Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4166-4176.doi: 10.3864/j.issn.0578-1752.2019.22.020

• CULTIVATION·PHYSIOLOGY • Previous Articles     Next Articles

Responses of Fertilization on Sorghum Grain Yield, Quality and Nutrient Utilization to Soil Fertility

WANG JinSong1,DONG ErWei1,WU AiLian1,BAI WenBin2,WANG Yuan1,JIAO XiaoYan1()   

  1. 1 Institute of Agricultural Environment and Resources, Shanxi Academy of Agricultural Sciences, Taiyuan 030031
    2 Institute of Sorghum, Shanxi Academy of Agricultural Sciences, Jinzhong 030600, Shanxi
  • Received:2019-05-31 Accepted:2019-07-01 Online:2019-11-16 Published:2019-11-16
  • Contact: XiaoYan JIAO E-mail:jiaoxiaoyan@sxagri.ac.cn

Abstract:

【Objective】Responses of sorghum grain yield , quality and NPK utilization to inherent soil fertility, and their interaction were explored to provide theoretical basis for best nutrient management according to soil fertility. 【Method】Pot experiment was conducted in greenhouse. Soil was collected from three treatments of long-term fertilizer application experiment for 6 years, which were without fertilizer, NPK application and NPK application along with animal manure and straw returning to field, respectively. They were termed as low soil fertility (LSF), medium soil fertility (MSF) and high soil fertility (HSF), correspondingly. For each soil fertility, there were two treatments for pot experiment: without fertilizer (NF) and fertilizer application (CF). Plant and grain of sorghum were harvested after maturity. NPK accumulation in plant above ground and grain were calculated according to NPK concentration and biomass of each part of plant. The contents of starch, tannic and protein of grain were determined. 【Result】For LSF, MSF and HSF, a similar biomass and yield were gained if fertilizer was applied. They were significantly affected by inherent soil fertility if fertilizer was withdrawn. Soil fertility did not affect starch content of grain, which was 67.99%-69.33%, if fertilizer was not applied. However, HSF combined with fertilizer application resulted in 60.75% starch content in grain. For all treatments, the highest of tannin content was observed in grain of LSF without fertilizer. Fertilizer application significantly decreased tannin content of grain when sorghum was cultivated with LSF and HSF, only 70% of that was produced by LSF combined with NF. Protein content was promoted with the increase of inherent soil fertility, and was doubled by fertilizer application whatever soil fertility was. When fertilizer was applied, the contributions of soil fertility to yield were 90.25%, 51.75% and 8.5% for LSF, MSF and HSF, respectively. NPK accumulation of both grain and plant aboveground was regulated by inherent soil fertility. Fertilizer enhanced NPK absorption for all soil fertility treatments. For example, N accumulation in grain and plant, induced by fertilizer application, were 1.8 and 1.9 times of those when fertilizer was withdrawn under conditions of HSL. NPK harvest indices were enhanced by fertilizer application if soil fertility was either low or medium; whereas diminished NPK harvest indices were noticed with high soil fertility.【Conclusion】The potential sorghum grain yield can be gained for low soil fertility by means of fertilizer application. Without fertilizer, inherent soil fertility has a significant effect on grain yield. However its impacts on content of starch, tannin and protein can be neglected. Low soil fertility, combined withdrawn fertilizer, promotes starch and tannin accumulation in grain. Fertilizer application has relative more influence on grain protein content than soil fertility does. Fertilizer application diminishes nutrient harvest index and nutrient use efficiency if inherent soil fertility is high.

Key words: sorghum, inherent soil fertility, grain quality, nutrient accumulation

Table 1

Soil basic chemical properties"

土壤肥力
Soil fertility
有机质
OM (g·kg-1)
全氮
Total N (g·kg-1)
硝态氮
NO3--N (mg·kg-1)
有效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
LSF 7.84±0.70 0.71±0.01 19.44±0.07 3.97±0.23 145.36±1.34
MSF 8.89±1.03 0.95±0.04 33.34±0.12 6.97±0.52 217.72±2.68
HSF 18.48±2.43 1.39±0.01 70.45±0.29 21.23±0.61 357.75±1.16

