Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (15): 2664-2677.doi: 10.3864/j.issn.0578-1752.2019.15.010

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Rapeseed Green Manure on Soil Fertility and Bacterial Community in Dryland Wheat Field

LI WenGuang,YANG XiaoXiao,HUANG ChunGuo,XUE NaiWen,XIA Qing,LIU XiaoLi,ZHANG XiaoQi,YANG Si,YANG ZhenPing(),GAO ZhiQiang   

  1. College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
  • Received:2019-03-15 Accepted:2019-05-29 Online:2019-08-01 Published:2019-08-06
  • Contact: ZhenPing YANG E-mail:yangzp.2@163.com

Abstract:

【Objective】 The experiment was conducted to explore the effects of rapeseed planting as green manure on soil nutrients, enzyme activities and bacterial community in dryland wheat field of Loess Plateau in order to improve farmland fertility. 【Method】The experiment was arranged as two-factor split-plot design including sowing rates (S1: small amount; S2: medium amount; S3: large amount) as main plots and rapeseed composting dates (D1: September 10 as early period; D2: September 20 as medium period; D3: September 30 as late period) as subplots. Soil samples at replanting maize field at local areas were considered as control to compare the soil nutrient and enzyme activities. The high-throughput sequencing and PICRUSt gene prediction analysis method was used to determine soil community composition and metabolic function.【Result】Rapeseed manure increased the soil nutrients, enzyme activity and soil bacterial community and soil organic matter and sucrase activity were increased the most, ranging from 11.7% to 60.5%, and 1.4% to 94.5%, respectively, compared with control. Soil nutrients and enzyme activities were significantly affected by rapeseed sowing rates and soil organic matter, and sucrase activity were significantly affected by rapeseed composting dates. Alkaline phosphatase activity and soil bacterial community were significantly influenced with interaction between sowing rate and compositing date. Soil nutrients, enzyme activities and soil bacterial community diversity in S3D3 group were the highest as compared to other treatments. For bacterial community composition, 19 bacterial populations were identified in 10 soil samples at the phylum level, of which the dominant bacterial population were Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes. Cluster analysis showed that ten treatments could be clustered into four categories, including large amount, medium amount, small amount and control. Results indicated that rapeseed composting could significantly altered soil bacterial community composition. RDA analysis showed that there was a positive correlation between soil nutrients, enzyme activities and Acidobacteria, Betaproteobacteria, Gammaproteobacteria, Alphaproteobacteria, Gemmatimonadetes, Actinobacteria and bacterial diversity. According to the PICRUSt analysis, soil bacterial community had rich metabolic functions and genes encoding metabolism were highest. Amino acid metabolism, carbohydrate metabolism, energy metabolism and environmental information processes were key metabolic function pathways in secondary prediction function classification. Heat map analysis of KEGG demonstrated that rapeseed composting increased the bacterial community associated with soil carbon and nitrogen metabolism.【Conclusion】Sowing amount and rapeseed composting date significantly increased the soil nutrients, enzyme activities of succeeding wheat field and effectively, and improved the composition and diversity of soil bacterial community and enhanced the beneficial bacteria. The introduction of feed rapeseed as green manure during the summer fallow period is beneficial to improve the soil fertility and provide reasonable farming system in the dryland of the Loess Plateau.

Key words: rape, returning, green manure, wheat, soil fertility, bacterial community, high-throughput sequencing, functional predicting

Table 1

Effects of feed rape sowing density (S) and returning date (D) on soil nutrients and enzyme activities of wheat field"

