Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (10): 2239-2248.doi: 10.3864/j.issn.0578-1752.2021.10.019

• SPECIAL FOCUS: YOUNG RUMINANT NUTRITION RESEARCH • Previous Articles    

Effects of High-Concentrate Diet Supplemented with Grape Seed Proanthocyanidins on Rumen fermentation, Inflammatory and Antioxidant Indicators of Rumen and Serum in Lambs

HAO XiaoYan1(),MU ChunTang1,QIAO Dong2,ZHANG XuanZi1,YANG WenJun1,ZHAO JunXing1,ZHANG ChunXiang1,ZHANG JianXin1()   

  1. 1College of Animal Science, Shanxi Agricultural University, Taigu 030801, Shanxi
    2Grassland Livestock Husbandry Development Center, Shuozhou 036002, Shanxi
  • Received:2020-07-26 Accepted:2020-11-27 Online:2021-05-16 Published:2021-05-24
  • Contact: JianXin ZHANG E-mail:haoxiaoyan1990@sina.com;ypzjx@126.com

Abstract:

【Objective】This study was conducted to investigate the effects of dietary grape seed proanthocyanidins (GSPs) supplementation on growth performance, rumen fermentation, rumen and serum inflammatory factors and antioxidative activity in lambs under the condition of a high-concentrate diet, so as to provide a support for applying GSPs on ruminant. 【Method】A total of forty-eight 1/2 Dorper × 1/2 thin-tailed Han ram lambs with similar body weight (BW = 22.75±1.20 kg, mean ± SD) were randomly divided into four groups, with twelve lambs each group. Lambs were fed a 30:70 forage:concentrate diet with 0 (control), 10 (10GSPs), 20 (20GSPs), and 40 mg·kg-1 BW (40GSPs) GSPs supplemented, respectively. The feeding experiment lasted for 60 days before sampling, with the first 15 days for diet transition and adaptation. On the first day of the formal experiment period, the BW before morning feeding was weighed as the initial BW. At the end of the trial period, blood samples were collected from the jugular vein, and the serum was separated for the determination of antioxidant and inflammatory indicators and lipopolysaccharide content. At the same time, six lambs in each group were randomly selected to collect rumen fluid by using an oral stomach tube at 1, 3, 4, 6, 8 and 12 hours after feeding, respectively, and the rumen pH were measured immediately. The fluid samples at 3 hours after feeding were used to measured fermentation parameters and lipopolysaccharide content. The other 6 lambs in each group were slaughtered, and the samples of rumen tissue were collected to determine the antioxidation index and inflammatory factors. 【Result】The final weight of lambs in 10GSPs and 20GSPs groups were significant greater than that in control group (P<0.05), with no difference between 40GSPs and 10GSPs or 20GSPs (P>0.05). Lambs in 10GSPs and 20GSPs groups also had higher average daily gain and average daily feed intake than control and 40GSPs (P<0.05), with no significant difference between control and 40GSPs (P>0.05). The dietary GSPs supplementation had a certain regulatory effect on rumen pH. The rumen pH increased linearly with the supplementation of GSPs (P<0.05) at 3, 8 and 12 h after feeding, and tended to increased linearly at 4 h (P=0.057). The concentrations of acetate, butyrate and total volatile fatty acid in rumen fluid tended to decrease after GSPS was added (P<0.1), but there was no significant effect on propionate, isovalerate, valerate, and the ratio of acetic acid to propionic acid (P>0.05). After GSPs was supplemented, the serum lipopolysaccharide concentration was significantly lower than that of the control group (P<0.05), but which did not affect the lipopolysaccharide concentration in the rumen fluid. The activity of GSH-Px in rumen tissue of 20GSPs and 40GSPs groups was significantly higher than that of the control group and 10GSPs group (P<0.05) , however, the content of MDA was significantly lower. The serum SOD activity of 20GSPs and 40GSPs group was significantly higher than that of the control group, and the GSH-Px activity was higher than control and 10GSPs group (P<0.05). There was no significant effect was observed in rumen inflammatory factors when GSPs was supplemented, but there was a trend of decreasing IL-6 and IL-10 (P<0.1). The level of TNF-α in 20GSPs and 40GSPs group were significantly lower than that in the control group and 10 GSPs group (P<0.05). The level of IL-10 in 40GSPs group was significantly lower than control group, with no significant difference between 40GSPs and 10GSPs or 20GSPs (P>0.05). 【Conclusion】Supplementing appropriate amount of GSPs to high-concentrate diet could improve the rumen pH, and the antioxidant capacity of serum and rumen tissue of lambs, suggesting that appropriate amount of GSPs had the potential protective effect on lamb health. The optimal feeding dose was 20 mg·kg-1 BW under the condition of this experiment.

