peanut meal
棉籽粕
Cottonseed
meal
豆粕Soybean meal 玉米
酒糟DDGS
SEM P
P
value
蛋白质瘤胃降解率 Ruminal degradability of crude protein
6 h 16.64d 24.25bcd 22.73cd 30.30b 44.30a 27.42bc 24.33bcd 29.19b 16.87d 15.77d 1.697 <0.01
12 h 20.10d 27.54cd 31.66cd 49.83b 63.53a 35.55c 28.63cd 31.53cd 20.28d 19.73d 2.649 <0.01
24 h 24.82c 32.77bc 39.66b 63.25a 72.64a 41.34b 40.82b 42.52b 34.15bc 22.15c 2.948 <0.01
36 h 36.18cd 37.66cd 48.51bc 70.28a 80.64a 47.56bc 48.55bc 54.55b 41.45bcd 35.03d 3.302 <0.01
48 h 38.77d 47.25cd 59.36bc 74.27a 84.19a 58.01bc 59.51bc 62.18b 54.02bc 38.88d 2.668 <0.01
有效降解率Effective degradation rate 45.08e 43.71e 44.38e 49.32de 60.87a 52.04bcd 57.26ab 54.62bcd 56.02abc 51.08cd 1.143 <0.01
瘤胃非降解 蛋白质小肠消化率
Small intestine digestibility of undegraded dietary protein
84.69d 86.23cd 84.23d 84.10d 80.10e 89.25b 92.86a 92.31a 89.26b 87.31bc 0.731 <0.01

Table 5

Undegraded dietary protein, microbial synthetic protein and metabolizable protein of concentrates"

项目
Items
高粱
Sorghum
玉米
Corn
大麦
Barley
小麦
Wheat
燕麦
Oat
菜籽粕
Rapeseed
meal
花生粕
Peanut meal
棉籽粕
Cottonseed
meal
豆粕Soybean meal 玉米
酒糟DDGS
瘤胃降解蛋白质 RDP (g·kg-1 DM) 15.59 12.82 15.15 22.16 30.35 68.84 115.23 79.43 85.76 51.16
瘤胃非降解蛋白质 UDP (g·kg-1 DM) 18.98 16.52 18.74 22.31 19.30 63.44 85.85 64.22 67.34 48.89
微生物合成蛋白质 MCP (g·kg-1 DM) 54.50 46.92 50.97 50.64 59.83 73.80 84.74 66.27 81.11 60.87
可代谢蛋白质 MP (g·kg-1 DM) 48.04 41.81 45.46 48.28 50.30 99.47 129.08 96.89 106.18 78.23
可代谢蛋白质占可消化蛋白的比例 The percentage of MP to DP (%) 61.66 55.63 50.96 55.08 53.73 53.33 54.86 62.33 55.14 56.78

Table 6

Apparent nutrient digestibility of different diets (%)"

项目
Items
高粱
饲粮
Sorghum
diet
玉米
饲粮Corn diet
大麦
饲粮Barley diet
小麦
饲粮
Wheat diet
燕麦
饲粮
Oat diet
菜籽粕
饲粮Rapeseed
diet
花生粕
饲粮Peanut meal diet
棉籽粕
饲粮Cottonseed meal diet
豆粕
饲粮Soybean meal diet
玉米酒糟饲粮
DDGS diet
SEM P
P value
干物质消化率
Digestible dry matter (DMD)
65.29abc 67.40a 64.69bc 65.48abc 63.40c 57.32e 64.20c 59.68d 66.79ab 58.78de 0.41 <0.01
有机物消化率
Digestible organic matter (DOM)
68.65ab 70.44a 68.49ab 68.68ab 66.91b 64.15c 69.97a 61.45d 69.30a 64.47c 0.37 <0.01
粗蛋白质消化率
Digestible crude protein (DCP)
64.03e 64.60de 71.05b 67.09cd 67.63c 77.47a 79.73a 71.75b 80.16a 73.76b 0.65 <0.01
中性洗涤纤维消化率
Digestible neutral detergent fiber (DNDF)
42.96bc 42.56bcd 47.59ab 48.79a 38.86cde 37.09de 43.71abc 36.01e 42.66bcd 41.67cd 0.67 <0.01
酸性洗涤纤维消化率
Digestible acid detergent fiber (DADF)
42.91ab 37.38c 45.10a 45.85a 38.46bc 34.35dc 46.96a 30.91d 47.40a 35.91c 0.76 <0.01

