Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3200-3209.doi: 10.3864/j.issn.0578-1752.2022.16.011

• HORTICULTURE • Previous Articles     Next Articles

Screening and Functional Analysis in Heat-Tolerance of the Upstream Transcription Factors of Pepper CaHsfA2

LIU RuiYao(),HUANG GuoHong,LI HaiYan,LIANG MinMin,LU MingHui()   

  1. College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2021-11-23 Accepted:2022-05-22 Online:2022-08-16 Published:2022-08-11
  • Contact: MingHui LU E-mail:596625177@qq.com;xnjacklu@nwsuaf.edu.cn

Abstract:

【Background】 Pepper is widely cultivated as a vegetable around the world. With the increasing frequency of extreme high temperature weather in recent years, the heat stress has become one of the main environmental factors affecting pepper productivity, due to its feature of warm-prone but heat-sensitive. Therefore, it is very important for pepper production to clarify its mechanisms supporting heat-tolerance and then to develop pepper varieties with heat tolerance. 【Objective】 Since the heat shock transcription factor HsfA2 plays important roles in plant heat tolerance, the upstream transcription factors of pepper CaHsfA2 were screened and functionally analyzed in heat-tolerance in this study, in order to provide the theoretical basis for further understanding the mechanisms of heat tolerance of pepper. 【Method】 The 955 bp promoter sequence upstream of start codon of CaHsfA2 was used as the bait, the yeast one-hybrid (Y1H) technology was applied to screen the upstream transcription factors of CaHsfA2, and their interactions were checked by Y1H point-to-point hybridization, dual-luciferase reporter system (Dual-Luciferase), and LUC assay (LCA). For the candidate upstream transcription factors of CaHsfA2, their dynamic expression under heat stress in pepper heat-tolerant line R9 were analyzed by qRT-PCR technology; the subcellular localization were fulfilled through the transient gene expression technology, and its functional analysis in heat tolerance were performed by using the virus-induced gene silencing technology (VIGS). 【Result】 CaBES1 was identified as the candidate upstream transcription factor of CaHsfA2, and their interactions were confirmed. By the analysis of Dual-Luciferase system and CaHsfA2 expression in CaBES1-silenced pepper plants, it was suggested that CaBES1 negatively regulated the transcription of CaHsfA2. The result of subcellular localization showed that CaBES1 was expressed in both cell membrane and nucleus. After heat stress treatment, the fluorescence signal in the nucleus was enhanced, which was consistent with the property of CaBES1 transferring from cytoplasm to nucleus when it performed its biological functions. By dynamic expression pattern analysis, under heat stress, the expression level of CaBES1 decreased firstly and then increased, which also indicated that CaBES1 could respond to heat signal and laid a foundation for the further functional study in heat tolerance. After CaBES1 was silenced in pepper, by comparing the phenotype, relative electrical conductivity and chlorophyll content of silenced plants and control plants, it was inferred that silencing of CaBES1 increased the expression of CaHsfA2 and enhanced the heat tolerance of pepper. 【Conclusion】 CaBES1 inhibited pepper heat tolerance by negatively regulating the expression of CaHsfA2.

Key words: pepper, CaHsfA2, CaBES1, heat stress

Table 1

PCR primers used in this study"