Key words: grape seed proanthocyanidins, lambs, high-concentrate diet, rumen fermentation, antioxidant capacity

Table 1

Composition and nutrient level of diets (dry matter basis, %)"

项目Items 含量Content
原料 Ingredients
玉米秸秆 Corn straw 20.0
谷秸 Millet straw 10.0
玉米 Corn 46.0
豆粕 Soybean meal 7.0
棉粕 Cottonseed meal 5.0
麦麸 Wheat bran 5.0
石粉 Limestone 0.3
碳酸氢钠 Sodium bicarbonate 1.0
盐 Salt 0.7
预混料 Premix 1 5.0
营养水平 Nutrient levels
粗蛋白 CP 16.1
粗脂肪 EE 3.5
中性洗涤纤维 NDF 32.7
酸性洗涤纤维 ADF 16.9
粗灰分 Ash 10.2
总能GE; MJ·kg-1 DM 18.8

Table 2

Effect of GSPs supplemented in high-concentrate diet on growth performance of lambs"

项目
Items
组别 Groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
初始体重Initial BW(kg) 28.39 29.10 28.64 29.32 0.82 0.532 0.985
终末体重Final BW(kg) 41.57b 43.85a 43.51a 42.64ab 0.70 0.375 0.039
平均日增重ADG(g·d-1) 280.37b 314.05a 315.90a 283.56b 10.21 0.806 0.005
平均日采食量ADFI(g·d-1) 1885.14b 2010.61a 1993.99a 1874.60b 31.74 0.737 0.001
料重比ADFI/ADG 6.76 6.42 6.31 6.65 0.210 0.639 0.123

Table 3

Effect of GSPs supplemented in high-concentrate diet on rumen fluid pH of lambs"

项目
Items
组别 Groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
1 h 6.04 6.05 6.09 6.11 0.03 0.101 0.805
3 h 5.80b 5.79b 5.93a 5.94a 0.05 0.018 0.664
4 h 5.92 5.93 5.97 6.05 0.04 0.057 0.389
6 h 6.05 6.14 6.10 6.15 0.07 0.155 0.883
8 h 6.19b 6.21b 6.34a 6.30a 0.03 0.031 0.141
12 h 6.24b 6.23b 6.33a 6.35a 0.03 0.009 0.420

Table 4

Effect of GSPs supplemented in high-concentrate diet on rumen VFA after feeding 3 hours of lambs"

项目
Items
组别 Groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
乙酸 Acetate (mmol·L-1) 59.61 59.01 54.11 55.18 1.95 0.058 0.672
丙酸Propionate (mmol·L-1) 25.08 24.93 21.56 22.83 1.64 0.182 0.667
异丁酸 Isobutyrate (mmol·L-1) 0.50b 0.49b 0.55ab 0.63a 0.032 0.004 0.153
丁酸 Butyrate (mmol·L-1) 11.93 10.82 10.92 9.51 0.78 0.064 0.850
异戊酸 Isovalerate (mmol·L-1) 0.85 0.92 0.95 0.91 0.041 0.291 0.224
戊酸 Valerate (mmol·L-1) 1.21 1.21 1.10 1.19 0.069 0.584 0.464
总挥发性脂肪酸TVFA (mmol·L-1) 99.18 97.36 89.18 90.27 3.13 0.062 0.648
乙酸/丙酸Acetate/propionate 2.45 2.41 2.55 2.45 0.16 0.854 0.856