处理
Treatment
自由度
DF
饲料油菜生物量
Feed rape biomass
(kg·hm-2)
速效磷
Available P (mg·kg-1)
碱解氮
Alkaline N (mg·kg-1)
有机质
SOM
(g·kg-1)
脲酶
Urease
(mg·g-1·24h-1)
碱性磷酸酶
Alkaline phosphatase
(mg·g-1·24h-1)
蔗糖酶
Sucrase
(mg·g-1·24h-1)
S1 D1 793.7c 14.50b 40.97d 11.25cde 0.29fg 1.19ef 0.74f
D2 794.5c 15.04b 40.38d 9.35e 0.27g 1.13f 0.82f
D3 815.2c 15.16b 40.65d 10.17de 0.30efg 1.30de 0.84ef
S2 D1 1367.4b 15.49ab 42.50cd 12.86bcd 0.35cd 1.46ab 0.98de
D2 1379.0b 16.03ab 42.07d 13.29bc 0.33de 1.42bc 1.11cd
D3 1388.8b 16.10ab 44.28cd 14.32b 0.34cd 1.33cd 1.11cd
S3 D1 1866.47a 16.39ab 46.88bc 14.33b 0.37bc 1.47ab 1.26bc
D2 1854.3a 16.60ab 49.97ab 15.05b 0.40ab 1.54ab 1.37ab
D3 1938.7a 17.28a 53.55a 18.47a 0.42a 1.56a 1.42a
CK 14.58b 41.13d 11.51cde 0.32def 1.24def 0.73f
S1 1342.52a 14.90b 40.67b 10.26c 0.29c 1.20c 0.79c
S2 1349.51a 15.87ab 42.95b 13.49b 0.34b 1.40b 1.06b
S3 1374.01a 16.76a 50.13a 15.95a 0.39a 1.52a 1.35a
D1 801.16c 15.46a 43.45a 12.81b 0.34a 1.37a 0.99b
D2 1378.40b 15.89a 44.14a 12.56b 0.34a 1.36a 1.09a
D3 1886.48a 16.18a 46.06a 14.32a 0.35a 1.39a 1.12a
F值F value
播量S 2 394.43** 6.35** 29.43** 39.32** 80.38** 48.32** 88.01**
还田时期D 2 0.37 0.96 2.39 4.35* 2.01 0.45 5.71*
播量×还田时期S×D 4 0.34 0.73 1.34 2.93 2.25 4.02* 0.12
误差Error 12
总变异Total 26

Table 2

Effects of feed rape sowing density (S) and returning date (D) on soil bacterial community diversity of wheat field"

处理
Treatment
自由度
DF
OTU 多样性指数Diversity Index
Chao 1 ACE Shannon
S1 D1 5490b 6086b 4875bc 10.8abc
D2 4458g 4994g 3845f 10.4d
D3 4708f 5227f 4188e 10.6c
S2 D1 5144d 5782cd 4518d 10.7bc
D2 5016e 5583de 4515d 10.6c
D3 4629f 5141f 4443d 10.6c
S3 D1 5291c 5981bc 4705c 10.9ab
D2 5498b 6194b 4903b 10.9ab
D3 5711a 6443a 5256a 11.0a
CK 5254c 5491e 4946b 10.9ab
S1 4885c 5435b 4302c 10.57b
S2 4929b 5527b 4492b 10.63b
S3 5500a 6206a 4944a 10.91a
D1 5308a 5949a 4699a 10.76a
D2 4991c 5590b 4421b 10.62b
D3 5016b 5629b 4619a 10.73ab
F值F value
播量S 2 1952** 88.82** 79.04** 20.63**
还田时期D 2 517** 19.48** 14.93** 3.22*
播量×还田时期S×D 4 864** 29.26** 39.44** 3.22*
误差Error 12
总变异Total 26

Fig. 1

Relative abundances of the top 10 bacterial community for different soil samples (at the phylum level)"

Fig. 2

Relative abundances of the top 10 bacterial community for different soil samples (at the class level)"

Table 3

The UPGMA cluster analysis based on weighted UniFrac for different soil samples bacterial community"

Fig. 4

The redundancy analysis (RDA) of soil nutrients, enzyme activities and soil bacterial community class level with diversity index"

Fig. 5

The abundance chart of KEGG of functional genes for different soil samples bacterial community"

Fig. 6

The abundance heatmap of KEGG orthologous groups (KO) cluster for different soil samples bacterial community"

