Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (18): 3614-3624.doi: 10.3864/j.issn.0578-1752.2018.18.017

• RESEARCH NOTES • Previous Articles    

Effects of Soil Fertility on Rice Yield and Nitrogen Use Efficiency in a Red Paddy Soil

WeiFu PENG1,2(), WeiSheng LÜ3, Shan HUANG1(), YongJun ZENG1, XiaoHua PAN1, QingHua SHI1   

  1. 1School of Agricultural Sciences, Jiangxi Agricultural University/ Key Laboratory of Crop Physiology, Ecology and Genetic Breeding(Jiangxi Agricultural University), Ministry of Education, Nanchang 330045
    2College of Biology Science and Engineering, Jiangxi Agricultural University, Nanchang 330045
    3Jiangxi Institute of Red Soil / National Engineering and Technology Research Center for Red Soil Improvement/Scientific Observational and Experimental Station of Arable Land Conservation in Jiangxi, Ministry of Agriculture, Nanchang 331717
  • Received:2018-03-08 Accepted:2018-05-07 Online:2018-09-16 Published:2018-09-16

Abstract:

【Objective】 Soil fertility is the basis for high rice yield in the red paddy soil. It is critical to clarify the effects of different fertility levels on crop yield and nitrogen (N) use efficiency, thereby providing scientific evidence for soil fertility improvement and appropriate fertilizer management in red paddy soil. 【Method】 A pot experiment was carried out on red paddy soils with similar texture and different fertility levels (The level of soil organic matter represented the level of soil fertility) with the 15N isotopic tracer technique. The effects of soil fertility (FL, FM, and FH represent low, medium, and high fertility soils with a soil organic matter 19.9, 29.6, 38.9 g·kg-1, respectively) and N fertilizer rate (N0, N150, and N225 represent the N application rate at 0, 150, and 225 kg·hm-2, respectively), with 9 treatments (FLN0, FLN150, FLN225, FMN0, FMN150, FMN225, FHN0, FHN150, and FHN225) on rice yield and its composition, N uptake and its fate were investigated. 【Result】 Increasing soil fertility and N fertilization significantly increased the number of effective panicles, yield, and total N uptake of rice. Compared with N0, FL, FM, and FH increased rice yield by 63%, 40% and 17% under N150 treatment, respectively, with 89%, 55% and 23% under N225 treatment, respectively. In medium and low fertility soils, increasing the N rate significantly increased rice yield, whereas no significant difference was found between the FHN150 and FHN225 treatments. Using the 15N tracing technique, we found that the uptake of fertilizer N and soil N by rice plants increased with the increasing soil fertility under the same N application rate. However, the proportion of N derived from soil (Ndfs) increased with the increasing soil fertility, while the proportion of N derived from fertilizer (Ndff) showed the opposite trend. Increasing N fertilization rate led to an increase in Ndff, while reducing Ndfs. The average N recovery efficiency (NRE) of FL, FM, and FH was 42%, 48% and 52%, respectively; with the average N fertilizer residue rate of 20%, 23% and 28%, and the average N fertilizer loss rate of 38%, 29% and 20%, respectively. The NRE of FLN225 was significantly higher than FLN150 with no significant difference with FM soils, while the NRE of FHN225 was significantly lower than FHN150. Increasing soil fertility significantly increased the contents of soil microbial biomass N, ammonium N, and fixed ammonium. 【Conclusion】 These results indicated that the higher of the soil fertility, the higher of the rice yield, the NRE and the N residual rate in the red paddy soil were, and the lower of the N loss rate was. Therefore, increasing N application rate was effective to increase both rice yield and NRE in low fertility soils. In contrast, an appropriate reduction in N application rate might benefit rice NRE and reduce fertilizer N losses without compromising rice yield.

