Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (15): 3295-3307.doi: 10.3864/j.issn.0578-1752.2021.15.013

• HORTICULTURE • Previous Articles     Next Articles

Development and Application of KASP Molecular Markers of Some Important Traits for Peach

MENG JunRen(),ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang(),NIU Liang()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/ National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009
  • Received:2020-08-30 Accepted:2020-11-13 Online:2021-08-01 Published:2021-08-10
  • Contact: ZhiQiang WANG,Liang NIU E-mail:82101186035@caas.cn;wangzhiqiang@caas.cn;niuliang@caas.cn

Abstract:

【Objective】 In order to improve breeding efficiency based on the marker-assisted selection in peach, a series of high-throughput and low-cost KASP markers for important traits (such as fruit skin fuzz, fruit shape, stony hard fruit texture, DBF blood-flesh and resistance to green peach aphids) of peach were developed. 【Method】 Based on the resequenced genome information of some peach cultivars, multiple sequence alignment was used to find specific SNP within 300 kb of both flanks of target genes or loci for related traits. KASP markers were developed according to the differences of SNPs, and the close link between KASP markers and the target characteristics was confirmed by genotyping.【Result】 The developed KASP molecular markers for five traits were utilized to detect the genotypes of peach hybrid populations and natural populations. The results showed that the markers identification was completely consistent with the known phenotypes, and the accuracy was 100%. In the hybrid populations of CN20 × 01-77-4, the segregation ratio of peach peel with fuzz/without fuzz, flat fruit/round fruit, and the segregation ratio of resistance to green peach aphids/susceptibility was 30﹕30, 31﹕29, and 49﹕46, respectively, which were in accordance with the 1﹕1 of Mendel’s first law. In population of CN20 × 10 xin 25-8, the high-throughput KASP molecular marker was used to detect genotypes of 53 offspring, and the results showed that genotypes of 27 were G/G appeared stony hard peach and 21 were T/C appeared DBF blood-flesh fruit, which were consistent with the phenotype identification results.【Conclusion】 The KASP marker could be efficiently used to detect allelic variations of genes related to important traits, such as peach fruit appearance, resistance, and fruit texture. It had a good application prospect in genotypic identification, parents apolegamy and hybrid progenies marker-assisted selection.

Key words: peach, KASP, marker-assisted selection, breeding

Table 1

The natural population used in this study"

编号
Code
品种(系)
Cultivar (line)
果皮茸毛
Peel fuzz
果实形状
Fruit shape
果肉颜色
Flesh color
果实肉质
Fruit flesh texture
1 中油蟠36-3 Zhongyoupan 36-3 无 Without fuzz 扁平 Flat fruit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
2 中油9号 Zhongyou 9 无 Without fuzz 圆形 Round fruit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
3 中油8号 Zhongyou 8 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
4 中油27号 Zhongyou 27 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(不溶质)Non-stony hard (Non-melting flesh)
5 中油20号 Zhongyou 20 无 Without fuzz 圆形 Round fuit 白 White 硬质 Stony hard
6 中油19号 Zhongyou 19 无 Without fuzz 圆形 Round fuit 黄 Yellow 硬质 Stony hard
7 中油18号 Zhongyou 18 无 Without fuzz 圆形 Round fuit 白 White 硬质 Stony hard
8 中桃红玉 Zhongtaohongyu 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
9 中桃白玉 Zhongtaobaiyu 有 With fuzz 圆形 Round fuit 白 White 硬质 Stony hard
10 中桃5号 Zhongtao 5 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
11 中桃10号 Zhongtao 10 有 With fuzz 圆形 Round fuit 黄 Yellow 硬质 Stony hard
12 中蟠2号 Zhongpan 2 有 With fuzz 扁平 Flat fruit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
13 中蟠1号 Zhongpan 1 有 With fuzz 扁平 Flat fruit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
14 中蟠102 Zhongpan 102 有 With fuzz 扁平Flat fruit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
15 早4号 Zao 4 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
16 双喜红 Shuangxihong 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
17 黄金蜜桃3号 Huangjinmi 3 有 With fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
18 黄金蜜桃1号 Huangjinmi 1 有 With fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
19 红芒果 Hongmangguo 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
20 春瑞 Chunrui 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
21 春蜜 Chunmi 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
22 春美 Chunmei 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
23 春丽 Chunli 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
24 NJC83 有 With fuzz 圆形 Round fuit 黄 Yellow 非硬质(不溶质)Non-stony hard (Non-melting flesh)
25 F4 有 With fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
26 F3 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
27 F2 无 Without fuzz 圆形 Round fuit 黄 Yellow 非硬质(溶质)Non-stony hard (Melting flesh)
28 96-5-1 有 With fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)
29 09南9-22 09nan9-22 有 With fuzz 圆形 Round fuit 白 White 硬质 Stony hard
30 05-1-135 无 Without fuzz 圆形 Round fuit 白 White 非硬质(溶质)Non-stony hard (Melting flesh)