Fig. 1

Effects of fertilization on biomass and grain yields with different soil fertility LSF: Low soil fertility; MSF: Medium soil fertility; HSF: High soil fertility; NF: Without fertilization; CF: With fertilization. Different lowercase letter indicates significant differences at 0.05 level. The same as below"

Table 2

Effects of fertilization on grain quality with different soil fertility"

土壤肥力
Soil fertility
处理
Treatment
总淀粉
Total starch
(%)
淀粉组成 单宁
Tannic
(g·kg-1)
蛋白质
Protein
(g·kg-1)
直链淀粉
Amylose (%)
支链淀粉
Amylopectin (%)
LSF NF 69.69±0.47a 20.66±0.10a 79.34±0.10a 13.69±0.86a 50.98±2.73d
CF 67.99±0.53bc 20.83±0.87a 79.17±0.87a 10.53±0.28b 108.13±2.72b
MSF NF 69.33±0.52ab 20.67±0.50a 79.33±0.50a 10.67±0.69b 51.75±0.86d
CF 65.50±1.61c 20.89±0.50a 79.11±0.50a 10.07±0.61b 118.13±2.53a
HSF NF 69.70±0.27a 21.32±0.57a 78.68±0.57a 10.78±0.34b 68.54±1.71c
CF 60.75±2.13d 22.45±0.84a 77.55±0.84a 7.80±0.42c 117.19±0.54a
土壤肥力Soil fertility (S) * NS NS ** **
施肥处理Fertilizer (F) ** NS NS ** **
肥力×施肥 S×F * NS NS NS **

Fig. 2

Contribution of soil fertility and its effect on fertilizer contribution to sorghum yield"

Table 3

Effects of fertilization on nutrient accumulation of grain and total nutrient accumulation above ground with different soil fertility"

土壤处理
Treatment soil
处理
Treatment
籽粒吸收量
Accumulation of grain (mg/pot)
地上部吸收量
Total accumulation above ground (mg/pot)
收获指数
Harvest index (%)
N P K N P K N P K
LSF NF 24.20±0.49e 7.13±0.33d 9.33±0.34e 58.28±2.56f 9.54±0.27d 144.06±5.98e 41.76±2.78e 74.90±4.05c 6.48±0.04c
CF 524.87±12.17b 76.43±5.14b 100.13±4.64c 731.26±70.72c 84.74±5.19b 731.99±24.56c 71.76±0.64a 90.14±1.08a 13.74±1.01a
MSF NF 123.86±4.37d 33.07±1.42c 51.41±2.24d 207.61±4.08e 40.14±2.20c 455.44±9.36d 59.63±1.01d 82.49±0.97b 11.31±0.70b
CF 586.47±15.67b 87.45±2.52b 122.07±4.86a 861.91±21.15b 98.88±3.81b 1002.71±14.98b 68.05±0.93b 88.50±0.84ab 12.17±0.30b
HSF NF 319.42±5.00c 81.76±2.80b 103.91±2.20b 481.63±4.20d 93.89±1.58b 1033.12±28.62b 66.31±0.47b 87.05±2.08ab 10.08±0.48b
CF 597.11±5.90a 90.04±1.52a 116.60±8.51b 924.92±20.45a 113.15±1.01a 1167.32±15.55a 64.59±0.79bc 79.59±1.48bc 9.97±0.60b
土壤肥力
Soil fertility (S)
** ** ** ** ** ** ** NS **
施肥处理
Fertilizer (F)
** ** ** ** ** ** ** ** **
肥力×施肥
S×F
** ** ** ** ** ** ** ** **

Fig. 3

Effects of soil fertility on soil nutrient dependence,fertilizer recovery efficiency and partial factor productivity of fertilizer"

Fig. 4

Effects of soil fertility and fertilization on nitrogen, phosphorus, potassium use efficiency of grain"