Key words: soil fertility, 15N isotopic tracing, red paddy soil, nitrogen use efficiency, fertilizer N fate

Table 1

The basic physiochemical properties of the selected red paddy soils with different fertility"

土壤肥力
Soil fertility
pH 有机质
Organic matter (g·kg-1)
总氮
Total N
(g·kg-1)
碱解氮
Alkaline N
(mg·kg-1)
速效钾
Available K
(mg·kg-1)
速效磷
Olsen P
(mg·kg-1)
砂粒 Sand
(2-0.02 mm, %)
粉粒 Silt
(0.02-0.002 mm, %)
黏粒 Clay
(<0.002 mm, %)
低肥力Low fertility 5.48 19.9 1.2 137.2 174.7 17.9 22 56 22
中肥力Medium fertility 5.39 29.6 1.8 191.5 170.5 21.2 23 55 22
高肥力High fertility 5.31 38.9 2.3 241.4 239.6 22.4 22 54 24

Table 2

Effects of soil fertility (F) and N fertilization (N) on rice yield and its components"

处理
Treatments
产量
Grain yield (g/pot)
有效穗数
Effective panicles/pot
每穗实粒数
Spikelets per panicle
结实率
Filled grain percentage (%)
千粒重
1000-grain weight (g)
FLN0 23.6f 9.3f 108.6ab 89.4bc 26.5d
FLN150 38.5e 15.3de 101.9b 88.7bc 26.3d
FLN225 44.5d 17.0d 109.0ab 89.0bc 26.4d
FMN0 40.0e 14.7e 116.5a 88.9bc 26.7bcd
FMN150 55.9c 19.3c 114.5ab 88.3c 26.6cd
FMN225 62.1b 22.0ab 113.6ab 88.3c 26.5d
FHN0 55.3c 21.7b 115.5ab 89.6b 27.1a
FHN150 65.0ab 22.3ab 114.5ab 91.5a 27.0ab
FHN225 68.0a 24.0a 117.4a 91.1a 26.9abc
ANOVA(P
肥力(F) 0.0001 0.0001 0.0525 0.0001 0.0001
施氮量(N) 0.0001 0.0001 0.6595 0.8117 0.3175
肥力×施氮量(F×N) 0.0010 0.0033 0.9165 0.0366 0.9305

Fig. 1

The N fertilizer contribution rate and soil N dependent rate of rice yield as affected by soil fertility (F) and N fertilization (N) FL, FM, FH mean low, medium, and high fertility soils, respectively. N150 and N225 mean the N application rate at 150 and 225 kg·hm-2, respectively. Different letters indicate significant difference at P<0.05. Error bars indicate standard deviation. The same as following Figs"

Table 3

Rice N uptake and its sources as affected by soil fertility (F) and N fertilization (N)"

处理
Treatments
总吸氮量
N uptake (mg/pot)
肥料氮吸收量
Fertilizer N uptake (mg/pot)
来自肥料氮的比例
Ndff (%)
土壤氮吸收量
Soil N uptake (mg/pot)
来自土壤氮的比例
Ndfs (%)
FLN0 443.0g - - - -
FLN150 723.5f 163.5f 22.6b 560.0e 77.4e
FLN225 854.1e 260.9c 30.5a 593.2d 69.5f
FMN0 904.9e - - - -
FMN150 1165.8d 192.7e 16.8e 973.1c 83.2b
FMN225 1352.3c 291.0b 21.5c 1061.3b 78.5d
FHN0 1184.5d - - - -
FHN150 1440.4b 217.4d 14.9f 1223.1a 85.1a
FHN225 1546.1a 302.1a 19.5d 1244.0a 80.5c
ANOVA(P
肥力(F) 0.0001 0.0001 0.0001 0.0001 0.0001
施氮量(N) 0.0001 0.0001 0.0001 0.0001 0.0001
肥力×施氮量(F×N) 0.2961 0.0404 0.0001 0.0101 0.0001

Fig. 2

The fate of fertilizer N as affected by soil fertility (F) and N fertilization (N)"

Fig. 3

N fertilizer efficiency based on the difference method as affected by soil fertility (F) and N fertilization (N)"

Fig. 4

Dry weight of root as affected by soil fertility (F) and N fertilization (N)"

Fig. 5

The concentration of soil microbial biomass N, ammonium N, and nitrate N as affected by soil fertility (F) and N fertilization (N)"

Fig. 6

The concentration of soil fixed ammonium as affected by soil fertility (F) and N fertilization (N)"

