Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (5): 882-892.doi: 10.3864/j.issn.0578-1752.2019.05.010

• HORTICULTURE • Previous Articles     Next Articles

Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.)

TAN Bin1,2,CHEN TanXing1,HAN YaPing1,ZHANG YaRu1,ZHENG XianBo1,2,CHENG Jun1,2,WANG Wei1,2,FENG JianCan1,2()   

  1. 1 College of Horticulture, Henan Agricultural University, Zhengzhou 450002
    2 Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002
  • Received:2018-10-10 Accepted:2018-11-17 Online:2019-03-01 Published:2019-03-12
  • Contact: JianCan FENG E-mail:jcfeng@henau.edu.cn

Abstract:

【Objective】The somatic embryogenesis receptor-like kinase 2 (SERK2 ) gene was isolated and cloned from peach (Prunus persica L.). Here, we detected the expression profile of SERK2 in different forms of calli in peach, and analyzed the correlation between SERK2 and the regeneration of embryonic callus. This research will shed on uncovering the molecular mechanism of embryonic callus induction and regeneration in peach with difficulty on tissue culture. 【Method】The full-length cDNA sequence of PpSERK2 gene was obtained by homologous cloning. Then the sequence was analyzed by a series of bioinformatical software packages, including TMPred, DNAMAN and MEGA 5.0 etc. The callus of ‘Qiumihong’ was obtained by using anthers as explants inoculated into NN69 medium supplemented with 2.0 mg·L -1 6-BA and 1.0 mg·L -1 2,4-D. Then the different forms of calli were observed by production of paraffin section. Real-time quantitative PCR (qRT-PCR) was used to analyze the expression of PpSERK2 gene in four forms of ‘Qiumihong’ calli. 【Result】The full-length cDNA sequence of PpSERK2 gene was 1 881 bp. It encodes 626 amino acids and contains SERK conserved function domains. The theoretical isoelectric point of PpSERK2 is 5.38 and its molecular weight is 68.99 KD. The PpSERK2 has the high homology similarity from 67.88% to 92.71% at protein level, especially the highest similarity to Solanum peruvianu and Citrus unshiu . The phylogenetic analysis of SERK proteins from various plant species indicated that PpSERK2, SpSERK1, CitSERK1 and PsSERK2 were clustered together, which showing the consistent result with above protein similarity analysis. Four different forms of calli were obtained from anther of ‘Qiumihong’. The results of histocytology showed that the cells of three forms of calli, including the yellow, loose callus (global embryo), green, compact callus (heart embryo) and pale yellow, transparent callus (suspected torpedo embryo), were small and closely arranged. While the cells of yellow-white, dropsical callus was large and with irregular shapes. Based on histomorphology results, this demonstrated that the yellow, loose callus, green, compact callus and pale yellow, transparent callus were embryonic calli, while yellow-white, dropsical callus was non-embryonic callus. The results of qRT-PCR showed that transcriptional level of PpSERK2 gene in three forms of embryonic calli was remarkably higher than non-embryonic callus. Meanwhile, the transcriptional level of PpSERK2 gene was highest in the yellow, loose callus, followed by the green, compact callus, and lowest in the pale yellow and transparent callus of ‘Qiumihong’. 【Conclusion】The full-length cDNA of the PpSERK2 gene was successfully obtained. According to the results of PpSERK2 expression in four forms calli of ‘Qiumihong’, we speculated that PpSERK2 gene might play a pivotal role on the early stage during the somatic embryogenesis in peach.

Key words: peach, somatic embryogenesis, SERK2, embryonic callus

Fig. 1

Cloning of PpSERK2 A: RNA of shoot tip in ‘Qiumihong’; B: PCR amplification of PpSERK2 , M: DNA marker DL2000"

Fig. 2

The nucleotide sequence of PpSERK2 gene cDNA and its deduced amino acid sequence"

Fig. 3

The diagrams of SERK amino acid sequence in different plants"

Fig. 4

Phylogenetic tree of PpSERK2 and SERK in other plants"

Fig. 5

The morphological and cytological observation of different forms of calli from P. perscia ‘Qiumihong’ A: The yellow, loose embryogenic callus; B: The green, compact embryogenic callus; C: The pale yellow, transparent embryogenic callus; D: The yellow-white, dropsical non-embryonic callus; E: Microscope slide of the yellow, loose embryogenic callus (arrow indicated globular embryo); F: Microscope slide of the green, compact embryogenic callus (arrow indicated heart-shape embryo); G: Microscope slide of the pale yellow, transparent embryogenic callus (arrow indicated not yet fully formed torpedo-shape embryo); H: Microscope slide of the yellow-white, dropsical embryonic callus. A-D: Bar = 1 mm; E-H: Bar = 200 μm"