[1] LIU Z P, SHAO M A, WANG Y Q . Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agriculture, Ecosystems & Environment, 2011,142(3):184-194.
[2] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁 . 中国氮肥发展、贡献和挑战. 中国农业科学, 2013,46(15):3161-3171.
doi: 10.3864/j.issn.0578-1752.2013.15.010
ZHANG W F, MA L, HUANG G Q, WU L, CHEN X P, ZHANG F S . The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Scientia Agricultura Sinica, 2013,46(15):3161-3171. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2013.15.010
[3] 金书秦, 邢晓旭 . 农业面源污染的趋势研判、政策评述和对策建议. 中国农业科学, 2018,51(3):593-600.
JIN S Q, XING X X . Trend analysis, policy evaluation, and recommendations of agricultural non-point source pollution. Scientia Agricultura Sinica, 2018,51(3):593-600. (in Chinese)
[4] ZHANG D B, YAO P W, ZHAO N, YU C W, CAO W D, GAO Y J . Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. European Journal of Agronomy, 2016,72:47-55.
[5] 陈洪俊, 黄国勤, 杨滨娟, 王晓维 . 冬种绿肥对早稻产量及稻田杂草群落的影响. 中国农业科学, 2014,47(10):1976-1984.
doi: 10.3864/j.issn.0578-1752.2014.10.011
CHEN H J, HUANG G Q, YANG B J, WANG X W . Effects of different winter planting-green manure on the grain yield of rice and weed community of paddy field. Scientia Agricultura Sinica, 2014,47(10):1976-1984. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.10.011
[6] 杨滨娟, 黄国勤, 王超, 林青, 徐宁 . 稻田冬种绿肥对水稻产量和土壤肥力的影响. 中国生态农业学报, 2013,21(10):1209-1216.
YANG B J, HAUNG G Q, WANG C, LIN Q, XU N . Effects of winter green manure cultivation on rice yield and soil fertility in paddy field. Chinese Journal of Eco-Agriculture, 2013,21(10):1209-1216. (in Chinese)
[7] RAMIREZ K S, LAUBER C L, KNIGHT R, BRADFROD M, FIERER N . Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology, 2010,91(12):3463-3470.
[8] DING J, JIANG X, GUAN D, ZHAO B, MA M, ZHOU B . Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese mollisols. Applied Soil Ecology, 2017,11:114-122.
[9] 王传杰, 肖婧, 蔡岸冬, 张文菊, 徐明岗 . 不同气候与施肥条件下农田土壤微生物生物量特征与容量分析. 中国农业科学, 2017,50(6):1067-1075.
WANG C J, XIAO J, CAI A D, ZHANG W J, XU M G . Capacity and characteristics of soil microbial biomass under various climate and fertilization conditions across China croplands. Scientia Agricultura Sinica, 2017,50(6):1067-1075. (in Chinese)
[10] CHANG H L, PARK K D, JUNG K Y, ALI M A, KIM P J . Effect of Chinese milk vetch(Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agriculture Ecosystems & Environment, 2015, 138(3):343-347.
[11] YE X F, LIU H E, LI Z, WAGN Y, WAGN Y Y, WANG H F, LIU G S . Effects of green manure continuous application on soil microbial biomass and enzyme activity. Journal of Plant Nutrition, 2014,37(4):498-508.
[12] NICOLAISEN M H, RISGAARD P N, REVSBECH N P, REICHARDT W, RAMSING N B . Nitrification-denitrification dynamics and community structure of ammonia oxidizing bacteria in a high yield irrigated Philippine rice field. FEMS Microbiology Ecology, 2004,49(3):359-369.
[13] TANAKA D L, LYON D J, MILLER P R, MERRILL S D, MCCONKEY B G . Soil and water conservation advances in the semiarid Northern Great Plains. Journal of Field Ornithology Mcconkey, 2010,82(2):132-139.
[14] O'Dea J K, Miller P R, JONES C A . Greening summer fallow with legume green manures: On-farm assessment in north-central Montana. Journal of Soil and Water Conservation, 2013,68(4):270-282.