Table 2

The crosses used in this study"

杂交组合
Cross
群体大小
Size of population
亲本基因型
Parental genotype
组合1:中油20号×01-77-4 Cross 1: Zhongyou 20×01-77-4 95 gg×Gg;ss×Ss;rr×Rr
组合2:中油20号×10新25-8 Cross 2: Zhongyou 20×10xin25-8 53 dfdf×DBFdf;hdhd×Hdhd

Table 3

Sequence information of some characteristic marker primers in peach"

等位变异位点
Allelic variation sites
SNP在染色体上的位置
SNP location on chromosome
KASP引物及序列
KASP primer and sequence
果皮有毛/无毛位点
Peel with/without fuzz site
Chr05: 17571609 6-羧基荧光素 FAM: 5′-GATACTGACTTTCACAGCAACTTCGT-3′
六氯-6-甲基荧光素 HEX: 5′-ATACTGACTTTCACAGCAACTTCGC-3′
通用引物 Common: 5′-CTTACGACAACAAGAGTGTATGATCTGAT-3′
果形扁平/圆形位点
Fruit flat/round shape site
Chr06: 26924482 6-羧基荧光素 FAM: 5′-GTTTTACATTTGAGGAATTAAATTATAAGCATT-3′
六氯-6-甲基荧光素 HEX: 5′-GTTTTACATTTGAGGAATTAAATTATAAGCATA-3′
通用引物 Common: 5′-CCTCACTAAGAACAGGCAAGGACTT-3′
果肉硬质/非硬质位点
Fruit stony hard/non flesh site
Chr06: 14090769 6-羧基荧光素 FAM: 5′-ACTCTAGAAAGCATGTATTCACGACT-3′
六氯-6-甲基荧光素 HEX: 5′-CTCTAGAAAGCATGTATTCACGACG-3′
通用引物 Common: 5′-CCACTGAAGGTAATAAAGCCCCACTA-3′
DBF型果肉颜色红/非红位点
DBF flesh color red/non site
Chr05: 689647 6-羧基荧光素 FAM: 5′-GAGAAGGTGAACACAAGAAAGCCT-3′
六氯-6-甲基荧光素 HEX: 5′-AGAAGGTGAACACAAGAAAGCCC-3′
通用引物 Common: 5′-GAGGTGGGATAAGATACAGCTTCCAA-3′
寿星桃Rm3类型的抗蚜/感蚜位点
Rm3 Shouxing peach resistance to green peach aphid/susceptibility site
Chr06: 45741254 6-羧基荧光素 FAM: 5′-GGCTTTCCCAGGTAAAGTCCCT-3′
六氯-6-甲基荧光素 HEX: 5′-GGCTTTCCCAGGTAAAGTCCCA-3′
通用引物 Common: 5′-CAGCATGCCGTTGGCGCTTCTT-3′