Table 5

Effect of GSPs supplemented in high-concentrate diet on rumen LPS content after feeding 3 hours of lambs"

项目
Items
组别 Groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
瘤胃液LPS (EU·mL-1) 42595 34449 27116 31267 4168 0.058 0.099
血清LPS (EU·mL-1) 0.31a 0.29a 0.16b 0.17b 0.02 <0.0001 0.221

Table 6

Effect of GSPs supplemented in high-concentrate diet on rumen and serum antioxidant indicators of lambs"

项目
Items
组别 Groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
瘤胃
Rumen
T-AOC (U·mg-1) 1.13 1.22 1.28 1.23 0.08 0.282 0.370
CAT (U·mg-1) 4.41 4.54 4.08 4.37 0.47 0.787 0.861
SOD (U·mg-1) 6.8 6.85 7.46 7.28 0.53 0.394 0.830
GSH-Px (U·mg-1) 66.30b 69.18b 90.55a 82.99a 3.70 0.0003 0.173
MDA, nmol·mg-1 0.693a 0.62ab 0.52b 0.53b 0.05 0.019 0.481
血清
Serum
T-AOC (U·mL-1) 1.60 1.62 1.83 1.78 0.07 0.056 0.590
CAT (U·mL-1) 6.6 6.66 6.52 6.79 0.52 0.855 0.839
SOD (U·mL-1) 69.28b 72.58ab 82.9a 83.43a 4.16 0.010 0.743
GSH-PX (U·mL-1) 85.74b 87.92b 102.60a 104.35a 4.85 0.004 0.963
MDA (nmol·mL-1) 4.49 4.34 3.52 3.59 0.33 0.060 0.764

Table 7

Effect of GSPs supplemented in high-concentrate diet on rumen and serum inflammatory factors of lambs"