Fig. 6

The relative of expression of PpSERK2 gene in different forms of calli of P. perscia ‘Qiumihong’ Data are means±standard error (n=3); Different small letters mean significant differences (P <0.05) "

[1] RAI V R, MCCOMB J .Direct somatic embryogenesis from mature embryos of sandalwood. Plant Cell, Tissue and Organ Culture, 2002,69(1):65-70.
doi: 10.1023/A:1015037920529
[2] 吴延军, 徐昌杰, 张上隆 .桃组织培养和遗传转化研究现状及展望. 果树学报, 2002,19(2):123-127.
doi: 10.3969/j.issn.1009-9980.2002.02.013
WU Y J, XU C J, ZHANG S L . Status and prospect of research in peach tissue culture and genetic transformation. Journal of Fruit Science , 2002,19(2):123-127. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2002.02.013
[3] SRINIVASAN C, SCORZA R .The influence of genotype on the induction of somatic embryos fromin vitro cultured zygotic embryos and adventitious shoot regeneration from cotyledons of peach and nectarine. Acta Horticulturae (ISHS) , 2007,738:691-696.
[4] 汤浩茹, 王永清, 任正隆 .核桃体细胞胚发生与转基因研究进展. 林业科学, 2000,36(3):102-110.
doi: 10.3321/j.issn:1001-7488.2000.03.017
TANG H R, WANG Y Q, REN Z L . An overview of progress in somatic embryogenesis and transformation in walnut. Scientia Silvae Sinicae , 2000,36(3):102-110. (in Chinese)
doi: 10.3321/j.issn:1001-7488.2000.03.017
[5] 宋跃, 甄成, 张含国, 李淑娟 .长白落叶松胚性愈伤组织诱导及体细胞胚胎发生. 林业科学, 2016,52(10):45-54.
doi: 10.11707/j.1001-7488.20161006
SONG Y, ZHEN C, ZHANG H G, LI S J . Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos ofLarix olgensis . Scientia Silvae Sinicae , 2016,52(10):45-54. (in Chinese)
doi: 10.11707/j.1001-7488.20161006
[6] LI Z X, FAN Y R, DANG S F, LI W F, QI L W, HAN S Y .LaMIR166a -mediated auxin biosynthesis and signalling affect somatic embryogenesis in Larix leptolepis . Molecular Genetics and Genomics , 2018,293(6):1355-1363.
[7] SEZGIN M,DUMANOĞLU H. Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Castanea sativa Mill.). In Vitro Cellular & Developmental Biology- Plant , 2014,50(1):58-68.
[8] HOU J Y, WU Y, SHEN Y C, MAO Y J, LIU W B, ZHAO W W, MU Y, LI M H, YANG M L, WU L F .Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos ofSapium sebiferum Roxb. Scientia Horticulturae , 2015,197:218-225.
doi: 10.1016/j.scienta.2015.09.040
[9] KAZMI S K, KHAN S, MIRBAMAR A A, KABIR N .Micropropagation of nucellar embryos and their histological comparative study for regeneration ability with other explants of kinnow mandarin (Citrus reticulata Blanco). Pakistan Journal of Botany , 2018,50(1):345-353.
[10] JI W, LUO Y X, GUO R R, LI X X, ZHOU Q, MA X H, WANG Y J .Abnormal somatic embryo reduction and recycling in grapevine regeneration. Journal of Plant Growth Regulation, 2017,36(4):912-918.
doi: 10.1007/s00344-017-9694-6
[11] DUTT M, ZAMBON F T, ERPEN L, SORIANO L, GROSSER J .Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation. PLoS ONE, 2018,13(1):e0190413.
doi: 10.1371/journal.pone.0190413 pmid: 29293649
[12] IOCCO P, FRANKS T, THOMAS M R .Genetic transformation of major wine grape cultivars ofVitis vinifera L. Transgenic Research , 2001,10(2):105.
[13] BOUTILIER K, OFFRINGA R, SHARMA V K, KIEFT H, OUELLET T, ZHANG L, HATTORI J, LIU C M VAN LAMMEREN A A M,MIKI B L A,CUSTERS J B M,VAN LOOKEREN CAMPAGNE M M,. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 2002,14(8):1737-1749.