Table 7

Prediction model for metabolizable protein using chemical composition and apparent digestibility"

递推回归模型Recursive regression equation 决定系数 R2 PP value
MP=5.323CP-14.374 0.994 <0.001
MP=5.268CP+0.532DM-62.319 0.995 <0.001
MP=5.290CP+0.669DM-0.173ADF-71.664 0.995 <0.001
MP=5.318CP+1.262DM-0.877ADF+0.376NDF-126.679 0.995 <0.001
MP=5.373CP+1.481DM-0.827ADF+0.404NDF+0.254OM-174.198 0.995 <0.001
MP=5.899DP+2.077 0.984 <0.001
MP=5.710DP-0.530DOM-37.165 0.986 <0.001
MP=5.500DP-1.741DOM+1.371DDM+38.005 0.989 <0.001
MP=5.678DP-1.550DOM+1.344DDM-1.129DNDF+32.093 0.990 <0.001
MP=5.791DP-1.587DOM+1.552DDM-1.871DNDF+0.443DADF+19.832 0.990 <0.001
DP=0.895CP-2.663 0.994 <0.001
[1] MA T, DENG K D, TU Y, ZHANG N F, JIANG C G, LIU J, ZHAO Y G, DIAO Q Y . Effect of dietary forage-to-concentrate ratios on urinary excretion of purine derivatives and microbial nitrogen yields in the rumen of dorper crossbred sheep. Livestock Science, 2014,160(1):37-44.
[2] CHEN X B, XUE B . Excretion of purine derivatives by sheep and cattle and its use for the estimation of absorbed microbial protein[D]. Aberdeen: University of Aberdeen, 1989.
[3] AFRC. Energy and Protein Requirements of Ruminants. Wallingford, UK: CAB International, 1993.
[4] GARGALLO S, CALSAMIGLIA S, FERRET A . Technical note: a modified three-step in vitro procedure to determine intestinal digestion of proteins. Journal of Animal Science, 2006,84(8):2163.
doi: 10.2527/jas.2004-704 pmid: 16864878
[5] 王燕, 辛杭书, 杨方, 陈常栋, 张微微, 李敏, 夏科, 张永根 . 不同方法测定瘤胃非降解蛋白质小肠消化率及相关性分析. 动物营养学报, 2012,24(07):1264-1273.
WANG Y, XIN H S, YANG F, CHEN C D, ZHANG W W, LI M, XIA K, ZHANG Y G . Determination of small intestinal digestibility and correlation analysis of tumor non-degradable protein by different methods. Chinese Journal of Animal Nutrition, 2012,24(07):1264-1273. (in Chinese)
[6] CSIRO. Nutrient Requirements of Domesticated Ruminants. Collingwood, Australia: CSIRO Publishing, 2007.
[7] INRA. Ruminant Nutrition, Recommended Allowance and Feed Table. Paris, France: John Libbey Eurotext, 1989.
[8] NRC. Nutrient Requirements of Small Ruminants:Sheep, Goats, Cervids and New World Camelids. Washington: National Academy Press, 2007.
[9] 刘洁 . 肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究[D]. 北京: 中国农业科学院, 2012.
LIU J . Prediction of metabolizable energy and metabolizable protein in feeds for meat sheep[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. ( in Chinese)
[10] 曲连发 . 肉用绵羊代谢蛋白质预测模型的研究[D]. 武汉:华中农业大学, 2014.
QU L F . Prediction of metabolizable protein on meat sheep[D]. Wuhan: Huazhong Agricultural University, 2014. ( in Chinese)
[11] 赵江波, 魏时来, 马涛, 肖怡, 丁静美, 李岚捷, 冯文晓, 贾鹏, 赵明明, 刁其玉 . 应用套算法估测肉羊精饲料代谢能. 动物营养学报, 2016,28(04):1217-1224.
ZHAO J B, WEI S L, MAO T, XIAO Y, DING J M, LI L J, FENG W X, JIA P, ZHAO M M, DIAO Q Y . Establishment of prediction model of metabolizable energy of concentrate for mutton sheep by substitution method. Chinese Journal of Animal Nutrition. 2016,28(04):1217-1224. (in Chinese)