[1] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 长期施肥红壤性水稻土磷素演变特征及对磷盈亏的响应. 土壤学报, 2017, 54(6): 1471-1485.
doi: 10.11766/trxb201703210020
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P.Evolution of soil phosphorus in reddish paddy soil under long-term fertilization varying in formulation and its response to P balance. Acta Pedologica Sinica, 2017, 54(6): 1471-1485. (in Chinese)
doi: 10.11766/trxb201703210020
[2] XU R K, ZHAO A Z, LI Q M, KONG X L, JI G L.Acidity regime of the red soils in a subtropical region of southern China under field conditions. Geoderma, 2003, 115(1): 75-84.
doi: 10.1016/S0016-7061(03)00077-6
[3] 王姗娜. 长期施肥下我国典型红壤性水稻土肥力演变特征与持续利用[D]. 北京: 中国农业科学院, 2012.
WANG S N.Evolution characteristics of reddish paddy soil fertility under long-term fertilization and its sustainable utilization in southern China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. (in Chinese)
[4] LIU S L, HUANG D Y, CHEN A L, WEI W X, BROOKES P C, LI Y, WU J S.Differential responses of crop yields and soil organic carbon stock to fertilization and rice straw incorporation in three cropping systems in the subtropics. Agriculture, Ecosystems & Environment, 2014, 184: 51-58.
doi: 10.1016/j.agee.2013.11.019
[5] ZHOU P, SHENG H, LI Y, TONG C L, GE T D, WU J S.Lower C sequestration and N use efficiency by straw incorporation than manure amendment on paddy soils. Agriculture Ecosystems and Environment, 2016, 219: 93-100.
doi: 10.1016/j.agee.2015.12.012
[6] ZHAO J, NI T, LI J, LU Q, FANG Z Y, HUANG Q W, ZHANG R F, LI R, SHEN B, SHEN Q R.Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Applied Soil Ecology, 2016, 99(18): 1-12.
doi: 10.1016/j.apsoil.2015.11.006
[7] ZHAO X, WANG S Q, XING G X.Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China. Agriculture Ecosystems and Environment, 2015, 202: 79-89.
doi: 10.1016/j.agee.2015.01.002
[8] PENG S B, HUANG J L, ZHONG X H, YANG J C, WANG G H, ZOU Y B, ZHANG F S, ZHU Q S, BURESH R, WITT C.Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Journal of Integrative Agriculture, 2002, 1(7): 776-785.
[9] YAN X Y, TI C P, VITOUSEK P, CHEN D L, LEIP A, CAI Z C, ZHU Z L.Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environmental Research Letters, 2014, 9: 095002.
doi: 10.1088/1748-9326/9/9/095002
[10] CAO Y S, TIAN Y H, YIN B, ZHU Z L.Assessment of ammonia volatilization from paddy fields under crop management practices aimed to increase grain yield and N efficiency. Field Crops Research, 2013, 147: 23-31.
doi: 10.1016/j.fcr.2013.03.015
[11] XU H G, ZHONG G R, LIN J J, DING Y F, LI G H, WANG S H, LIU Z H, TANG S, DING C Q.Effect of nitrogen management during the panicle stage in rice on the nitrogen utilization of rice and succeeding wheat crops. European Journal of Agronomy, 2015, 70: 41-47.
doi: 10.1016/j.eja.2015.06.008
[12] BANDAOGO A, BIDJOKAZO F, YOUL S, SAFO E, ABAIDOO R, ANDREWS O.Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutrient Cycling in Agroecosystems, 2015, 102(1): 79-89.
doi: 10.1007/s10705-014-9653-6
[13] YE Y S, LIANG X Q, CHEN Y X, LIU J, GU J T, GUO R, LI L.Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Research, 2013, 144: 212-224.
doi: 10.1016/j.fcr.2012.12.003