用途 Application 名称 Name 序列 Sequence
酵母单杂交
Y1H
T7 TAATACGACTCACTATAGG
3AD GAGATGGTGCACGATGCACAGT
pCaHsfA2-F CGAGCTCTAAAAGCAAATGTCTGAAACGAGT
pCaHsfA2-R GCGTCGACTATCTTTTTTCTTCTTCAGTCGCT
AD-CaBES1-F GCCATGGAGGCCAGTGAATTCATGACATCGGGAACAAGG
AD-CaBES1-R CAGCTCGAGCTCGATGGATCCTCTTGTCTTAGAACTCCCAA
互作关系验证
Verification of interactive relationship
LUC-pHsfA2-F GCGTCGACTAAAAGCAAATGTCTGAAACGAGT
LUC-pHsfA2-R CATGCCATGGTATCTTTTTTCTTCTTCAGTCGCT
SK-BES1-F GCTCTAGAATGACATCGGGAACAAGGA
SK-BES1-R GGAATTCTCTTGTCTTAGAACTCCCA
亚细胞定位
Subcellular localization
pART27-BES1-F GATGAACTATACAAAGAATTCATGACATCGGGAACAAGG
pART27-BES1-R TTCAGGCCTCCCGGGGGTACCTCTTGTCTTAGAACTCCCAA
qRT-PCR qCaBES1-F TTCGCTACCCGTTCTTTC
qCaBES1-R GTGATAGACCCTCCATTTTG
qCaHsfA2-F GTAGCA TCAGTAGCCACAGC
qCaHsfA2-R CAAGCAACTCTTCCCAAATA

Fig. 1

Verification of the interaction between CaBES1 and the promoter of CaHsfA2 A: Point-to-point Y1H; B: Luciferase complementation assay; C: Dual-luciferase reporter system. proA2+BES1: The yeast clone co-transformed with the promoter fragment pro-A2 of CaHsfA2 gene and transcription factor CaBES1gene; proA2+p53: The positive control; pro-A2+empty pGADT7: The negative control; proA2-LUC+BES1-SK: The agrobacterium clone co-transformed with pro-A2 and CaBES1; proA2-LUC+SK: The negative control; SD/-Leu: Leu-absent SD medium containing 200 ng∙mL-1 AbA"

Table 2

Analysis of the cis-acting elements in the promoter of CaHsfA2"

元件 Element 序列 Sequence 位置 Position 数量 Amount 功能 Function
ABRE ACGTG 61(-) 1 参与脱落酸信号转导途径
Involved in the signal transduction pathway of ABA
HSE GAANNTTC 36(+), 437(+)
725(+), 822(+)
4 响应热胁迫
Responding to heat stress
E-box CANNTG 7(+), 465(+)
716(+), 805(+)
4 BES1和BZR1结合位点
BES1 and BZR1 binding site
ARE AAACCA 53(-)
899(+)
236(-)
3 厌氧诱导必需元件
Necessary for anaerobic induction
CGTCA/TGACG-motif CGTCA/
TGACG
475(±) 1 参与茉莉酸响应
Involved in jasmonic acid reponsiveness
TCA-element CCATCTTTTT 804(+) 1 参与水杨酸反应
Involved in salicylic acid reponsiveness

Fig. 2

Analysis of the subcellular location of CaBES1 gene expression pART27-BES1: The agrobacterium clone transformed with CaBES1gene; pART27-GFP: The positive control"

Fig. 3

Analysis of the dynamic expression of CaBES1 gene under heat stress * and ** represent the significant difference at α=0.05 and α=0.01, respectively. The same as below"

Fig. 4

Effects of CaBES1 silencing on the heat tolerance A: Analysis of gene expression in CaBES1-silenced pepper plants; B: Phenotypes of pepper seedlings after heat stress; C-F: Relative conductivity (C), chlorophyll content (D), cell death tested by Trypan blue Staining (E), and H2O2 accumulation tested by DAB Staining (F) in pepper leaves after heat stress"