项目
Items
组别 groups SEM P
CON 10GSPs 20GSPs 40GSPs 线性Linear 二次方Quadratic
瘤胃
Rumen
TNF-α (pg·mg-1) 4.48 4.45 4.25 4.30 0.23 0.497 0.871
IL-6 (pg·mg-1) 12.05 12.06 10.16 10.73 0.66 0.061 0.676
IFN-γ(pg·mg-1) 4.96 4.51 4.50 4.78 0.28 0.664 0.208
IL-10 (pg·mg-1) 1.46 1.44 1.28 1.30 0.06 0.062 0.729
血清
Serum
TNF-α(pg·mL-1) 48.74a 50.52a 38.52b 39.6b 2.99 0.008 0.908
IL-6 (pg·mL-1) 142.18 133.33 127.5 128.72 5.47 0.074 0.368
IFN-γ (pg·mL-1) 39.13 40.44 39.86 37.09 2.21 0.506 0.365
IL-10 (pg·mL-1) 19.86a 17.79ab 17.83ab 16.19b 0.93 0.015 0.814
[1] 侯志高, 王振勇, 柴同杰, 贾玉东, 巩庆亮, 马健, 王允田. 不同精粗比饲粮对奶牛机体氧化应激和瘤胃内环境稳定性的影响. 畜牧兽医学报, 2008,39(4):455-459.
HOU Z G, WANG Z Y, CAI T J, JIA Y D, GONG Q L, MA J, WANG Y T. Effects of forage to concentrate ratio on homeostasis of rumen and oxidative stress in cows. Acta Veterinaria et Zootechnica Sinica, 2008,39(4):455-459. (in Chinese)
[2] ZHAO J X, LI Q, ZHANG R X, LIU W Z, REN Y S, ZHANG C X, ZHANG J X. Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs. Animal Feed Science and Technology, 2018,236:76-85.
doi: 10.1016/j.anifeedsci.2017.12.004
[3] MOSSALAYI M D, RAMBERT J, RENOUF E, MICOULEAU M, MÉRILLON J M. Grape polyphenols and propolis mixture inhibits inflammatory mediator release from human leukocytes and reduces clinical scores in experimental arthritis. Phytomedicine, 2014,21(3):290-297.
doi: 10.1016/j.phymed.2013.08.015
[4] JOSHI S, KUSZYNSKI C, BAGCHI D. The cellular and molecular basis of health benefits of grape seed proanthocyanidin extract. Current Pharmaceutical Biotechnology, 2001,2(2):187-200.
doi: 10.2174/1389201013378725
[5] BAGCHI M, MILNES M, WILLIAMS C, BALMOORI J, YE X M, STOHS S, BAGCHI D. Acute and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective ability of a novel grape seed proanthocyanidin extract. Nutrition Research, 1999,19(8):1189-1199.
doi: 10.1016/S0271-5317(99)00080-9
[6] GULGUN M, ERDEM O, OZTAS E, KESIK V, BALAMTEKIN N, VURUCU S, KUI M, KISMET E, KOSEOQLU V. Proanthocyanidin prevents mcthotmxate- induccd intestinal damage and oxidative stress. Experimental and Toxicologic Pathology, 2010,62(2):109-115.
doi: 10.1016/j.etp.2009.02.120
[7] GOODRICH K M, FUNDARO G, GRIFFIN L E, GRANT A, HULVER M W, PONDER M A, NEILSON A P. Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutrition Research, 2012,32(10):787-794.
doi: 10.1016/j.nutres.2012.09.004
[8] HO S C, HWANG L S, SHEN Y J, LIN C C. Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour. ) flowers on nitric oxide production in LPS-stimulated macrophage cells. Journal of Agricultural and Food Chemistry, 2007,55(26):10664-10670.
doi: 10.1021/jf0721186
[9] 杨德莲, 童津津, 张婕, 郭琪, 蒋琦晖, 蒋林树, 熊本海. 葡萄籽原花青素对奶牛瘤胃体外发酵参数及微生物区系的影响. 动物营养学报, 2018,30(2):717-725.
YANG D L, TONG J J, ZHANG J, GUO Q, JIANG Q H, JIANG L S, XIONG B H. Effects of grape seed procyanidine on rumen fermentation aarameters and microflora of dairy cows in vitro. Chinese Journal of Animal Nutrition, 2018,30(2):717-725. (in Chinese)