[14] XUE Y G, DUAN H, LIU L J, WANG Z Q, YANG J C, ZHANG J H.An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1): 271-284.
doi: 10.2135/cropsci2012.06.0360
[15] LIU X W, WANG H Y, ZHOU J M, HU F Q, ZHU D J, CHEN Z M, LIU Y Z.Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China. Plos One, 2016, 11(11): e0166002.
doi: 10.1371/journal.pone.0166002 pmid: 27861491
[16] PENG W F, ZENG Y J, SHI Q H, HUANG S.Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon. Plant Soil & Environment, 2017, 63(9): 416-421.
[17] NORMAN R, ROBERTS T, SLATON N, FULFORD A.Nitrogen uptake efficiency of a hybrid compared with a conventional, pure-line rice cultivar. Soil Science Society of America Journal, 2013, 77(4): 1235-1240.
doi: 10.2136/sssaj2013.01.0015
[18] 王秀斌, 徐新朋, 孙刚, 孙静文, 梁国庆, 刘光荣, 周卫. 氮肥用量对双季稻产量和氮肥利用率的影响. 植物营养与肥料学报, 2013, 19(6): 1279-1286.
doi: 10.11674/zwyf.2015.0324
WANG X B, XU X P, SUN G, SUN J W, LIANG G Q, LIU G R, ZHOU W.Effects of nitrogen fertilization on grain yield and nitrogen use efficiency of double cropping rice. Journal of Plant Nutrition and Fertilizer, 2013, 19(6): 1279-1286. (in Chinese)
doi: 10.11674/zwyf.2015.0324
[19] 范立慧, 徐珊珊, 侯朋福, 薛利红, 李刚华, 丁艳锋, 杨林章. 不同地力下基蘖肥运筹比例对水稻产量及氮肥吸收利用的影响. 中国农业科学, 2016, 49(10): 1872-1884.
FAN L H, XU S S, HOU P F, XUE L H, LI G H, DING Y F, YANG L Z.Effect of different ratios of basal to tiller nitrogen on rice yield and nitrogen utilization under different soil fertility. Scientia Agricultura Sinica, 2016, 49(10): 1872-1884. (in Chinese)
[20] LIANG B, YANG X Y, MURPHY D V, HE X H, ZHOU J B.Fate of 15N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biology and Fertility of Soils, 2013, 49(8): 977-986.
doi: 10.1007/s00374-013-0789-3
[21] 杨馨逸, 刘小虎, 韩晓日. 施氮量对不同肥力土壤氮素转化及其利用率的影响. 中国农业科学, 2016, 49(13): 2561-2571.
YANG X Y, LIU X H, HAN X R.Effect of nitrogen application rates in different fertility soils on soil N transformations and N use efficiency under different fertilization managements. Scientia Agricultura Sinica, 2016, 49(13): 2561-2571. (in Chinese)
[22] 巨晓棠. 氮肥有效率的概念及意义——兼论对传统氮肥利用率的理解误区. 土壤学报, 2014, 51(5): 921-933.
JU X T.The concept and meanings of nitrogen fertilizer availability ratio―Discussing misunderstanding of traditional nitrogen use efficiency. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese)
[23] WITT C, GAUNT J L, GALICIA C C, JCG O, NEUE H U.A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biology & Fertility of Soils, 2000, 30(5/6): 510-519.
doi: 10.1007/s003740050030
[24] SILVA J A, BREMNER J M.Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. fixed ammonium. Soil Science Society of America Journal, 1966, 30(5): 587-594.
doi: 10.2136/sssaj1966.03615995003000050017x
[25] HAUCK R D, BREMNER J M.Use of tracers for soil and fertilizer nitrogen research. Advances in Agronomy, 1976, 28(23): 219-266.
doi: 10.1016/S0065-2113(08)60556-8
[26] 廖育林, 鲁艳红, 聂军, 谢坚, 周兴, 杨曾平. 长期施肥稻田土壤基础地力和养分利用效率变化特征. 植物营养与肥料学报, 2016, 22(5): 1249-1258.
doi: 10.11674/zwyf.15325
LIAO Y L, LU Y H, NIE J, XIE J, ZHOU X, YANG Z P.Effects of long-term fertilization on basic soil productivity and nutrient use efficiency in paddy soils. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1249-1258. (in Chinese)
doi: 10.11674/zwyf.15325
[27] 鲁艳红, 廖育林, 聂军, 周兴, 谢坚, 杨曾平. 连续施肥对不同肥力稻田土壤基础地力和土壤养分变化的影响. 中国农业科学, 2016, 49(21): 4169-4178.