Fig. 1

Evaluation standard of fruit characters A: Flesh color of peach fruit: blood-flesh and white-flesh; B: Shape of peach fruit: flat peach and round peach, peach peel with fuzz or not: nectarine and peach; C: Peach susceptibility or resistance to green peach aphids, deep red spots in resistant plants"

Fig. 2

KASP genotyping result of 90 peach germplasm about fruits peel with or without fuzz and segregation of peach peel with fuzz or not within progeny population"

Table 4

Verification of peach peel with fuzz or without by KASP marker"

群体
Population
表型
Phenotype
数量
No.
杂种后代/桃品种
Hybrids/Cultivar (line)
基因分型
Genotype
符合率
Coincidence rate (%)
组合1
Cross 1
有毛
With fuzz
30 51-34、51-36、51-37、51-38、51-39、51-52、51-55、51-56、51-57、51-59、51-62、51-63、51-65、51-66、51-69、51-72、51-74、51-78、51-80、51-84、51-87、51-89、51-92、51-93、51-95、51-96、52-1、52-2 Allele X and both alleles 100
无毛
Without fuzz
30 51-33、51-35、51-40、51-42、51-44、51-45、51-46、51-47、51-48、51-49、51-50、51-60、51-64、51-67、51-68、51-71、51-73、51-75、51-76、51-79、51-82、51-83、51-85、51-86、51-90、51-91、51-94、51-97、52-3 Allele Y 100
自然群体
Natural population
有毛
With fuzz
17 春美 Chunmei、黄金蜜桃3号 Huangjinmi 3、中蟠102 Zhongpan 102、黄金蜜桃1号 Huangjinmi 1、中桃10号Zhongtao 10、中蟠1号 Zhongpan 1、中蟠2号 Zhongpan 2、96-5-1、09南9-22 09nan9-22、中桃白玉 Zhongtaobaiyu、春瑞 Chunrui、NJC83、中桃5号 Zhongtao 5、F4、春丽 Chunli、春蜜 Chunmi、中桃红玉Zhongtaohongyu Allele X and both alleles 100
无毛
Without fuzz
13 中油20号 Zhongyou 20、中油19号 Zhongyou 19、红芒果 Hongmangguo、中油蟠36-3 Zhongyoupan 36-3、中油8号 Zhongyou 8、中油27号 Zhongyou 27、双喜红 Shuangxihong、早4号 Zao 4、中油18号 Zhongyou 18、05-1-135、中油9号 Zhongyou 9、F2、F3 Allele Y 100

Fig. 3

KASP genotyping result of 90 peach germplasm about fruits shape and segregation of flat and round peach within progeny population"

Table 5

Verification of flat or round peach shape by KASP marker"

群体
Population
表型
Phenotype
数量
No.
杂种后代/桃品种
Hybrids/Cultivar (line)
基因分型
Genotype
符合率
Coincidence rate (%)
组合1
Cross 1
圆桃 Round 29 51-37、51-38、51-40、51-42、51-44、51-45、51-46、51-48、51-50、51-63、51-64、51-68、51-69、51-76、51-77、51-78、51-82、51-84、51-85、51-89、51-94、51-97、52-3、51-62、51-66、51-74、51-79、51-90、51-91 Allele X 100
蟠桃 Flat 31 51-33、51-34、51-35、51-36、51-39、51-47、51-49、51-52、51-54、51-55、51-56、51-57、51-59、51-60、51-65、51-67、51-71、51-72、51-73、51-75、51-80、51-81、51-83、51-86、51-87、51-92、51-93、51-95、51-96、52-1、52-2 Both alleles 100
自然群体
Natural population
圆桃 Round 27 中油20号 Zhongyou 20、中油19号 Zhongyou 19、春美Chunmei、黄金蜜桃3号 Huangjinmi 3、红芒果 Hongmangguo、霞脆 Xiacui、有名 Youming、黄金蜜桃1号 Huangjinmitao 1、中桃10号 Zhongtao 10、96-5-1、中油8号 Zhongyou 8、09南9-22 09nan9-22、中油27号 Zhongyou 27、双喜红 Shuanghongxi、白如玉 Bairuyu、春瑞 Chunrui、NJC83、早4号 Zao 4、中油18号 Zhongyou 18、05-1-135、中桃5号 Zhongtao 5、中油9号 Zhongyou 9、F1、F2、F3、春蜜Chunmi、中桃红玉 Zhongtaohongyu Allele X 100
蟠桃 Flat 3 中油蟠36-3 Zhongyoupan 36-3、中蟠2号 Zhongpan 2、中蟠1号 Zhongpan 1 Both alleles 100