[10] 童津津, 张华, 孙铭维, 张婕, 熊本海, 蒋林树. 采用Illumina MiSeq测序技术分析葡萄籽原花青素对奶牛体外瘤胃发酵产甲烷菌区系的影响. 动物营养学报, 2019,31(1):325-334.
TONG J J, ZHANG H, SUN M W, ZHANG J, XIONG B H, JIANG L S. Effects of grape seed procyanidine on methanogens flora of in vitro rumen fermentation of dairy cows using Illumina MiSeq sequencing technology. Chinese Journal of Animal Nutrition, 2019,31(1):325-334. (in Chinese)
[11] 杜宇, 王之盛, 董利锋. 石榴皮多酚提取物对亚急性瘤胃酸中毒相关有害因子的影响. 动物营养学报, 2011,23(11):2031-2036.
DU Y, WANG Z S, DONG L F. Protective effects of pomegranate peel polyphenol extract against related harmful factors of subacute ruminal acidosis. Chinese Journal of Animal Nutrition, 2011,23(11):2031-2036. (in Chinese)
[12] 郭长征, 冯泮飞, 薛春旭, 叶慧敏, 刘军花, 毛盛勇. 高精料饲粮添加槲皮素对山羊瘤胃发酵、瘤胃菌群数量及血清指标的影响. 动物营养学报, 2016,28(9):2839-2846.
GUO C Z, FENG P F, XUE C X, YE H M, LIU J H, MAO S Y. Effects of quercetin supplemented in high-concentrate diet on rumen fermentation, rumen bacteria counts and serum indices of goats. Chinese Journal of Animal Nutrition, 2016,28(9):2839-2846. (in Chinese)
[13] 严淑红, 赵士萍, 蒋琦晖, 方洛云, 周敏, 闵婉平, 蒋林树. 茶皂素对奶牛瘤胃发酵及瘤胃微生物区系的影响. 动物营养学报, 2016,28(8):2485-2496.
YAN S H, ZHAO S P, JIANG Q H, FANG L Y, ZHOU M, MIN W P, JIANG L S. Effects of tea saponin on rumen fermentation and rumen microflora of dairy cows. Chinese Journal of Animal Nutrition, 2016,28(8):2485-2496. (in Chinese)
[14] KHAFIPOUR E, KRAUSE D O, PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009,92(3):1060-1070.
doi: 10.3168/jds.2008-1389
[15] 牟春堂, 杨文军, 王鹏举, 任国栋, 剧浩, 任有蛇, 郝小燕, 张建新. 葡萄籽原花青素对公羔羊生长性能、精液品质及睾丸和附睾抗氧化指标的影响. 动物营养学报, 2020,32(5):2241-2250.
MU C T, YANG W J, WANG P J, REN G D, JU H, REN Y S, HAO X Y, ZHANG J X. Effects of grape seed procyanidins on growth performance, semen quality, antioxidant indexes in testis and epididymis of ram. Chinese Journal of Animal Nutrition, 2020,32(5):2241-2250. (in Chinese)
[16] 王峰, 王继彤, 赵茜, 熊颖, 顾美超, LAURA G, 郭凯军. 板栗总苞多酚对奶水牛抗氧化指标及生产性能的影响. 中国牛业科学, 2016,42(2):32-38.
WANG F, WANG J T, ZHAO X, XIONG Y, GU M C, LAURA G, GUO K J. Effects of polyphenols from the involucres of castanea mollissima blume on antioxidative parameters and growth performance of buffalo. China Cattle Science, 2016,42(2):32-38. (in Chinese)
[17] 张培军. 茶多酚对奶牛酮病、氧化/抗氧化指标和生产性能的影响[D]. 南宁: 广西大学, 2017.
ZHANG P J. Effects of feeding tea polyphenols on ketosis, oxidation/antioxidant index and production performance of dairy cows[D]. Nanning: Guangxi University, 2017. (in Chinese)
[18] 赵家奇, 郝瑞荣, 高俊杰, 王伟伟. 葡萄籽原花青素对断奶仔猪免疫力和抗氧化功能的影响. 山西农业大学学报, 2016,36(10):735-739.
ZHAO J Q, HAO R R, GAO J J, WANG W W. Effects of grape seed procyanidins on immune function and antioxidant capacity in weaned piglets. Journal of Shanxi Agricultural University, 2016,36(10):735-739. (in Chinese)
[19] 潘发明, 李发弟, 郝正里, 郑琛, 董淑慧. 茶渣单宁含量及对绵羊养分消化利用与氮代谢参数的影响. 畜牧兽医学报, 2012,43(1):75-85.