doi: 10.3864/j.issn.0578-1752.2016.21.011
LU Y H, LIAO Y L, NIE J, ZHOU X, XIE J, YANG Z P.Effect of successive fertilization on dynamics of basic soil productivity and soil nutrients in double cropping paddy soils with different fertilities. Scientia Agricultura Sinica, 2016, 49(21): 4169-4178. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.21.011
[28] 鲁艳红, 廖育林, 周兴, 聂军, 谢坚, 杨曾平. 长期不同施肥对红壤性水稻土产量及基础地力的影响. 土壤学报, 2015, 52(3): 597-606.
LU Y H, LIAO Y L, ZHOU X, NIE J, XIE J, YANG Z P.Effect of long-term fertilization on rice yield and basic soil productivity in red paddy soil under double-rice system. Acta Pedologica Sinica, 2015, 52(3): 597-606. (in Chinese)
[29] 曾祥明, 韩宝吉, 徐芳森, 黄见良, 蔡红梅, 石磊. 不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响. 中国农业科学, 2012, 45(14): 2886-2894.
doi: 10.3864/j.issn.0578-1752.2012.14.011
ZENG X M, HAN B J, XU F S, HUANG J L, CAI H M, SHI L.Effect of optimized fertilization on grain yield of rice and nitrogen use efficiency in paddy fields with different basic soil fertilities. Scientia Agricultura Sinica, 2012, 45(14): 2886-2894. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2012.14.011
[30] ESPE M B, KIRK E, VAN KESSEL C, HORWATH W H, LINQUIST B A.Indigenous nitrogen supply of rice is predicted by soil organic carbon. Soil Science Society of America Journal, 2015, 79(2): 569-576.
doi: 10.2136/sssaj2014.08.0328
[31] ZHANG Q W, YANG Z L, ZHANG H, YI J.Recovery efficiency and loss of 15N-labelled urea in a rice-soil system in the upper reaches of the Yellow River basin. Agriculture Ecosystems and Environment, 2012, 158: 118-126.
doi: 10.1016/j.agee.2012.06.003
[32] 王敬国, 林杉, 李保国. 氮循环与中国农业氮管理. 中国农业科学, 2016, 49(3): 503-517.
doi: 10.3864/j.issn.0578-1752.2016.03.009
WANG J G, LIN S, LI B G.Nitrogen cycling and management strategies in Chinese agriculture. Scientia Agricultura Sinica, 2016, 49(3): 503-517. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2016.03.009
[33] GILLABEL J, CEBRIAN-LOPEZ B, SIX J, MERCKX R.Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Global Change Biology, 2010, 16(10): 2789-2798.
doi: 10.1111/j.1365-2486.2009.02132.x pmid: 14462567
[34] XU X P, HE P, ZHAO S C, QIU S J, JOHNSTON A M, ZHOU W.Quantification of yield gap and nutrient use efficiency of irrigated rice in China. Field Crops Research, 2016, 186: 58-65.
doi: 10.1016/j.fcr.2015.11.011
[35] 王楠, 王帅, 高强, 赵兰坡, 田特, 张晋京. 施氮水平对不同肥力土壤微生物学特性的影响. 水土保持学报, 2014, 28(4): 148-152.
WANG N, WANG S, GAO Q, ZHAO L P, TIAN T, ZHANG J J.Effect of nitrogen application levels on microbiological characteristics of soils with different fertility basics. Journal of Soil and Water Conservation, 2014, 28(4): 148-152. (in Chinese)
[36] LIANG B, ZHAO W, YANG X Y, ZHOU J B.Fate of nitrogen-15 as influenced by soil and nutrient management history in a 19-year wheat-maize experiment. Field Crops Research, 2013, 144: 126-134.
doi: 10.1016/j.fcr.2012.12.007
[37] 梁天锋, 徐世宏, 刘开强, 王殿君, 梁和, 董登峰, 韦善清, 周佳民, 胡钧铭, 江立庚. 栽培方式对水稻氮素吸收利用与分配特性影响的研究. 植物营养与肥料学报, 2010, 16(1): 20-26.
doi: 10.11674/zwyf.2010.0104
LIANG T F, XU S H, LIU K Q, WANG D J, LIANG H, DONG D F, WEI S Q, ZHOU J M, HU J M, JIANG L G.Studies on influence of cultivation patterns on characteristics of nitrogen utilization and distribution in rice. Plant Nutrition and Fertilizer Science, 2010, 16(1): 20-26. (in Chinese)