[12] 赵江波, 魏时来, 赵明明, 马涛, 肖怡, 丁静美, 李岚捷, 冯文晓, 贾鹏, 刁其玉 . 精料来源对肉羊营养物质消化率的影响及代谢能预测模型的建立. 畜牧兽医学报, 2016,47(11):2257-2265
ZHAO J B, WEI S L, ZHAO M M, MA T, XIAO Y, DING J M, LI L J, FENG W X, JIA P, DIAO Q Y . Effect of concentrate source on nutrient digestibility and establishment of prediction model of metabolizable energy in mutton sheep. Chinese Journal of Animal and Veterinary Sciences, 2016,47(11):2257-2265.(in Chinese)
[13] 刘洁, 刁其玉, 赵一广, 姜成钢, 邓凯东, 李艳玲, 屠焰 . 肉用绵羊饲料可消化养分和有效能预测模型的研究. 畜牧兽医学报, 2012,43(08):1230-1238.
LIU J, DIAO Q Y, ZHAO Y G, JIANG C G, DENG K D, LI Y L, TU Y . Prediction of nutrient digestibility and energy concentrations using chemical compositions in meat sheep feeds. Chinese Journal of Animal and Veterinary Sciences, 2012,43(08):1230-1238. (in Chinese)
[14] HVELPLIND T . Digestibility of rumen microbial protein and undegraded dietary protein estimated in the small intestine of sheep and by in sacco procedure [nylon bag technique, amino acids absorbable in the small intestine (AAT)]. Acta Agriculturae Scandinavica Supplementum, 1985.
[15] 张丽英 . 饲料分析及饲料质量检测技术 . 第2版. 北京: 中国农业大学出版社, 2003.
Zhang L Y. Feed Analysis and Feed Quality Control Technology. 2nd ed. Beijing: China Agricultural University Press, 2003. ( in Chinese)
[16] VAN SOEST P J, ROBERTSON J B, Lewis B A . Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991,74(10):3583-3597.
doi: 10.3168/jds.S0022-0302(91)78551-2 pmid: 1660498
[17] CHEN X B, GOMES M J . Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives. An Overview of the technical Details. Bucksburn: Occasional Publication, 1992.
[18] OREKOV E R, MCDONALD I . The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 1979,92(02):499-503.
doi: 10.1017/S0021859600063048
[19] 冯仰廉 . 动物营养研究进展. 北京: 中国农业空间出版社. 1994.
FENG Y L. Advances in Animal Nutrition Research. China Agricultural Space Press. 1994. ( in Chinese)
[20] 赵连生, 牛俊丽, 徐元君, 王芳, 郑琛, 李发第, 郭江鹏, 卜登攀 . 6种饲料原料瘤胃降解特性和瘤胃非降解蛋白质的小肠消化率. 动物营养学报, 2017,29(06):2038-2046.
ZHAO L S, NIU J L, XU Y J, WANG F, ZHENG C, LI F D, GUO J P, BU D P . Ruminal degradation characteristics and small intestinal digestibility of rumen undegraded protein of six feed ingredients. Chinese Journal of Animal Nutrition, 2017,29(06):2038-2046. (in Chinese)
[21] 刁其玉, 屠焰 . 奶牛常用饲料蛋白质在瘤胃的降解参数 . 乳业科学与技术, 2005(2):70-74.
DIAO Q Y, TU Y . Degradabilities of crude protein in feedstuffs for dairy cattle in rumen . Dairy Science and Technology, 2005(2):70-74. (in Chinese)
[22] 朱亚骏, 于子洋, 袁翠林, 胡静, 王利华, 朱风华, 张廷荣, 林英庭 . 山东省羊主要精饲料瘤胃降解率和小肠消化率的研究. 中国农学通报, 2014,30(17):1-6.
ZHU Y J, YU Z Y, YUAN C L, HU J, WAMG L H, ZHU F H, ZHANG T R, LIN Y T . Research about ruminal and small intestinal digestibility of Shandong province mainly concentrates for sheep. Chinese Agricultural Science Bulletin. 2014,30(17):1-6. (in Chinese)
[23] 周荣, 王加启, 张养东, 潘发明, 卜登攀, 魏宏阳, 周凌云 . 移动尼龙袋法对常用饲料蛋白质小肠消化率的研究. 东北农业大学学报, 2010,41(01):81-85.