Fig. 4

KASP genotyping result of stony hard flesh peach population and segregation of stony hard and non-stony hard peach within progeny population"

Table 6

Verification of stony hard peach or not by KASP marker"

群体
Population
表型
Phenotype
数量
No.
杂种后代/桃品种
Hybrids/Cultivar (line)
基因分型
Genotype
符合率
Coincidence rate (%)
组合2
Cross 2
硬质桃
Stony hard
27 15-16、15-19、15-21、15-22、15-23、15-24、15-27、15-29、15-32、15-34、15-36、15-37、15-38、15-39、15-40、15-42、15-43、15-44、15-48、15-51、15-52、15-53、15-54、15-58、15-59、15-60、15-66 Allele Y 100
非硬质桃
Non-stony hard
26 15-15、15-17、15-18、15-20、15-25、15-26、15-28、15-30、15-31、15-33、15-35、15-41、15-45、15-46、15-47、15-49、15-50、15-55、15-56、15-57、15-61、15-62、15-63、15-64、15-65、15-67 Both alleles 100
自然群体
Natural population
硬质桃
Stony hard
5 09南9-22 09nan9-22、中桃10号 Zhongtao 10、中油19号 Zhongyou 19、中油18号 Zhongyou 18、白如玉 Bairuyu Allele Y 100
非硬质桃
Non-stony hard
17 春瑞 Chunrui、中桃红玉 Zhongtaohongyu、双喜红 Shuangxihong、红不软 Hongburuan、96-5-1、春美 Chunmei、中蟠1号 Zhongpan 1、NJC83、中油9号 Zhongyou 9、中油8号 Zhongyou 8、05-135、黄金蜜桃3号 Huangjinmi 3、大久保 Dajiubao、中油20号 Zhongyou 20、中油蟠36-3 Zhongyoupan 36-3、中桃5号 Zhongtao 5、红芒果 Hongmangguo Allele X and both alleles 100

Fig. 5

KASP genotyping result of DBF (Dominant Blood-Flesh) peach population and segregation of DBF and non-DBF peach within progeny population"

Table 7

Verification on hybrids of DBF or non-DBF by KASP marker"

群体
Population
表型
Phenotype
数量
No.
杂种后代/桃品种
Hybrids/Cultivar (line)
基因分型
Genotype
符合率
Coincidence rate (%)
组合2
Cross 2
红肉
Red flesh
21 15-16、15-18、15-20、15-21、15-22、15-24、15-25、15-27、15-28、15-30、15-31、15-35、15-38、15-41、15-47、15-48、15-50、15-51、15-57、15-58、15-61 Both alleles 100
非红肉
Non-red flesh
32 15-15、15-19、15-26、15-29、15-32、15-33、15-36、15-37、15-39、15-40、15-42、15-43、15-45、15-49、15-52、15-53、15-54、15-55、15-59、15-60、15-62、15-63、15-66、15-67、15-17、15-23、15-34、15-44、15-46、15-56、15-64、15-65 Allele X 100
验证群体
Verification population
红肉
Red flesh
17 46-1、46-4、46-9、46-12、46-17、46-23、46-33、46-35、46-37、46-44、46-46、46-47、46-50、46-61、46-63、46-67、46-69 Both alleles 100

Fig. 6

KASP genotyping result of resistance to green peach aphid peach cross 1 and segregation of resistant and susceptible peach within progeny population"