[15] 赵刚, 樊廷录, 李尚中, 张建军, 王勇, 党翼, 王磊 . 夏休闲期复种油菜对旱地土壤水分和小麦产量的影响. 应用生态学报, 2013,24(10):2807-2813.
ZHAO G, FAN T L, LI S Z, ZHANG J J, WANG Y, DANG Y, WANG L . Effects of rape cropping in summer fallow period on dryland soil moisture content and winter wheat yield. Chinese Journal of Applied Ecology, 2013, 24(10):2807-2813. (in Chinese)
[16] 李红燕, 胡铁成, 曹群虎, 鱼昌为, 曹卫东, 黄冬琳, 翟丙年, 高亚军 . 旱地不同绿肥品种和种植方式提高土壤肥力的效果. 植物营养与肥料学报, 2016,22(5):1310-1318.
LI H Y, HU T C, CAO Q H, YU C W, CAO W D, HUANG D L, ZHAI B N, GAO Y J . Effect of improving soil fertility by planting different green manures in different patterns in dryland. Journal of Plant Nutrition and Fertilizer, 2016,22(5):1310-1318. (in Chinese)
[17] 何红霞, 李小涵, 包明, 李超, 马小龙, 何刚, 邱炜红, 王朝辉 . 栽培模式对旱地小麦产量和土壤肥力的影响. 应用生态学报, 2019,30(2):573-582.
HE H X, LI X H, BAO M, LI C, MA X L, HE G, QIU W H, WANG Z H . Effects of cultivation patterns on wheat yield and soil fertility in dryland. Chinese Journal of Applied Ecology, 2019,30(2):573-582. (in Chinese)
[18] MOSAVI S B, JAFARZADEH A A, NISHABOURI M R, SH O, FEIZIASL V . Application of rye green manure in wheat rotation system alters soil water content and chemical characteristics under dryland condition in Maragheh. Pakistan Journal of Biological Sciences, 2009,12(2):178-182.
[19] TAO J M, LIU X D, LIANG Y L, NIU J, XIAO Y H, GU Y B, MA L Y, MENG D L, ZHANG Y G, HUANG W K, PENG D L, YING H Q . Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Applied Microbiology and Biotechnology, 2017,101(3):1289-1299.
[20] LONGA C M O, NICOLA L, ANTONIELLI L, MESCALCHIN E, ZANZOTTI R, TURCO E, PERTOT I . Soil microbiota respond to green manure in organic vineyards. Journal of Applied Microbiology, 2017,123(6):1547-1560.
[21] LAN M L, GAO M . Influence of different straws returning with landfill on soil microbial community structure under dry and water farming. Environmental Science, 2015,36(11):4252-4259.
[22] 鲍士旦 . 土壤农化分析. 3 版. 北京: 中国农业出版社, 2000.
BAO S D. Analyses of Soil Agro-Chemistry. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[23] 关松荫 . 土壤酶及其研究法. 北京: 农业出版社, 1986.
GUAN S Y. Soil Enzymes and Its Research Methods. Beijing: Agriculture Press, 1986. (in Chinese)
[24] EDGAR R C . Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 2010,26(19):2460.
[25] LANGILLE M G I, ZANEVELD J, CAPORASO J G, MCDONALD D, KNIGHTS D, REYES J A . Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology, 2013,31(9):814-821.
[26] SCHLOSS P D, GEVERS D, WESTCOTT S L . Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE, 2011,6(12):1-14.
[27] SCHLOSS P D, HANDELSMAN J . Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied & Environmental Microbiology, 2005,71(3):1501-1506.
[28] YE X F, LIU H E, LI Z, WANG Y, WANG Y Y, WANG H F, LIU G S . Effects of green manure continuous application on soil microbial biomass and enzyme activity. Journal of Plant Nutrition, 2014,37(4):498-508.
[29] 叶协锋, 杨超, 李正, 敬海霞 . 绿肥对植烟土壤酶活性及土壤肥力的影响. 植物营养与肥料学报, 2013,19(2):445-454.
doi: 10.11674/zwyf.2013.0222
YIE X F, YANG C, LI Z, GING H X . Effects of green manure in corporation on soil enzyme activities and fertility in tobacco-planting soils. Plant Nutrition and Fertilizer Science, 2013,19(2):445-454. (in Chinese)