[1] 梁涛, 廖敦秀, 陈新平, 王帅, 付登伟, 陈轩敬, 石孝均 . 重庆稻田基础地力水平对水稻养分利用效率的影响. 中国农业科学, 2018,51(16):3106-3116.
LIANG T, LIAO D X, CHEN X P, WANG S, FU D W, CHEN X J, SHI X J . Effect of paddy inherent soil productivity on nutrient utilization efficiency of rice in Chongqing. Scientia Agricultura Sinica, 2018,51(16):3106-3116. (in Chinese)
[2] 曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊 . 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012,45(14):2886-2894.
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L . Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012,45(14):2886-2894. (in Chinese)
[3] 武红亮, 王士超, 槐圣昌, 闫志浩, 马常宝, 薛彦东, 徐明岗, 卢昌艾 . 近30年来典型黑土肥力和生产力演变特征. 植物营养与肥料学报, 2018,24(6):1456-1464.
WU H L, WANG S C, HUAI S C, YAN Z H, MA C B, XUE Y D, XU M G, LU C A . Evolutionary characteristics of fertility and productivity of typical black soil in recent 30 years. Journal of Plant Nutrition and Fertilizers, 2018,24(6):1456-1464. (in Chinese)
[4] 山仑, 徐炳成 . 论高粱的抗旱性及在旱区农业中的地位. 中国农业科学, 2009,42:2342-2348.
SHAN L, XU B C . Discussion on drought resistance of sorghum and its status in agriculture in arid and semiarid regions. Scientia Agricultura Sinica, 2009,42:2342-2348. (in Chinese)
[5] 中国产业信息 2018年中国高粱价格走势、产量、进口量及进口依存度. (2018-4-10). .
China's Industrial Information: Tends of Sorghum Price, Total Domestic Production, Import Quota and Sorghum Market Dependence on Import in 2018 of China. ( 2018-4-10). .(in Chinese)
[6] ASSEFA Y, ROOZEBOOM K, THOMPSON C, SCHLEGEL A, STONE L, LINGENFELSER J. Corn and Sorghum Comparison: All Things Considered. Waltham: Academic Press, 2013: 71-86.
[7] 徐明岗, 梁国庆, 张夫道 . 中国土壤肥力演变. 北京: 中国农业科学技术出版社, 2006.
XU M G, LIANG G Q, ZHANG F D. Variation of Soil Fertility in China. Beijing: China Agricultural Science and Technology Press, 2006. (in Chinese)
[8] 鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平 . 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015,52(3):597-606.
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P . Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015,52(3):597-606. (in Chinese)
[9] 李忠芳, 徐明岗, 张会民, 张文菊, 高静 . 长期施肥下中国主要粮食作物产量的变化. 中国农业科学, 2009,42(7):2407-2414.
LI Z F, XU M G, ZHANG H M, ZHANG W J, GAO J . Grain yield trends of different food crops under long-term fertilization in China. Scientia Agricultura Sinica, 2009,42(7):2407-2414. (in Chinese)
[10] 廖育林, 鲁艳红, 聂军, 谢坚, 周兴, 杨曾平 . 长期施肥稻田土壤基础地力和养分利用效率变化特征. 植物营养与肥料学报, 2016,22(5):1249-1258.
LIAO Y L, LU Y H, NIE J, XIE J, ZHOU X, YANG Z P . Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils. Journal of Plant Nutrition and Fertilizer, 2016,22(5):1249-1258. (in Chinese)
[11] HAEFELE S M, WOPEREIS M C S, SCHLOEBOHM A M, WIECHMANN H . Long-term fertility experiments for irrigated rice in the West African Sahel: Effect on Soil Characteristics. Field Crops Research, 2004,85:61-77.
[12] 韩宝吉, 曾祥明, 卓光毅, 徐芳森, 姚忠清, 肖习明, 石磊 . 氮肥施用措施对湖北中稻产量、品质和氮肥利用率的影响. 中国农业科学, 2011,44(4):842-850.
HAN B J, ZENG X M, ZHUO G Y, XU F S, YAO Z Q, XIAO X M, SHI L . Effects of fertilization measures of nitrogen (N) on grain yield, grain quality and N-use efficiency of midseason rice in Hubei province. Scientia Agricultura Sinica, 2011,44(4):842-850. (in Chinese)