Table 8

Verification on hybrids of resistant or susceptible peach by KASP marker"

群体
Population
表型
Phenotype
数量
No.
杂种后代/桃品种
Hybrids/Cultivar (line)
基因分型
Genotype
符合率
Coincidence rate (%)
组合1
Cross 1
抗蚜
With resistance
49 51-33、51-34、51-35、51-36、51-37、51-38、51-39、51-40、51-41、51-42、51-43、51-44、51-45、51-46、51-47、51-48、51-49、51-50、51-51、51-52、51-53、51-54、51-55、51-56、51-57、51-81、51-59、51-60、51-82、51-62、51-63、51-64、51-65、51-67、51-69、51-70、51-71、51-72、51-73、51-74、51-75、51-76、51-77、51-78、51-79、51-80、51-86、51-87、51-88 Both alleles 100
感蚜
Without resistance
46 51-66、51-68、3-1、3-2、3-3、3-4、3-5、3-6、3-9、3-10、3-12、3-15、3-16、3-17、3-19、3-20、3-21、3-23、3-24、3-28、3-29、3-30、3-32、3-33、3-34、3-35、3-36、3-37、3-38、3-39、3-40、3-42、3-43、3-44、3-45、3-46、3-48、3-49、3-52、3-54、3-55、3-56、3-57、3-58、3-59、3-60 Allele Y 100
[12] 连晓东, 谭彬, 郑先波, 陈谭星, 王婷, 栗焕楠, 冯建灿. 桃主要性状的分子标记与功能基因定位研究进展. 果树学报, 2018, 35(3):334-346.
LIAN X D, TAN B, ZHENG X B, CHEN T X, WANG T, LI H N, FENG J C. Progress in molecular markers and localization of functional genes of main traits in peach. Journal of Fruit Science, 2018, 35(3):334-346. (in Chinese)
[13] CAO K, ZHOU Z K, WANG Q, GUO J, ZHAO P, ZHU G R, FANG W C, CHEN C W, WANG X W, WANG X L, TIAN Z X, WANG L R. Genome-wide association study of 12 agronomic traits in peach. Nature Communications, 2016, 7:13246.
doi: 10.1038/ncomms13246
[14] 冯建灿, 张梦洋, 李敏, 程钧, 方伟超, 牛良, 郑先波, 叶霞, 谭彬. 桃果皮茸毛性状IndelG标记基因分型与应用. 河南农业大学学报, 2019, 53(1):64-72.
FENG J C, ZHANG M Y, LI M, CHENG J, FANG W C, NIU L, ZHENG X B, YE X, TAN B. Analysis and application of genotypes on peel fuzz trait in peach resources with IndelG molecular marker. Journal of Henan Agricultural University, 2019, 53(1):64-72. (in Chinese)
[15] MICHELETTI D, DETTORI M T, MICALI S, ARAMINI V, PACHECO I, DA SILVA LINGE C, FOSCHI S, BANCHI E, BARRENECHE T, QUILOT-TURION B, LAMBERT P, PASCAL T, IGLESIAS I, CARBÓ J, WANG L R, MA R J, LI X W, GAO Z S, NAZZICARI N, TROGGIO M, BASSI D, ROSSINI L, VERDE I, LAURENS F, ARÚS P, ARANZANA M J. Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS ONE, 2015, 10(9):e0136803.
doi: 10.1371/journal.pone.0136803
[16] 郭健. 蟠桃果形基因发掘及生理机制探讨[D]. 北京: 中国农业科学院, 2016.
GUO J. Gene discovery of fruit shape and physiological mechanism investigation in flat peach[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[17] ZHOU H, KUI L W, WANG H L, GU C, DARE A P, ESPLEY R V, HE H P, ALLAN A C, HAN Y P. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal, 2015, 82(1):105-121.
doi: 10.1111/tpj.2015.82.issue-1
[18] PAN L, ZENG W F, NIU L, LU Z H, LIU H, CUI G C, ZHU Y Q, CHU J F, LI W P, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015, 66(22):7031-7044.
doi: 10.1093/jxb/erv400
[19] 牛良. 寿星桃抗蚜性鉴定及分子机制解析[D]. 武汉: 华中农业大学, 2019.