doi: 10.11674/zwyf.2013.0222
[30] ZHAO N, ZHAO H B, YU C W, CAO Q H, LI M, CAO W D, GAO Y J . Nutrient releases of leguminous green manures in rainfed lands. Plant Nutrition & Fertilizer Science, 2011,17(5):1179-1187.
[31] BAUER J, KIRSCHBAUM M U F, WEIHERMULLER L, HUISMAN J A, HERBST M, VEREECKEN H . Temperature response of wheat decomposition is more complex than the common approaches of most multi-pool models. Soil Biology & Biochemistry, 2008,40(11):2780-2786.
[32] 杨珍平, 郝教敏, 苗果园 . 混作在黄土母质生土改良中的应用. 应用与环境生物学报, 2011,17(3):388-392.
YANG Z P, HAO J M, MIAO G Y . Utilization of mixture cropping to improve immature loess soil. Chinese Journal of Applied & Environmental Biology, 2011,17(3):388-392. (in Chinese)
[33] 王秀呈 . 稻—稻—绿肥长期轮作对水稻土壤及根系细菌群落的影响[D]. 北京: 中国农业科学院, 2015.
WANG X C . The influence of long term rice-rice-green manure rotation on rice bulk soil and root-associated bacteria[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[34] 林叶春, 李雨, 陈伟, 陈懿, 高维常, 和凤梅, 黄化刚, 潘文杰 . 绿肥压青对喀斯特地区植烟土壤细菌群落特征的影响. 中国土壤与肥料, 2018(3): 161-167.
LIN Y C, LI Y, CHEN W, CHEN Y, GAO W C, HE F M, HUANG H G, PAN W J . Effects of green manures on the bacterial community characteristics of the rhizosphere soil in flue-cured tobacco. Soil and Fertilizer Sciences in China, 2018(3):161-167. (in Chinese)
[35] 包明, 何红霞, 马小龙, 王朝辉, 邱炜红 . 化学氮肥与绿肥对麦田土壤细菌多样性和功能的影响. 土壤学报, 2018,55(3):734-743.
BAO M, HE H X, MA X L, WANG Z H, QIU W H . Effects of chemical nitrogen fertilizer and green manure on diversity and functions of soil bacteria in wheat field. Acta Pedologica Sinica, 2018,55(3):734-743. (in Chinese)
[36] ELLA W, HALLIN S, PHILIPPOT L . Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biology and Biochemistry, 2010,42(10):1759-1765.
[37] FIERER N, LAUBER C L, RAMIREZ K S, ZANEVELD J, BRADFORD M A, KNIGHT R . Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal, 2012,6(5):1007-1017.
[38] 王伏伟, 王晓波, 李金才, 叶爱华, 王妍, 车威, 朱林 . 施肥及秸秆还田对砂姜黑土细菌群落的影响. 中国生态农业学报, 2015,23(10):1302-1311.
WANG F W, WANG X B, LI J C, YE A H, WANG Y, CHE W, ZHU L . Effects of fertilization and straw incorporation on bacterial communities in lime concretion black soil. Chinese Journal of Eco-Agriculture, 2015,23(10):1302-1311. (in Chinese)
[39] 魏志文, 李韵雅, 江威, 廖祥儒 . 无锡地区常见树木根际土壤酸杆菌多样. 生态学杂志, 2018,37(9):2649-2656.
WEI Z W, LI Y Y, JIANG W, LIAO X R . Diversity of acidobacteria in rhizosphere soils of common trees in Wuxi. Chinese Journal of Ecology, 2018,37(9):2649-2656. (in Chinese)
[40] SAIT M, DAVIS K E R, JANSSEN P H . Effect of pH on isolation and distribution of members of subdivision 1 of the phylum acidobacteria occurring in soil. Colloids & Surfaces B Biointerfaces, 2006,53(2):215-224.
[41] 曹彦强, 闫小娟, 罗红燕, 贾仲君, 蒋先军 . 不同酸碱性紫色土的硝化活性及微生物群落组成. 土壤学报, 2018,55(1):194-202.
CAO Y Q, YAN X J, LUO H Y, JIA Z J, JIANG X J . Nitrification activity and microbial community structure in purple soils with different pH. Acta Pedologica Sinica, 2018,55(1):194-202. (in Chinese)
[42] 钱雅丽, 梁志婷, 曹铨, 杨宪龙, 沈禹颖, 王先之 . 陇东旱作果园生草对土壤细菌群落组成的影响. 生态学杂志, 2018,37(10):3010-3017.
QIAN Y L, LIANG Z T, CAO Q, YANG X L, SHEN Y Y, WANG X Z . Effects of grass-planting on soil bacterial community composition of apple orchard in Longdong arid region. Chinese Journal of Ecology, 2018,37(10):3010-3017. (in Chinese)