[13] 王寅, 李小坤, 李雅颖, 李继福, 肖国滨, 郑伟, 袁福生, 鲁艳红, 廖育林, 鲁剑巍 . 红壤不同地力条件下直播油菜对施肥的响应. 土壤学报, 2012 , 49(1):121-129.
WANG Y, LI X K, LI Y Y, LI J F, XIAO G B, ZHENG W, YUAN F S, LU Y H, LIAO Y L, LU J W . Responses of direct-seeding rapeseed to fertilization in fields of red soil different in fertility. Acta Pedologica Sinica, 2012,49(1):121-129. (in Chinese)
[14] 武际, 郭熙盛, 王允青, 汪建来, 杨晓虎 . 氮磷配施对小麦氮磷、钾养分吸收利用及产量和品质的影响. 植物营养与肥料学报, 2007,13(6):1054-1061.
WU J, GUO X S, WANG Y Q, WANG J L, YANG X H . Effects of combined application of nitrogen and potassium on absorption of N and K, grain yield and quality of weak gluten wheat. Plant Nutrition and Fertilizer Science, 2007,13(6):1054-1061. (in Chinese)
[15] 辛励, 刘锦涛, 刘树堂, 陈延玲, 南镇武, 袁铭章, 陈晶培 . 小麦-玉米轮作体系下长期定位秸秆还田对籽粒产量及品质的影响. 华北农学报, 2016,31(6):164-170.
XIN L, LIU J T, LIU S T, CHEN Y L, NAN Z W, YUAN M Z, CHEN J P . Effects of combined application of straw and organic fertilizer on grain yield and quality under wheat maize rotation system. Acta Agriculturae Boreali-Sinica, 2016,31(6):164-170. (in Chinese)
[16] 曹昌林, 董良利, 宋学东, 史丽娟 . 氮、磷、钾配施对高粱籽粒淀粉含量的影响. 山东农业科学, 2010(5):68-70.
CAO C L, DONG L L, SONG X D, SHI L J . Effects of nitrogen, phosphorus and potassium on starch content in sorghum grains. Shandong Agricultural Sciences, 2010(5):68-70. (in Chinese)
[17] 于泳, 黄瑞冬, 赵尚文, 将文春 . 不同施氮水平对高粱籽粒淀粉累积规律的影响. 作物杂志, 2008(5):20-23.
YU Y, HUANG R D, ZHAO S W, JIANG W C . Effect of nitrogen application on starch accumulation in sorghum grains. Crops, 2008(5):20-23. (in Chinese)
[18] ZHONG Y X, WANG W L, HUANG X, LIU M M, HEBELSTRUP K H, YANG D L, CAI J, WANG X, ZHOU Q, CAO W X, DAI T B, JIAN D . Nitrogen topdressing timing modifies the gluten quality and grain hardness related protein levels as revealed by iTRAQ. Food Chemistry, 2019,277:135-144.
[19] BEILLOUIN D, TREPOS R, GAUFFRETEAU A, JEUFFROY M H . Delayed and reduced nitrogen fertilization strategies decrease nitrogen losses while still achieving high yields and high grain quality in malting barley. European Journal of Agronomy, 2018,101:174-182.
[20] 鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
LU R K. Analytical Methods for Soil and Agro-Chemistry. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[21] 霍权恭, 范璐, 周展明 . 高粱单宁含量的测定(GB/T 15686-2008). 中华人民共和国国家标准.
HUO Q G, FAN L, ZHOU Z M . Sorghum-Determination of tannin content (GB/T 15686-2008), State Standard of the People's Republic of China.(in Chinese)
[22] 谷物籽粒粗淀粉测定方法(GB 5006-1985), 中华人民共和国国家标准.
Determination of crude starch in cereals seeds(GB 5006-1985), State Standard of the People's Republic of China. (in Chinese)
[23] 水稻、玉米、谷子籽粒淀粉直链淀粉测定法(GB 7684-1987), 中华人民共和国国家标准.
Determination of amylase in grains of rice , maize and millet(GB 7684-1987), State Standard of the People's Republic of China. (in Chinese)
[24] 黄明, 吴金芝, 李友军, 王贺正, 陈明灿, 付国占 . 旱地不同产量水平小麦的产量构成及氮素吸收利用效率. 麦类作物学报, 2019,39(2):163-170.
HUANG M, WU J Z, LI Y J, WANG H Z, CHEN M C, FU G Z . Differences of yield components and nitrogen uptake and utilization in winter wheat with different yield levels in drylands. Journal of Triticeae Crop, 2019,39(2):163-170. (in Chinese)