NIU L. Identification of resistance to green peach aphids of shouxing peach and its molecular mechanism[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[1] ZIMMERMAN R H. Juvenility and flowering of fruit trees. Acta Horticulturae, 1973, 34:139-142.
[2] FLACHOWSKY H, PEIL A, SOPANEN T, ELO A, HANKE V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus domestica Borkh.). Plant Breeding, 2007, 126:137-145.
doi: 10.1111/pbr.2007.126.issue-2
[3] FLACHOWSKY H, LE ROUX P M, PEIL A, PATOCCHI A, RICHTER K, HANKE M V. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. The New Phytologist, 2011, 192(2):364-377.
doi: 10.1111/nph.2011.192.issue-2
[4] 马之胜, 贾云云, 马文会. 我国桃育种目标的演变、育种成就及目标展望. 河北农业科学, 2003, 7(s1):99-102.
[20] 程萌杰, 闫双勇, 施利利, 孙宁, 张欣, 丁得亮, 边嘉宾, 王松文. 利用KASP标记评价水稻品种多态性. 天津农学院学报, 2018, 25(4):13-16, 23.
CHENG M J, YAN S Y, SHI L L, SUN N, ZHANG X, DING D L, BIAN J B, WANG S W. Evaluation of rice variety polymorphisms using KASP markers. Journal of Tianjin Agricultural University, 2018, 25(4):13-16, 23. (in Chinese)
[4] MA Z S, JIA Y Y, MA W H. Evalution of breeding objects, achievements and prospects on peach in China. Journal of Hebei Agricultural Sciences, 2003, 7(s1):99-102.(in Chinese)
[5] ABBOTT A G, LECOULS A C, WANG Y, GEORGI L, SCORZA R, REIGHARD G. Peach: The model genome for Rosaceae genomics. Acta Horticulturae, 2002, 592:199-209.
[21] 牛付安, 周继华, 曹黎明, 程灿, 涂荣剑, 胡雪娇, 杨佳, 孙滨, 罗忠永, 赵志鹏, 王新其, 储黄伟. 水稻低直链淀粉含量基因Wxmq的KASP标记开发与利用. 分子植物育种, 2019, 17(24):8125-8131.
NIU F A, ZHOU J H, CAO L M, CHENG C, TU R J, HU X J, YANG J, SUN B, LUO Z Y, ZHAO Z P, WANG X Q, CHU H W. Development and utilization of KASP marker for low amylose content gene, Wxmq, in rice (Oryza sativa L.). Molecular Plant Breeding, 2019, 17(24):8125-8131. (in Chinese)
[6] VENDRAMIN E, PEA G, DONDINI L, PACHECO I, DETTORI M T, GAZZA L, SCALABRIN S, STROZZI F, TARTARINI S, BASSI D, VERDE I, ROSSINI L. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS ONE, 2014, 9(3):e112032.
doi: 10.1371/journal.pone.0112032
[7] 姜全, 郭继英, 郑书旗, 赵剑波. 蟠桃果形遗传分析. 果树科学, 2000(S1):1-4.
JIANG Q, GUO J Y, ZHENG S Q, ZHAO J B. Genetic analysis of fruit shape of flat peach. Journal of Fruit Science, 2000(S1):1-4. (in Chinese)
[8] 牛良, 鲁振华, 曾文芳, 崔国朝, 潘磊, 徐强, 李国怀, 王志强. ‘粉寿星’对桃绿蚜抗性的遗传分析. 果树学报, 2016, 33(5):578-584.
NIU L, LU Z H, ZENG W F, CUI G C, PAN L, XU Q, LI G H, WANG Z Q. Inheritance analysis of resistance to green peach aphids (Myzus persicae Sulzer) for peach cultivar ‘Fen Shouxing’ (Prunus persica var. Densa). Journal of Fruit Science, 2016, 33(5):578-584. (in Chinese)
[9] SHEN Z J, CONFOLENT C, LAMBERT P, POËSSEL J L, BÉNÉDICTE Q T, YU M L, MA R J, PASCAL T. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genetics and Genomes, 2013, 9(6):1435-1446.
doi: 10.1007/s11295-013-0649-1
[22] 单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测. 作物杂志, 2020(4):64-71.