[1] 胡能兵, 庞丹丹, 隋益虎, 舒英杰, 何克勤, 朱小妹. 14种辣椒对高温胁迫的生理响应及抗热性评价. 浙江农业学报, 2018, 30(7): 1168-1174.
doi: 10.3969/j.issn.1004-1524.2018.07.09
HU N B, PANG D D, SUI Y H, SHU Y J, HE K Q, ZHU X M. Physiological response to heat stress and heat resistances evaluation of 14 Capsicum varieties. Acta Agriculturae Zhejiangensis, 2018, 30(7): 1168-1174. (in Chinese)
doi: 10.3969/j.issn.1004-1524.2018.07.09
[2] GUO M, YIN Y X, JI J J. Cloning and expression analysis of heat-shock transcription factor gene CaHsfA2 from pepper (Capsicum annuum L.). Genetics and Molecular Research, 2014, 13(1): 1865-1875.
doi: 10.4238/2014.March.17.14
[3] 易籽林, 赵坤, 董文斌, 王日升, 龚明霞, 何铁光. 辣椒高温胁迫研究进展. 辣椒杂志, 2011, 9(3): 5-9. doi: 10.16847/j.cnki.issn.1672- 4542.2011.03.002.
doi: 10.16847/j.cnki.issn.1672- 4542.2011.03.002
YI Z L, ZHAO K, DONG W B, WANG R S, GONG M X, HE T G. Research progress in high temperature stress on hot pepper. Journal of China Capsicum, 2011, 9(3): 5-9. doi: 10.16847/j.cnki.issn.1672-4542. 2011.03.002. (in Chinese)
doi: 10.16847/j.cnki.issn.1672- 4542.2011.03.002
[4] GIORNO F, WOLTERS-ARTS M, GRILLO S, SCHARF K D, VRIEZEN W H, MARIANI C. Developmental and heat stress- regulated expression of HsfA2 and small heat shock proteins in tomato anthers. Journal of Experimental Botany, 2009, 61(2): 453-462. doi: 10.1093/jxb/erp316.
doi: 10.1093/jxb/erp316
[5] OGAWA D, YAMAGUCHI K, NISHIUCHI T. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. Journal of Experimental Botany, 2007, 58(12): 3373-3383. doi: 10.1093/jxb/erm184.
doi: 10.1093/jxb/erm184
[6] NOVER N, BHARTI K, DÖRING P, MISHRA S K, GANGULI A, SCHARF K D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress and Chaperones, 2001, 6(3): 177-189.
doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2
[7] LIN Y X, JIANG H Y, CHU Z X, TANG X L, ZHU S W, CHENG B J. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. BMC Genomics, 2011, 12: 76. doi: 10.1186/1471-2164-12-76.
doi: 10
[8] GIORNO F, GUERRIERO G, BARIC S, MARIANI C. Heat shock transcriptional factors in Malus domestica: Identification, classification and expression analysis. BMC Genomics, 2012, 13: 639. doi: 10.1186/ 1471-2164-13-639.
doi: 10.1186/
[9] 郭猛. 辣椒热胁迫相关基因表达分析及功能研究[D]. 杨凌: 西北农林科技大学, 2016.
GUO M. Expression analysis and functional study of heat stress related genes in pepper[D]. Yangling: Northwest A & F University, 2016. (in Chinese)
[10] ZHAI Y, GUO M, WANG H, LU J, LIU J, ZHANG C, GONG Z, LU M. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Frontiers in Plant Science, 2016, 7: 131. doi: 10.3389/fpls.2016.00131.
doi: 10.3389/fpls.2016.00131
[11] 李金璐, 王硕, 于婧, 王玲, 周世良. 一种改良的植物DNA提取方法. 植物学报, 2013, 48(1): 72-78. doi: 10.3724/SP.J.1259.2013. 00072.
doi: 10.3724/SP.J.1259.2013.00072
LI J L, WANG S, YU J, WANG L, ZHOU S L. A modified CTAB protocol for plant DNA extraction. Chinese Bulletin of Botany, 2013, 48(1): 72-78. doi: 10.3724/SP.J.1259.2013.00072. (in Chinese)
doi: 10.3724/SP.J.1259.2013.00072