PAN F M, LI F D, HAO Z L, ZHENG C, DONG S H. Effects of tannin content in residue of tea-leaves on digestion and utilization of nutrients and metabolic parameters of nitrogen in sheep. Acta Veterinaria et Zootechnica Sinica, 2012,43(1):75-85. (in Chinese)
[20] 李红, 董硕, 熊颖, 谷明灿, 郭凯军. 板栗总苞多酚对AA肉鸡生长、抗氧化性能影响. 中国农业科学, 2015,48(4):788-795.
LI H, DONG S, XIONG Y, GU M C, GUO K J. Effects of chestnut involucres polyphenols no growth performance and antioxidant properties of AA broilers. Scientia Agricultural Sinica, 2015,48(4):788-795. (in Chinese)
[21] 金亚倩, 郝松华, 赵俊星, 马雪豪, 苏锐, 任有蛇, 张春香, 张建新. 饲粮中添加葡萄皮渣对绵羊生长性能、器官指数及血液生化指标的影响. 中国畜牧兽医, 2016,43(9):2326-2332.
JIN Y Q, HAO S H, ZHAO J X, MA X H, SU R, REN Y S, ZHANG C X, ZHANG J X. Effect of dietary grape pomace on growth performance, organ index and blood biochemical indexes in sheep. China Animal Husbandry & Veterinary Medicine, 2016,43(9):2326-2332. (in Chinese)
[22] 李大彪, 于永强, 王卫云, 张妹妹, 李红磊, 邢媛媛. 单宁和聚乙二醇对绵羊和山羊瘤胃微生物数量和营养物质表观消化率的影响. 动物营养学报, 2015,27(10):3155-3162.
LI D B, YU Y Q, WANG W Y, ZHANG M M, LI H L, XING Y Y. Effects of tannin and polyethylene glycol on ruminal microorganism quantity and nutrient apparent digestibility of sheep and goats. Chinese Journal of Animal Nutrition, 2015,27(10):3155-3162. (in Chinese)
[23] 赵梦迪, 邸凌峰, 唐泽宇, 曹雪, 李成云. 单宁与饲用纤维素酶对湖羊瘤胃微生物菌群的影响. 中国畜牧兽医, 2019,46(1):112-122.
ZHAO M D, DI L F, TANG Z Y, CAO X, LI C Y. Effects of tannin and feeding cellulase on rumen microflora of Hu sheep. China Animal Husbandry & Veterinary Medicine, 2019,46(1):112-122. (in Chinese)
[24] DE NARDI R, MARCHESINI G, C PLAIZIER J, LI S C, KHAFIPOUR E, RICCI R, ANDRIGHETTO I, SEGATO S. Use of dicarboxylic acids and polyphenols to attenuate reticular pH drop and acute phase response in dairy heifers fed a high grain diet. BMC Veterinary Research, 2014,10:277.
doi: 10.1186/s12917-014-0277-5
[25] 吕忠蕾. 不同分子量缩合单宁对延边黄牛瘤胃发酵及微生物区系的影响[D]. 延吉: 延边大学, 2014.
LÜ Z L. Effects of different molecular weights of condensed tannins on ruminal fermentation and microflora to Yanbian yellow cattle[D]. Yanji: Yanbian University, 2014. (in Chinese)
[26] GETACHEW G, PITTROFF W, DEPETERS E J, PUTNAM D H, DANDEKAR A, GOYAL S. Influence of tannic acid application on alfalfa hay: in vitro rumen fermentation, serum metabolites and nitrogen balance in sheep. Animal, 2008,2(3):381-390.
doi: 10.1017/S1751731107001486
[27] EMMANUEL D G V, MADSEN K L, CHURCHILL T A, DUNN S M, AMETAJ B N. Acidosis and lipopolysaccharide from escherichia coli B: 055 cause hyperpermeability of rumen and colon tissues. Journal of Dairy Science, 2007,90:5552-5557.
doi: 10.3168/jds.2007-0257
[28] 李伟, 孙静, 郭英. 葡萄籽提取物对化学性肝损伤的抗氧化保护作用. 热带医学杂志, 2007,7(2):148-150.
LI W, SUN J, GUO Y. Anti-oxidation effects of GSE on chemical hepatic injury. Journal of Tropical Medicine, 2007,7(2):148-150. (in Chinese)
[29] 姜婧, 陈雁, 张海莉, 谭斅, 杨大千, 张志刚. 原花青素对铅诱导大鼠肝损伤的保护作用. 中国兽医科学, 2016,465(5):131-137.