[25] GU A J, XIE Y, GAO Y, REN X Y, CHENG C C, WANG S C . Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Science of the Total Environment, 2018(637/638):706-716.
[26] 彭卫福, 吕伟生, 黄山, 曾勇军, 潘晓华, 石庆华 . 土壤肥力对红壤性水稻土水稻产量和氮肥利用效率的影响. 中国农业科学, 2018,51(18):3614-3624.
PENG W F, LÜ W S, HUANG S, ZENG Y J, PAN X H, SHI Q H . Effects of soil fertility on rice yield and nitrogen use efficiency in a red paddy soil. Scienta Agricultura Sinica, 2018,51(18):3614-3624. (in Chinese)
[27] CHUAN L M, GRANT C, JIN J Y, QIU S J, ZHAO S C, LI S T, ZHOU W, XU X P . Estimating nutrient uptake requirements for wheat in China. Field Crops Research, 2013,146:96-104.
[28] 刘璐, 王朝辉, 刁超朋, 王森, 李莎莎 . 旱地不同小麦品种产量与干物质及氮磷钾养分需求的关系. 植物营养与肥料学报, 2018,24(3):599-608.
LIU L, WANG Z H, DIAO C P, WANG S, LI S S . Grain yield of different wheat cultivars and their relations to dry matter and NPK requirement in dryland. Journal of Plant Nutrition and Fertilizers, 2018,24(3):599-608. (in Chinese)
[29] 郝晓宇, 黄芳, 王峥, 张树兰, 杨学云 . 陕西关中不同年代小麦品种产量及氮素吸收利用对土壤肥力的响应. 中国农业科学, 2015,48(23):4769-4780
HAO X Y, HUANG F, WANG Z, ZHANG S L, YANG X Y . Responses of grain yield and nitrogen use efficiency of wheat cultivars released in different decades to soil fertility in Shaanxi Guanzhong plain. Scientia Agricultura Sinica, 2015,48(23):4769-4780. (in Chinese)
[30] KULP K, JOSEPH G, PONTE JR J G . Handbook of the Cereal Science and Technology. Second ed. New York: Marcel Dekker, 1991: 385-415.
[31] 张桂香, 史红梅, 李爱军 . 高粱高淀粉基础材料的筛选及评价. 作物杂志, 2009(1):97-98.
ZHANG G X, SHI H M, LI A J . Screening and evaluation of sorghum varieties with high starch content. Crops, 2009(1):97-98. (in Chinese)
[32] EBADI M R, SEDGHI M, KAKAHKAI R M . Accurate prediction of nutritional value of sorghum grain using image analysis. British Poultry Science, 2019,60(2):154-160.
[33] 郭旭凯, 杨玲, 张福耀, 段冰, 郭睿, 邵强 . 高粱籽粒理化特性与清香型大曲白酒酿造关系的研究, 中国酿造, 2016,35(12):40-43.
GUO X K, YANG L, ZHANG F Y, DUAN B, GUO R, SHAO Q . Relationship between physicochemical properties of sorghum and fen-flavor Daqu Baijiu fermentation. China Brewing, 2016,35(12):40-43. (in Chinese)
[34] 付雪丽, 王晨阳, 郭天财, 朱云集, 马冬云, 王永华 . 水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响. 应用生态学报, 2008,19(2):317-322.
FU X L, WANG C Y, GUO T C, ZHU Y J, MA D Y, WANG Y H . Effects of water nitrogen interaction on the contents and components protein and starch in wheat grains. Chinese Journal of Applied Ecology, 2008,19(2):317-322. (in Chinese)
[35] 孙涛, 同拉嘎, 赵书宇, 王海微, 韩云飞, 张忠臣, 金正勋 . 氮肥对水稻胚乳淀粉品质、相关酶活性及基因表达量的影响. 中国水稻科学, 2018 , 32(5):475-484.
SUN T, TONG L G, ZHAO S Y, WANG H W, HAN Y F, ZHANG Z C, JIN Z Y . Effects of Nitrogen fertilizer application on starch quality, activities and gene expression. Chinese Journal of Rice Science, 2018,32(5):475-484. (in Chinese)
[36] KAPLAN M, KARAMAN K, KARDS Y M, KALE H . Phytic acid content and starch properties of maize ( Zea mays L.): Effects of irrigation process and nitrogen fertilizer. Food Chemistry, 2019,283:375-380.
[37] 王劲松, 董二伟, 武爱莲, 南江宽, 韩雄, 王立革, 丁玉川, 焦晓燕 . 灌溉时期与施氮量对矮杆高粱产量和品质的影响. 灌溉排水学报, 2017,36(增刊2):1-8.
WANG J S, DONG E W, WU A L, NAN J K, HAN X, WANG L G, DING Y C, JIAO X Y . Effects of irrigation period and nitrogen application rate on dwarf sorghum yield and quality. Journal of Irrigation and Drainage, 2017,36(Suppl. 2):1-8. (in Chinese)