[12] 刘海波, 鲁进萍, 陈涛, 朱祖廷, 赵芳, 逯明辉. 辣椒金属伴侣蛋白基因CaHPP7提高植物对铜和热胁迫的抗性. 分子植物育种, 2021, 19(3): 849-858. doi: 10.13271/j.mpb.019.000849.
doi: 10.13271/j.mpb.019.000849
LIU H B, LU J P, CHEN T, ZHU Z T, ZHAO F, LU M H. A metallochaperone gene CaHPP7 from pepper improves plants tolerance to both copper and heat stresses. Molecular Plant Breeding, 2021, 19(3): 849-858. doi: 10.13271/j.mpb.019.000849. (in Chinese)
doi: 10.13271/j.mpb.019.000849
[13] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. doi: 10.1006/meth.2001.1262.
doi: 10.1006/meth.2001.1262
[14] DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress. Plant Science, 1998, 135(1): 1-9.
doi: 10.1016/S0168-9452(98)00025-9
[15] XIAO S, GAO W, CHEN Q F, CHAN S W, ZHENG S X, MA J Y, WANG M F, WELTI R, CHYE M L. Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. The Plant Cell, 2010, 22(5): 1463-1482. doi: 10.1105/tpc.110.075333.
doi: 10.1105/tpc.110.075333
[16] THORDAL-CHRISTENSEN H, ZHANG Z, WEI Y, COLLINGE D B. Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 1997, 11(6): 1187-1194.
doi: 10.1046/j.1365-313X.1997.11061187.x
[17] CHOI D S, HWANG I S, HWANG B K. Requirement of the cytosolic interaction between pathogenesis-related protein10 and leucine-rich repeat protein1 for cell death and defense signaling in pepper. The Plant Cell, 2012, 24(4): 1675-1690. doi: 10.1105/tpc.112.095869.
doi: 10.1105/tpc.112.095869
[18] ZHANG N, YIN Y J, LIU X Y, TONG S M, XING J W, ZHANG Y, PUDAKE R N, IZQUIERDO E M, PENG H R, XIN M M, HU Z R, NI Z F, SUN Q X, YAO Y Y. The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins. Plant Physiology, 2017, 175(4): 1878-1892. doi: 10.1104/pp.17.01319.
doi: 10.1104/pp.17.01319
[19] LIU J, SHI Y, YANG S. Insights into the regulation of C-repeat binding factors in plant cold signaling. Journal of Integrative Plant Biology, 2018, 60(9): 780-795. doi: 10.1111/jipb.12657.
doi: 10.1111/jipb.12657
[20] MA H Z, LIU C, LI Z X, RAN Q J, XIE G N, WANG B M, FANG S, CHU J F, ZHANG J R. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiology, 2018, 178(2): 753-770. doi: 10.1104/pp.18.00436.
doi: 10.1104/pp.18.00436
[21] NISHIZAWA A, YABUTA Y, YOSHIDA E, MARUTA T, YOSHIMURA K, SHIGEOKA S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. The Plant Journal, 2006, 48(4): 535-547. doi: 10.1111/j.1365-313x.2006.02889.x.
doi: 10.1111/j.1365-313x.2006.02889.x.
[22] WANG X, ZHUANG L, SHI Y, HUANG B. Up-regulation of HSFA2c and HSPs by ABA contributing to improved heat tolerance in tall fescue and Arabidopsis. International Journal of Molecular Science, 2017, 18(9): E1981. doi: 10.3390/ijms18091981.
doi: 10.3390/ijms18091981
[23] HUANG J Y, ZHAO X B, BÜRGER M, WANG Y R, CHORY J. Two interacting ethylene response factors regulate heat stress response. The Plant Cell, 2020, 33(2): 338-357. doi: 10.1093/plcell/koaa026.
doi: 10.1093/plcell/koaa026
[24] NOLAN T M, VUKAŠINOVIĆ N, LIU D R, RUSSINOVA E, YIN Y H. Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. The Plant Cell, 2019, 32(2): 295-318. doi: 10.1105/tpc.19.00335.