doi: 10.11674/zwyf.2010.0104
[1] ZHANG JianJun, DANG Yi, ZHAO Gang, WANG Lei, FAN TingLu, LI ShangZhong. Influences of Mulching Periods and Nitrogen Application Rates on Maize Yield as well as Water and Nitrogen Use Efficiencies in Loess Plateau of Eastern Gansu Province [J]. Scientia Agricultura Sinica, 2022, 55(3): 479-490.
[2] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[3] Chao MA,YuBao WANG,Gang WU,Hong WANG,JianFei WANG,Lin ZHU,JiaJia LI,XiaoJing MA,RuShan CHAI. Research Progress of Direct Straw Return in Anhui Province over the Last Decade [J]. Scientia Agricultura Sinica, 2022, 55(18): 3584-3599.
[4] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[5] XIA QianWei,CHEN Hao,YAO YuTian,DA Da,CHEN Jian,SHI ZhiQi. Effects of ‘Good Quality Standard’ Rice System on Soil Environment of Paddy Field [J]. Scientia Agricultura Sinica, 2022, 55(17): 3343-3354.
[6] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[7] GUO YingXin,CHEN YongLiang,MIAO Qi,FAN ZhiYong,SUN JunWei,CUI ZhenLing,LI JunYing. Spatial-Temporal Variability of Soil Nutrients and Assessment of Soil Fertility in Erhai Lake Basin [J]. Scientia Agricultura Sinica, 2022, 55(10): 1987-1999.
[8] PENG BiLin,LI MeiJuan,HU XiangYu,ZHONG XuHua,TANG XiangRu,LIU YanZhuo,LIANG KaiMing,PAN JunFeng,HUANG NongRong,FU YouQiang,HU Rui. Effects of Simplified Nitrogen Managements on Grain Yield and Nitrogen Use Efficiency of Double-Cropping Rice in South China [J]. Scientia Agricultura Sinica, 2021, 54(7): 1424-1438.
[9] YIN SiJia,LI Hui,XU ZhiQiang,PEI JiuBo,DAI JiGuang,LIU YuWei,LI AiMeng,YU YaXi,LIU Wei,WANG JingKuan. Spatial Variations and Relationships of Topsoil Fertility Indices of Drylands in the Typical Black Soil Region of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(10): 2132-2141.
[10] XIANG Wei,WANG Lei,LIU TianQi,LI ShiHao,ZHAI ZhongBing,LI ChengFang. Effects of Biochar Plus Inorganic Nitrogen on the Greenhouse Gas and Nitrogen Use Efficiency from Rice Fields [J]. Scientia Agricultura Sinica, 2020, 53(22): 4634-4645.
[11] DING XiangPeng,LI GuangHao,ZHANG JiWang,LIU Peng,REN BaiZhao,ZHAO Bin. Effects of Base Application Depths of Controlled Release Urea on Yield and Nitrogen Utilization of Summer Maize [J]. Scientia Agricultura Sinica, 2020, 53(21): 4342-4354.
[12] ZHENG FuLi,LIU Ping,LI GuoSheng,ZHANG BoSong,LI Yan,WEI JianLin,TAN DeShui. Organic-Inorganic Coordinated Regulation to Wheat-Maize Double Crop Yield and Soil Fertility [J]. Scientia Agricultura Sinica, 2020, 53(21): 4355-4364.
[13] ZHANG Lu,ZHANG ShuiQing,REN KeYu,LI JunJie,DUAN YingHua,XU MingGang. Soil Ecoenzymatic Stoichiometry and Relationship with Microbial Biomass in Fluvo-Aquic Soils with Various Fertilities [J]. Scientia Agricultura Sinica, 2020, 53(20): 4226-4236.
[14] ZOU WenXiu,HAN XiaoZeng,LU XinChun,CHEN Xu,HAO XiangXiang,YAN Jun. Effect of Maize Straw Return Aftereffect on Nitrogen Use Efficiency of Maize [J]. Scientia Agricultura Sinica, 2020, 53(20): 4237-4247.
[15] ZHANG WeiLi,KOLBE H,ZHANG RenLian. Research Progress of SOC Functions and Transformation Mechanisms [J]. Scientia Agricultura Sinica, 2020, 53(2): 317-331.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!