[43] FIERER N, JACKSON R B . The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006,103(3):626-631.
[44] 张贵云, 吕贝贝, 张丽萍, 刘珍, 范巧兰, 魏明峰, 姚众, 袁嘉玮, 柴跃进 . 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响. 中国生态农业学报, 2019(3):358-368.
ZHANG G Y, LV B B, ZHANG L P, LIU Z, FAN Q L, WEI M F, YAO Z, YUAN J W, CHAI Y J . Effect of long-term no-tillage with stubble on soil fertility and diversity of prokaryotic microbiome in dryland wheat soils on the Loess Plateau, China. Chinese Journal of Eco-Agriculture, 2019(3):358-368. (in Chinese)
[45] LEBRUN E S, KANG S . A comparison of computationally predicted functional metagenomes and microarray analysis for microbial P cycle genes in a unique basalt-soil forest. F1000research, 2018,7:179.
[46] KHURANA P, GOKHALE R S, MOHANTY D . Genome scale prediction of substrate specificity for acyl adenylate superfamily of enzymes based on active site residue profiles. BMC Bioinformatics, 2010,11(1):57.
[47] 李志杰, 张凯, 翟宇佳, 周强军, 耿运琪, 孙飞 . 线虫烯脂酰CoA水合酶的克隆、表达、纯化及初步晶体学分析. 生物物理学报, 2010,26(1):37-48.
LI Z J, ZHANG K, ZHAI Y J, ZHOU Q J, GENG Y Q, SUN F . Cloning, expression, purification and preliminary crystallographic analysis of Caenorhabditis elegans Enoyl-CoA hydratase. Acta Biophysica Sinica, 2010,26(1):37-48. (in Chinese)
[48] KRIVORUCHKO A, ZHANG Y, SIEWERS V . Microbial acetyl-CoA metabolism and metabolic engineering. Metabolic Engineering, 2015,28:28-42.
[49] ANDREWS M, LEA P J, RAVEN J A, LINDSEY K . Can genetic manipulation of plant nitrogen assimilation enzymes result in increased crop yield and greater N-use efficiency an assessment. Annals of Applied Biology, 2015,145(1):25-40.
[50] 吕娜娜, 沈宗专, 王东升, 刘红军, 薛超, 李荣, 沈其荣 . 施用氨基酸有机肥对黄瓜产量及土壤生物学性状的影响. 南京农业大学学报, 2018,41(03):456-464.
LV N N, SHEN Z Z, WANG D S, LIU H J, XUE C, LI R, SHEN Q R . Effects of amino acid organic fertilizer on cucumber yield and soil biological characters. Journal of Nanjing Agricultural University, 2018,41(3):456-464. (in Chinese)
[51] 武姣娜, 魏晓东, 李霞, 张金飞, 谢寅峰 . 植物氮素利用效率的研究进展. 植物生理学报, 2018,54(9):1401-1408.
WU J N, WEI X D, LI X, ZHANG J F, XIE Y F . Research progress in nitrogen use efficiency in plants. Plant Physiology Journal, 2018,54(9):1401-1408. (in Chinese)
[52] POLACCO J C, MAZZAFERA P, TEZOTTO T. Opinion - nickel and urease in plants: Still many knowledge gaps. Plant Science, 2013,199/200:79-90.
[53] 张亚玉, 孙海, 高明, 孙长伟, 汪景宽 . 吉林省人参土壤中重金属污染水平及生物有效性研究. 土壤学报, 2011,48(6):1306-1313.
ZHANG Y Y, SUN H, GAO M, SUN C W, WANG J K . Pollution level and bioavailability of heavy metals in ginseng soil Jilin Province. Acta Pedologica Sinica, 2011,48(6):1306-1313. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[5] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[6] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[7] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[8] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[11] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[12] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[13] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[14] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[15] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!