JIANG J, CHEN Y, ZHANG H L, TAN X, YANG D Q, ZHANG Z G. Protective role of grape seed proanthocyanidin extract against lead-induced liver damage. Chinese Veterinary Science, 2016,465(5):131-137. (in Chinese)
[30] GABAI G, TESTONI S, PICCININI R, MARINELLI L, STRADAIOLI G. Oxidative stress in primiparous cows in relation to dietary strach and the progress of lactation. Animal Science, 2004,79(1):99-108.
doi: 10.1017/S1357729800054576
[31] 曾诚. 二苯乙烯苷对炎症性肠病的作用: 诱导PPAR-γ和抑制NF-κB炎症通路[D]. 武汉: 华中科技大学, 2011.
ZENG C. Effects of THSG on inflammatory bowel disease: induction of PPAR-γ protein and inhibition of NF-κB inflammatory pathway[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
[32] DESCALZO A M, SANCHO A M. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Science, 2008,79(3):423-436.
doi: 10.1016/j.meatsci.2007.12.006
[33] 宿孝奇. 酮病奶牛氧化应激特征及原花青素对奶牛氧化应激的影响[D]. 南宁: 广西大学, 2015.
SU X Q. Characteristics of oxidative stress in cows with ketosis and the effect of adding procyanidins on oxidative stress in cows[D]. Nanning: Guangxi University, 2015. (in Chinese)
[34] LI X L, CAI Y Q, QIN H, WU Y J. Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS induced ulcerative colitis. Canadian Journal of Physiology & Pharmacology, 2008,86(12):841-849.
[35] BRENES A, VIVEROS A, GOÑI I, CENTENO C. Effect of grape seed extract on growth performance, protein and polyphenol digestibilities, and antioxidant activity in chickens. Spanish Journal of Agricultural Research, 2010,8(2):326-335.
doi: 10.5424/sjar/2010082-1199
[36] CHOY Y Y, QUIFERRADA P, HOLSTEGE D M, FRESE S A, CALVERT C C, MILLS D A, LAMUELA-RAVENTOS R M, WATERHOUS A L. Phenolic metabolites and substantial microbiome changes in pig feces by ingesting grape seed proantho- cyanidins. Food & Function, 2014,5(9):2298-2308.
[37] SUNG N Y, YANG M S, SONG D S, BYUN E B, KIM J K, PARK J H, SON B S, LEE J W, PARK S H, PARK H J, BYUN M W, BYUN E H, KIM J H. The procyanidin trimer C1 induces macrophage activation via NF-κB and MAPK pathways, leading to Th1 polarization in murine splenocytes. European Journal of Pharmacology, 2013,714(1-3):218-228.
doi: 10.1016/j.ejphar.2013.02.059
[1] KONG FanLin,LI Yuan,FU Tong,DIAO QiYu,TU Yan. Effects of 2-Hydroxy-4-(Methylthio)-Butanoic Acid on Rumen Fermentation and Microbiota in Holstein Female Calves [J]. Scientia Agricultura Sinica, 2022, 55(4): 796-806.
[2] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
[3] ChunTao ZHANG,Tao MA,Yan TU,QiYu DIAO. Effects of Circadian Rhythm on Rumen Fermentation and Nutrient Digestion of Mutton Sheep [J]. Scientia Agricultura Sinica, 2022, 55(18): 3664-3674.
[4] WANG JinFei,YANG GuoYi,FAN ZiHan,LIU Qi,ZHANG PengCheng,REN YouShe,YANG ChunHe,ZHANG ChunXiang. Effects of Whole Plant Corn Silage Ratio in Diet on Growth Performance, Rumen Fermentation, Nutrient Digestibility and Serological Parameters of Dorper×Hu Crossbred Female Lambs [J]. Scientia Agricultura Sinica, 2021, 54(4): 831-844.