ZHOU R, WANG J Q, ZHANG Y D, PAN F M, BU D P, WEI H Y, ZHOU L Y . Intestinal digestibility of crude protein and dry matters with ruminant feedstuffs using the mobile nylon bag. Journal of Northeast Agricultural University. 2010,41(01):81-85.(in Chinese)
[24] GAO W, CHEN A D, ZHANG B W, PING K, LIU C, JIE Z . Rumen degradability and post-ruminal digestion of dry matter, nitrogen and amino acids of three protein supplements. Asian-Australasian Journal of Animal Sciences, 2015,28(4):485-493.
doi: 10.5713/ajas.14.0572 pmid: 4341097
[25] OH Y K, PERK Y J, BAEK Y C, DO Y J, KIM D H, KWAK W S, CHOI H . In situ ruminal degradation and intestinal digestion of crude protein and amino acids of three major proteinaceous feeds for Hanwoo steers. Research Opinions in Animal and Veterinary Sciences, 2015,5(10):395-400.
[26] 冷静, 张颖, 朱仁俊, 杨舒黎, 苟潇, 毛华明 . 云南黄牛对6种牧草瘤胃降解规律的研究. 中国农学通报, 2011,27(01):398-402.
LENG J, ZHANG Y, ZHU R J, YANG S L, GOU X, MAO H M . Study on rumen degradabilities of six forages in Yunnan yellow cattle. Chinese Agricultural Science Bulletin. 2011,27(01):398-402. (in Chinese)
[27] CHALUPA W, SNIFFEN C J . Protein and amino acid nutrition of lactating dairy cattle-today and tomorrow. Animal Feed Science and Technology, 1996,58:65-75.
[28] 岳群, 杨红建, 谢春元, 么学博, 王加启 . 应用移动尼龙袋法和三步法评定反刍家畜常用饲料的蛋白质小肠消化率. 中国农业大学学报, 2007(6):62-66.
YUE Q, YANG H J, XIE C Y, ME X B, WANG J Q . Estimation of protein intestinal digestibility of ruminant feedstuffs with mobile nylon bag technique and three-step in vitro procedure.Journal of China Agricultural University, 2007(6):62-66. (in Chinese)
[29] 李志静, 眭丹, 周玉香 . 不同蛋白水平对舍饲滩羊消化代谢及血液生化指标的影响. 中国畜牧杂志, 2014,50(17):39-43.
LI Z J, XU D, ZHOU Y X . Effect of dietary protein level on nutrient digestion metabolism and serum biochemical indexes in tan sheep. Chinese Journal of Animal Science. 2014,50(17):39-43. (in Chinese)
[30] 孔祥浩, 郭金双, 朱晓萍, 贾志海, 岳春旺, 靳玲品, 李秀花, 秦艳红 . 不同NDF水平肉羊饲粮养分表观消化率研究. 动物营养学报, 2010,22(1):70-74.
KONG X H, GUO J S, ZHU X P, JIA Z H, YUE C W, JIN L P, LI X H, QIN Y H . Study on apparent nutrients digestibility of mutton sheep diets with different neutral detergent fiber levels. Chinese Journal of Animal Nutrition, 2010,22(1):70-74. (in Chinese).
[31] HAIG P A, MUTSVANGWA T, SPRATT R, MCBRIDE B W . Effects of dietary protein solubility on nitrogen losses from lactating dairy cows and comparison with predictions from the Cornell Net Carbohydrate and Protein System. Journal of Dairy Science, 2002,85(5):1208-1217.
doi: 10.3168/jds.S0022-0302(02)74184-2 pmid: 12086057
[32] HRISTOV A N, ETTER R P, ROPP J K, GRANDEEN K L . Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows. Journal of Animal Science, 2004,82(11):3219-3229.
doi: 10.2527/2004.82113219x pmid: 15542468
[33] PAENGKOUM P, LIANG J B, JELAN Z A, BASERY M . Effects of ruminally undegradable protein levels on nitrogen and phosphorus balance and their excretion in saanen goats fed oil palm fronds. Songklanakarin Journal of Science and Technology, 2004,26(1):15-22.