doi: 10.1005/Tpc.001941 pmid: 12172019
[14] STONE S L, KWONG L W, YEE K M, PELLETIER J, LEPINIEC L, FISCHER R L, GOLDBERG R B, HARADA J J .LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proceedings of the National Academy of Sciences of the United States of America , 2001,98(20):11806-11811.
[15] ZUO J, NIU Q W, FRUGIS G, CHUA N H .The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis . The Plant Journal , 2002,30(3):349-359.
[16] SCHMIDT E D L, GUZZO F, TOONEN M A J, DE VRIES S C . A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997,124(10):2049-2062.
doi: 10.1016/S1386-1425(01)00499-1 pmid: 9169851
[17] HECHT V, VIELLE-CALZADA J P, HARTOG M V, SCHMIDT E D L, BOUTILIER K, GROSSNIKLAUS U, DE VRIES S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture.Plant Physiology, 2001,127(3):803-816.
[18] BAUDINO S, HANSEN S, BRETTSCHNEIDER R ,HECHT V F G,DRESSELHAUS T,LÖRZ H,DUMAS C,ROGOWSKY P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to the SERK gene family.Planta, 2001,213(1):1-10.
doi: 10.1007/s004250000471 pmid: 11523644
[19] NOLAN K E, IRWANTO R R, ROSE R J .Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiology , 2003,133(1):218-230.
[20] THOMAS C, MEYER D, HIMBER C, STEINMETZ A .Spatial expression of a sunflowerSERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiology and Biochemistry , 2004,42(1):35-42.
doi: 10.1016/j.plaphy.2003.10.008 pmid: 15061082
[21] HU H, XIONG L, YANG Y .RiceSERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta , 2005,222(1):107-117.
doi: 10.1007/s00425-005-1534-4 pmid: 15968510
[22] SINGH A, KHURANA P .Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis . Scientific Reports , 2017,7(1):12368.
[23] LIU Z J, ZHAO Y P, ZENG L H, ZHANG Y, WANG Y M, HUA J P .Characterization of GhSERK2 and its expression associated with somatic embryogenesis and hormones level in Upland cotton. Journal of Integrative Agriculture , 2018,17(3):517-529.
doi: 10.1016/S2095-3119(17)61726-X
[24] HUANG X, LU X Y, ZHAO J T, ZHAO J T, CHEN J K, DAI X M, XIAO W, CHEN Y P, CHEN Y F, HUANG X L .MaSERK1 Gene expression associated with somatic embryogenic competence and disease resistance response in banana(Musa spp .). Plant Molecular Biology Reporter , 2010,28(2):309-316.
doi: 10.1007/s11105-009-0150-z
[25] AHMADI B, MASOOMI-ALADIZGEH F, SHARIATPANAHI M E, AZADI P, KESHAVARZ-ALIZADEH M .Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.: Implication for microspore embryogenesis and plant regeneration. Plant Cell Reports , 2016,35(1):185-193.
doi: 10.1007/s00299-015-1878-6
[26] PÉREZNÚÑEZ M T, SOUZA R, SÁENZ L, CHAN J L, ZÚÑIGA-AGUILAR J J, OROPEZA C . Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Reports, 2009,28(1):11-19.
doi: 10.1007/s00299-008-0616-8 pmid: 18818928
[27] DA CUNHA SOARES T, DA SILVA C R C, CARVALHO J M F C, CAVALCANTI J J V, DE LIMA L M, DE ALBUQUERQUE MELO FILHO P, SEVERINO L S, DOS SANTOS R C . Validating a probe from GhSERK1 gene for selection of cotton genotypes with somatic embryogenic capacity. Journal of Biotechnology , 2018,270:44-50.
[28] 王其海, 王裔娜, 刘晓华, 吴文江, 丁宁, 牛洪斌, 王林忠, 吴国良 .桃不同发育时期叶片总RNA提取方法的比较. 河南农业科学, 2014,43(3):116-120.
doi: 10.3969/j.issn.1004-3268.2014.03.025