[38] 熊淑萍, 王静, 王小纯, 丁世杰, 马新明 . 耕作方式及施氮量对砂浆黑土区小麦氮代谢及籽粒产量和蛋白质含量的影响. 植物生态学报, 2014 , 38(7):767-775.
XIONG S P, WANG J, WANG X C, DING S J, MA X M . Effects of tillage and nitrogen addition rate on nitrogen metabolism, grain yield and protein content in wheat in lime concretion black soil region. Chinese Journal of Plant Ecology, 2014,38(7):767-775. (in Chinese)
[39] ALI B, SHAH G A, TRAORE B, SHAH S A A, AL-SOLAIMANI S G M, HUSSAIN Q, ALI N, SHAHZAD K, SHAHZAD T, AHMAD A, MUHAMMAD S, SHAH G M, ARSHAD M, HUSSAIN R A, SHAH J A, ANWAR A, AMJID M W, RASHID M I . Manure storage operations mitigate nutrient losses and their products can sustain soil fertility and enhance wheat productivity. Journal of Environmental Management, 2019,241:468-478.
[40] 张利华, 林益明, 叶富功, 邵宏波 . 环境因素对植物单宁形成的影响. 鲁东大学学报(自然科学版), 2010,26(4):366-372.
ZHANG L H, LI Y M, YE F G, SHAO H B . The relationship between vegetable tannins production and environmental factors. Ludong University Journal (Natural Science Edition), 2010,26(4):366-372. (in Chinese)
[41] HALL A B, BLUM U, FITES R C . Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. American Journal of Botany, 1982,69(5):776-783.
[42] RAMÍREZ M B, FERRARI M D, LAREO C . Fuel ethanol production from commercial grain sorghum cultivars with different tannin content. Journal of Cereal Science, 2016,69:125-131.
[1] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[2] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[3] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[4] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[5] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[6] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[7] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[8] TaoTao YANG,JiaXin XIE,Shan HUANG,XueMing TAN,XiaoHua PAN,YongJun ZENG,QingHua SHI,Jun ZHANG,YanHua ZENG. The Impacts of Post-Anthesis Warming on Grain Yield and Quality of Late Japonica Rice in a Double Rice Cropping System [J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347.
[9] ZHANG Xue,YANG HongKun,ZHENG Ting,XIAO Yun,MO Piao,FAN GaoQiong. Effects of Exogenous ABA on Pre-Harvest Sprouting Resistance and Quality of White and Red Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(23): 4750-4763.
[10] ZOU JianQiu. New Research Progress on Sorghum Breeding and Cultivation Techniques [J]. Scientia Agricultura Sinica, 2020, 53(14): 2769-2773.
[11] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
[12] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
[13] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[14] WANG HaiLian,WANG RunFeng,LIU Bin,ZHANG HuaWen. Effects of Harvesting at Different Growth Stage on Agronomic and Nutritional Quality Related Traits of Sweet Sorghum [J]. Scientia Agricultura Sinica, 2020, 53(14): 2804-2813.
[15] ZOU JianQiu,WANG YanQiu,LI JinHong,ZHU Kai. Dwarfing Effect and Molecular Mechanism of An Elite Sorghum Male Sterile Line 01-26A in Its Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(14): 2814-2827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!