SHAN Z L, BAN J F, ZHAO Y K, CAO Q, TIAN G Y, HE M Q, GAO Z X. Detection of quality-related genes in the wheat varieties authorized in Hebei Province by KASP markers. Crops, 2020(4):64-71. (in Chinese)
[10] GOFFREDA J C. Stony hard gene of peach alters ethylene biosynthesis, respiration, and other ripening related characteristics. HortScience, 1992, 27(6):610.
[11] VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S Q, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, CATTONARO F, ZUCCOLO A, ROSSINI L, JENKINS J, VENDRAMIN E, MEISEL L A, DECROOCQ V, SOSINSKI B, PROCHNIK S, MITROS T, POLICRITI A, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5):487-494.
doi: 10.1038/ng.2586
[23] 胡茂龙, 程丽, 郭月, 龙卫华, 高建芹, 浦惠明, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因标记的开发与应用. 作物学报, 2020, 46(10):1639-1646.
HU M L, CHENG L, GUO Y, LONG W H, GAO J Q, PU H M, ZHANG J F, CHEN S. Development and application of the marker for imidazolinone-resistant gene in Brassica napus. Acta Agronomica Sinica, 2020, 46(10):1639-1646. (in Chinese)
[24] 张南南, 牛良, 崔国朝, 潘磊, 曾文芳, 王志强, 鲁振华. 一种高通量提取桃DNA方法的建立与应用. 中国农业科学, 2018, 51(13):2614-2621.
ZHANG N N, NIU L, CUI G C, PAN L, ZENG W F, WANG Z Q, LU Z H. Establishment and application of a high-throughout protocol for peach (Prunus persica) DNA extraction. Scientia Agricultura Sinica, 2018, 51(13):2614-2621. (in Chinese)
[25] 韦宇, 李孝琼, 何新柳, 陈红操, 陈颖, 黄克宁, 卢东长城, 郭嗣斌. 基于KASP技术的稻瘟病抗性基因Pi9分子标记的开发与评价. 西南农业学报, 2019, 32(6):1216-1222.
WEI Y, LI X Q, HE X L, CHEN H C, CHEN Y, HUANG K N, LU D C C, GUO S B. Development and evaluation of rice blast resistance gene (Pi9) SNP molecular markers based on KASP technology. Southwest China Journal of Agricultural Sciences, 2019, 32(6):1216-1222. (in Chinese)
[26] 王力荣, 朱更瑞. 桃种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
WANG L R, ZHU G R. Descriptors and Data Standard for Peach (Prunus persica L.). Beijing: Chinese Agriculture Press, 2005. (in Chinese)
[27] RASHEED A, WEN W E, GAO F M, ZHAI S N, JIN H, LIU J D, GUO Q, ZHANG Y J, DREISIGACKER S, XIA X C, HE Z H. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.
doi: 10.1007/s00122-016-2743-x
[28] 姜立杰, 杨英军, 张晓明, 李文生, 张开春. 桃果实有毛/无毛性状的SCAR标记. 园艺学报, 2005, 32(6):1003-1007.
JIANG L J, YANG Y J, ZHANG X M, LI W S, ZHANG K C. SCAR marker linked to the peach/nectarine in peach. Acta Horticulturae Sinica, 2005, 32(6):1003-1007. (in Chinese)
[29] 张妤艳, 马瑞娟, 俞明亮, 宋宏峰. 桃肉色、果皮茸毛性状的SSR标记筛选. 南方农业学报, 2014, 45(7):1160-1165.
ZHANG Y Y, MA R J, YU M L, SONG H F. Screening on SSR markers linked to flesh colour gene and nectarine gene of Prunus persica(L.) Batsch. Journal of Southern Agriculture, 2014, 45(7):1160-1165. (in Chinese)
[30] 张妤艳, 马瑞娟, 俞明亮, 许建兰. 桃果形性状的SSR标记. 江苏农业学报, 2012, 28(6):1424-1428.
ZHANG Y Y, MA R J, YU M L, XU J L. Molecular marker linked to peach fruit shape by simple sequence repeat (SSR). Jiangsu Journal of Agricultural Sciences, 2012, 28(6):1424-1428. (in Chinese)