[1] XIANG YuTing, WANG XiaoLong, HU XinZhong, REN ChangZhong, GUO LaiChun, LI Lu. Lipase Activity Difference of Oat Varieties and Prediction of Low Lipase Activity Variety with High Quality [J]. Scientia Agricultura Sinica, 2022, 55(21): 4104-4117.
[2] SU YuanYuan,ZHANG DeQuan,GU MingHui,ZHANG ChunJuan,LI ShaoBo,ZHENG XiaoChun,CHEN Li. Characterization of Chilled Mutton by ATP from Different Sources [J]. Scientia Agricultura Sinica, 2022, 55(19): 3841-3853.
[3] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[4] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[5] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[6] HAO XiaoYan,MU ChunTang,QIAO Dong,ZHANG XuanZi,YANG WenJun,ZHAO JunXing,ZHANG ChunXiang,ZHANG JianXin. Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs [J]. Scientia Agricultura Sinica, 2021, 54(10): 2239-2248.
[7] LIU YanXia,WANG ZhenYu,ZHENG XiaoChun,ZHU YaoDi,CHEN Li,ZHANG DeQuan. Prediction of Center Temperature of Beijing Roast Duck Based on Quality Index [J]. Scientia Agricultura Sinica, 2020, 53(8): 1655-1663.
[8] XIANG FangLin,LI XinGe,MA JiFeng,LIU XiaoJun,TIAN YongChao,ZHU Yan,CAO WeiXing,CAO Qiang. Using Canopy Time-Series Vegetation Index to Predict Yield of Winter Wheat [J]. Scientia Agricultura Sinica, 2020, 53(18): 3679-3692.
[9] ZHOU Yan, DONG LiFeng, DENG KaiDong, XU GuiShan, DIAO QiYu. Development of Models of Methane Emissions from Growing Sheep [J]. Scientia Agricultura Sinica, 2019, 52(10): 1797-1806.
[10] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie. Analyses of Physicochemical Properties of NFC Apple Juices from Sixteen Cultivars [J]. Scientia Agricultura Sinica, 2018, 51(4): 800-810.
[11] GOU XiaoJu, TIAN You, GUO YuRong, YANG Xi, HOU YanJie, PING JiaXin, LI Ting. Analysis and Evaluation on Quality of Not from Concentrate Apple Juices in Different Maturation Period [J]. Scientia Agricultura Sinica, 2018, 51(19): 3778-3790.
[12] QI Lin, WANG YuXiang, WANG Ning, DUAN YiMing, ZHANG Ying, WANG Ya, XIAO LuLu, LI XiaoGang. Film Formation and Biological Properties of 40% Thiamethoxam·Pyraclostrobin Flowable Concentrate for Seed Coating [J]. Scientia Agricultura Sinica, 2017, 50(9): 1624-1634.
[13] TAN ChangWei, DU Ying, TONG Lu, ZHOU Jian, LUO Ming, YAN WeiWei, CHEN Fei. Comparison of the Methods for Predicting Wheat Yield Based on Satellite Remote Sensing Data at Anthesis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3101-3109.
[14] WANG Hui-hua, ZHAO Fu-ping, ZHANG Li, WEI Cai-hong, DU Li-xin. The Geographical Distribution and Multivariate Analysis of Chinese Indigenous Sheep Breeds and Their Meat-Related Traits [J]. Scientia Agricultura Sinica, 2015, 48(20): 4170-4177.
[15] CHEN Xiao-yong, SUN Hong-xin, DUN Wei-tao . Analysis of Reproductive Performance of Hanper Mutton Sheep [J]. Scientia Agricultura Sinica, 2015, 48(16): 3296-3302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!