doi: 10.1105/tpc.19.00335
[25] YIN Y, WANG Z Y, MORA-GARCIA S, LI J, YOSHIDA S, ASAMI T, CHORY J. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109(2): 181-191. doi: 10.1016/s0092-8674(02) 00721-3.
doi: 10.1016/s0092-8674(02) 00721-3
[26] YIN Y, VAFEADOS D, TAO Y, YOSHIDA S, ASAMI T, CHORY J. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell, 2005, 120(2): 249-259. doi: 10.1016/j.cell.2004.11.044.
doi: 10.1016/j.cell.2004.11.044
[27] CUI X Y, GAO Y, GUO J, YU T F, ZHENG W J, LIU Y W, CHEN J, XU Z S, MA Y Z. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1. Plant Physiology, 2019, 180(1): 605-620. doi: 10.1104/pp.19.00100.
doi: 10.1104/pp.19.00100
[28] SETSUNGNERN A, MUÑOZ P, PÉREZ-LLORCA M, MÜLLER M, THIRAVETYAN P, MUNNÉ-BOSCH S. A defect in BRI1-EMS- SUPPRESSOR 1 (bes1)-mediated brassinosteroid signaling increases photoinhibition and photo-oxidative stress during heat stress in Arabidopsis. Plant Science, 2020, 296: 110470. doi: 10.1016/j.plantsci.2020.110470.
doi: 10.1016/j.plantsci.2020.110470
[29] YIN Y L, QIN K Z, SONG X W, ZHANG Q H, ZHOU Y H, XIA X J, YU J Q. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant and Cell Physiology, 2018, 59(11): 2239-2254. doi: 10.1093/pcp/pcy146.
doi: 10.1093/pcp/pcy146
[30] BAI X X, ZHAN G M, TIAN S X, PENG H, CUI X Y, ISLAM M A, GOHER F, MA Y Z, KANG Z S, XU Z S, GUO J. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. Plant Physiology, 2021, 187(4): 2749-2762. doi: 10.1093/plphys/kiab383.
doi: 10.1093/plphys/kiab383
[31] MIYAJI T, YAMAGAMI A, NAO K M, SAKUTA M, OSADA H, ASAMI T, ARIMOTO Y, NAKANO T. Brassinosteroid-related transcription factor BIL1/BZR1 increases plant resistance to insect feeding. Bioscience, Biotechnology and Biochemistry, 2014, 78(6): 960-968. doi: 10.1080/09168451.2014.910093.
doi: 10.1080/09168451.2014.910093
[32] YE H, LIU S, TANG B, CHEN J, XIE Z, NOLAN T M, JIANG H, GUO H, LIN H Y, LI L, WANG Y, TONG H, ZHANG M, CHU C, LI Z, ALURU M, ALURU S, SCHNABLE P S, YIN Y. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8: 14573. doi: 10.1038/ ncomms14573.
doi: 10.1038/ ncomms14573
[33] LIU H, LIU L, LIANG D, ZHANG M, JIA C, QI M, LIU Y, SHAO Z, MENG F, HU S, YIN Y, LI C, WANG Q. SlBES1 promotes tomato fruit softening through transcriptional inhibition of PMEU1. iScience, 2021, 24(8): 102926. doi: 10.1016/j.isci.2021.102926.
doi: 10.1016/j.isci.2021.102926
[34] WANG P, NOLAN T M, CLARK N M, JIANG H, MONTES-SEREY C, GUO H, BASSHAM D C, WALLEY J W, YIN Y. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid- activated transcription factor BES1 through selective autophagy in Arabidopsis. The Plant Cell, 2021, 33(11): 3532-3554. doi: 10.1093/plcell/koab210.
doi: 10.1093/plcell/koab210
[35] CHEN Z, GALLI M, GALLAVOTTI A. Mechanisms of temperature- regulated growth and thermotolerance in crop species. Current Opinion in Plant Biology, 2022, 65: 102134. doi: 10.1016/j.pbi.2021. 102134.
doi: 10.1016/j.pbi.2021. 102134