[31] 曾文芳, 丁义峰, 潘磊, 王小贝, 牛良, 鲁振华, 崔国朝, 王志强. 桃硬质性状可能源于PpYUC11基因启动子区域CACTA型转座子的插入. 果树学报, 2017, 34(10):1239-1248.
ZENG W F, DING Y F, PAN L, WANG X B, NIU L, LU Z H, CUI G C, WANG Z Q. A CACTA transposable element in a PpYUC11 gene promoter is associated with the stony hard phenotype in peach. Journal of Fruit Science, 2017, 34(10):1239-1248. (in Chinese)
[32] CURRY J D. Key trait screening on global wheat accessions using KASP genotyping markers-A new open resource for the wheat breeding community [EB/OL]. 2016. https://pag.confex.com/pag/ xxiv/webprogram/Paper20333.html.
[33] GROGAN S M, BROWN-GUEDIRA G, HALEY S D, MCMASTER G S, REID S D, SMITH J, BYRNE P F. Allelic variation in developmental genes and effects on winter wheat heading date in the US great Plains. PLoS ONE, 2016, 11(4):e0152852.
doi: 10.1371/journal.pone.0152852
[34] PEREZ-LARA E, SEMAGN K, CHEN H, TRAN V A, CIECHANOWSKA I, IQBAL M, N’DIAYE A, POZNIAK C, STRELKOV S E, HUCL P J, GRAF R J, RANDHAWA H, SPANER D. Allelic variation and effects of 16 candidate genes on disease resistance in western Canadian spring wheat cultivars. Molecular Breeding, 2017, 37(3):23.
doi: 10.1007/s11032-017-0627-7
[35] LIU Y N, HE Z H, APPELS R, XIA X C. Functional markers in wheat: Current status and future prospects. Theoretical and Applied Genetics, 2012, 125(1):1-10.
doi: 10.1007/s00122-012-1829-3
[36] 何中虎, 兰彩霞, 陈新民, 邹裕春, 庄巧生, 夏先春. 小麦条锈病和白粉病成株抗性研究进展与展望. 中国农业科学, 2011, 44(11):2193-2215.
HE Z H, LAN C X, CHEN X M, ZOU Y C, ZHUANG Q S, XIA X C. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat. Scientia Agricultura Sinica, 2011, 44(11):2193-2215. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[3] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[4] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[5] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[6] FENG XuanJun, PAN LiTeng, XIONG Hao, WANG QingJun, LI JingWei, ZHANG XueMei, HU ErLiang, LIN HaiJian, ZHENG HongJian, LU YanLi. Investigation on Important Target Traits and Breeding Potential of 120 Sweet and Waxy Maize Inbred Lines in the South of China [J]. Scientia Agricultura Sinica, 2022, 55(5): 856-873.
[7] LU Xiang, GAO Yuan, WANG Kun, SUN SiMiao, LI LianWen, LI HaiFei, LI QingShan, FENG JianRong, WANG DaJiang. Analysis of Aroma Characteristics in Different Cultivated Apple Strains [J]. Scientia Agricultura Sinica, 2022, 55(3): 543-557.
[8] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[9] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[10] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[11] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[12] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[13] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[14] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[15] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!