[5] YANG YunYan,WANG QiYan,PENG DiWei,PAN YiFan,GAO XiaoMei,XUAN ZeYi,CHEN ShaoMei,ZOU CaiXia,CAO YanHong,LIN Bo. Effects of Cinnamaldehyde on Growth Performance,Health Status, Rumen Fermentation and Microflora of Dairy Calves [J]. Scientia Agricultura Sinica, 2021, 54(10): 2229-2238.
[6] Ting WANG,Yu ZHANG,Hong LIU,TianTian HE,Yang BI,JianMin YUN. Effects of Ozone Fumigation Combined with PE Packaging on Postharvest Storage Quality and Antioxidant Capacity of Flammulina velutipes [J]. Scientia Agricultura Sinica, 2020, 53(4): 823-835.
[7] ZHENG WeiCai,HAO XiaoYan,ZHANG HongXiang,XIANG BinWei,ZHANG WenJia,ZHANG ChunXiang,ZHANG JianXin. Effects of Saccharomyces Cerevisiae and Bacillus Licheniformis on Growth Performance and Rumen Fermentation in Sheep [J]. Scientia Agricultura Sinica, 2020, 53(16): 3385-3393.
[8] SUN YongBo,WANG Ya,SA RenNa,ZHANG HongFu. Effects of Different Relative Humidities on Growth Performance, Antioxidant Capacity and Immune Function of Broilers [J]. Scientia Agricultura Sinica, 2018, 51(24): 4720-4728.
[9] CHAI JianMin, WANG Bo, QI MinLi, WANG ShiQin, TU Yan, TAO XiaoJing, DIAO QiYu, ZHANG NaiFeng. Effect of Weaning Liquid Diet at Different Level of Creep Feed Intake on Growth and Development of Lambs [J]. Scientia Agricultura Sinica, 2018, 51(2): 341-350.
[10] LIANG Di, YANG Xi, GUO YuRong. Effects of Different Concentrations of Apple Polyphenols on the Physicochemical Properties of Chitosan Membrane Fluids [J]. Scientia Agricultura Sinica, 2018, 51(14): 2799-2813.
[11] JIN ChengYan, Lü XiaoYang, GAO Wen, WANG Yue, CHEN WeiHao, SHENG ShuiXing, CHEN Ling, LIN Jie, SUN Wei. Study on the Relationship Between the Expression of Candidate miRNAs and the Developmental Characteristics in Different Patterns in Hu Sheep Lambskin [J]. Scientia Agricultura Sinica, 2018, 51(14): 2814-2824.
[12] LU JuanFang, LIU ShengYu, LU Wang, XI WanPeng. Phenolic Profiles and Antioxidant Activity of Fruit Pulp from Different Types of Peaches [J]. Scientia Agricultura Sinica, 2017, 50(16): 3205-3214.
[13] ZHANG Gui-wei, ZHANG Qiu-yun, JIANG Dong, XI Wan-peng, ZHOU Zhi-qin. Phenolic Composition and Antioxidant Activities of Grapefruit Varieties Cultivated in China [J]. Scientia Agricultura Sinica, 2015, 48(9): 1785-1794.
[14] WANG Bao-wei, CHEN Miao-lu,WANG Bing-han, ZHANG Ming-ai, GE Wen-hua, CHENG Fan-sheng, YUE Bin. Effects of Dietary Zinc on Immunity, Antioxidant Capacity and MT-I mRNA Gene Expression Level and Their Factor Correlation Analysis of 5-15 Weeks Old Goose [J]. Scientia Agricultura Sinica, 2015, 48(9): 1825-1835.
[15] NI Rong, SUN Wei, YIN Jing-feng, Lü Xiao-yang, WANG Qing-zeng, SU Rui, CHEN Ling, WU Wen-zhong, XU Hou-sheng, LI Yong, CHEN Jia-zhen, LIU Wei-zhong. Study on the Association Between the Expression of Candidate Genes in Different Waves and Hair Follicle Characteristics [J]. Scientia Agricultura Sinica, 2015, 48(8): 1616-1623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!