[1] SUI XinYi,ZHAO XiaoGang,CHEN PengYu,LI YaLing,WEN XiangZhen. Cloning of Alternative Splice Variants of LsPHYB in Lettuce and Its Expression Patterns Under Heat Stress [J]. Scientia Agricultura Sinica, 2022, 55(9): 1822-1830.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] REN Yifang,YANG ZhangPing,LING Fenghua,XIAO LiangWen. Risk Zoning of Heat Stress Risk Zoning of Dairy Cows in Jiangsu Province and Its Characteristics Affected by Climate Change [J]. Scientia Agricultura Sinica, 2022, 55(22): 4513-4525.
[4] WANG XueJie,XING Shuang,ZHAO ShaoMeng,ZHOU Ying,LI XiuMei,LIU QingXiu,MA DanDan,ZHANG MinHong,FENG JingHai. Effects of Heat Stress on Ileal Microbiota of Broilers [J]. Scientia Agricultura Sinica, 2022, 55(17): 3450-3460.
[5] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[6] Min LIU,Yulin FANG. Effects of Heat Stress on Physiological Indexes and Ultrastructure of Grapevines [J]. Scientia Agricultura Sinica, 2020, 53(7): 1444-1458.
[7] ZHANG AiJing,LI LinQiong,WANG PengJie,GAO YuLong. Effects of Heat Stress on Cell Membrane and Membrane Protein of Escherichia coli [J]. Scientia Agricultura Sinica, 2020, 53(5): 1046-1057.
[8] YUAN XiongKun,JIANG LiLi,TAO ShiYu,ZANG JianJun,WANG JunJun. Research Progresses on Sensitive Index System of Heat Stress in Sows [J]. Scientia Agricultura Sinica, 2020, 53(22): 4691-4699.
[9] ZHANG BaoXi,WANG LiHao,ZHANG ZhengHai,CAO YaCong,YU Hailong. Development of New Varieties of ZHONGJIAO Pepper Resistant to Pepper Mild Mottle Virus Using L 3Gene [J]. Scientia Agricultura Sinica, 2020, 53(18): 3846-3855.
[10] TANG YaFei,PEI Fan,LI ZhengGang,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Identification of Viruses Infecting Peppers in Guangdong by Small RNA Deep Sequencing [J]. Scientia Agricultura Sinica, 2019, 52(13): 2256-2267.
[11] HU LiRong, KANG Ling, WANG ShuHui, LI Wei, YAN XinYi, LUO HanPeng, DONG GangHui, WANG XinYu, WANG YaChun, XU Qing. Effects of Cold and Heat Stress on Milk Production Traits and Blood Biochemical Parameters of Holstein Cows in Beijing Area [J]. Scientia Agricultura Sinica, 2018, 51(19): 3791-3799.
[12] XU GuangChun, GU ZhongYan, XU DeJin, XU XiaoLong, XU Lu. Calculation Methods for the Surface Free Energy of Pepper Leaf Surface [J]. Scientia Agricultura Sinica, 2018, 51(16): 3084-3094.
[13] HAN JiaLiang, LIU JianXin, LIU HongYun. Effect of Heat Stress on Lactation Performance in Dairy Cows [J]. Scientia Agricultura Sinica, 2018, 51(16): 3162-3170.
[14] GAO YangYang, HE LiFei, LI BeiXing, LIN Jin, MU Wei, LIU Feng. Identification of the Pathogen Causing Pepper Anthracnose in Shandong Province and Screening of Highly Effective Fungicides [J]. Scientia Agricultura Sinica, 2017, 50(8): 1452-1464.
[15] FAN XiaoRui, ZHANG Zhen, XI HuaMing, LIANG YaJun, HE JunPing. Effect of Heat Stress on the Expression of Cyt-C and Caspase-3 in Boar Testis [J]. Scientia Agricultura Sinica, 2017, 50(5): 924-931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!