WANG Q H, WANG Y N, LIU X H, WU W J, DING N, NIU H B, WANG L Z, WU G L . Comparative analysis of total RNA extraction methods for leaves of peach at different development stages. Journal of Henan Agricultural Sciences , 2014,43(3):116-120. (in Chinese)
doi: 10.3969/j.issn.1004-3268.2014.03.025
[29] 李和平 .植物显微技术: 第二版. 北京: ALBUQUERQUE科学出版社, 2009.
LI H P. Plant Microscopy Techniques: 2nd Edition. Beijing: Science Press, 2009. ( in Chinese)
[30] 韩亚萍 .桃体细胞胚发生相关基因SERK2 的克隆与表达分析[D].郑州: 河南农业大学, 2017.
HAN Y P .Cloning and expression analysis of somatic embryogenesis related gene SERK2 in peach[D].Zhengzhou: Henan Agricultural University, 2017. ( in Chinese)
[31] LI Y B, LIU C H, GUO G M, HE T, CHEN Z W, GAO R H, XU H W, FAHEEM M, LU R J, HUANG J H .Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses. Journal of Plant Interactions, 2017,12(1):279-285.
doi: 10.1080/17429145.2017.1339836
[32] SHIU S H, BLEECKER A B .Receptor-like kinases fromArabidopsis form a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America , 2001,98(19):10763-10768
[33] BECRAFT P W .Receptor kinases in plant development. Trends in Plant Science, 1998,3(10):384-388.
doi: 10.1016/S1360-1385(98)01301-6
[34] ZHANG X R .Leucine-rich repeat receptor-like kinases in plants. Plant Molecular Biology Reporter, 1998,16(4):301-311.
doi: 10.1023/A:1007540610933
[35] HAMMERSCHLAG F A, BAUCHAN G, SCOURZA R .Regeneration of peach plant from callus derived from immature embryos. Theoretical and Applied Genetics, 1985,70(3):248-251.
doi: 10.1007/BF00304907 pmid: 24252917
[36] 刘航空, 韩明玉, 禹婷, 赵彩平 .影响油桃叶片产生胚性愈伤组织的因素. 果树学报, 2006,23(3):370-374.
doi: 10.3969/j.issn.1009-9980.2006.03.012
LIU H K, HAN M Y, YU T, ZHAO C P . Factors affecting embryonic callus from leaves of early season nectarine cultivars. Journal of Fruit Science , 2006,23(3):370-374. (in Chinese)
doi: 10.3969/j.issn.1009-9980.2006.03.012
[37] 鲁娇娇, 严瑞, 何香杉, 靳宏梅, 王锦霞, 王春夏, 孙红梅 .朱顶红‘Red Lion’胚性愈伤组织诱导及体细胞胚发生. 园艺学报, 2016,43(12):2451-2460.
doi: 10.16420/j.issn.0513-353x.2016-0495
LU J J, YAN R, HE X S, JIN H M, WANG J X, WANG C X, SUN H M . The embryonic callus induction and somatic embryogenesis of hippeastrum vittatum‘Red Lion’. Acta Horticulturae Sinica , 2016,43(12):2451-2460. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0495
[38] 林丽霞, 屈莹, 徐洋, 林玉玲, 赖钟雄 .龙眼体胚发生过程生长素响应因子DlARF5a 的克隆及表达分析. 西北植物学报, 2014,34(6):1075-1082.
doi: 10.7606/j.issn.1000-4025.2014.06.1075
LIN L X, QU Y, XU Y, LAI Z X . Cloning and expression analysis ofDlARF5a in the process of somatic embryogenesis in Dimocarpus longan Lour. Acta Botanica Boreali-Occidentalia Sinica , 2014,34(6):1075-1082. (in Chinese)
doi: 10.7606/j.issn.1000-4025.2014.06.1075
[39] THOMAS T L .Gene expression during plant embryogenesis and germination: an overview. The Plant Cell, 1993,5(10):1401-1410.
doi: 10.2307/3869791 pmid: 8281041
[40] SCHELLENBAUM P, JACQUES A, MAILLOT P, BERTSCH C, MAZET F, FARINE S, WALTER B .Characterization of VvSERK1 , VvSERK2 , VvSERK3 , and VvL1L , genes and their expression during somatic embryogenesis of grapevine(Vitis vinifera L.). Plant Cell Reports , 2008,27(12):1799-1809.
[41] OLIVEIRA E J, KOEHLER A D, ROCHA D I, VIEIRA L M , MARQUES PINHEIRO M V, DE MATOS E M, DA CRUZ A C F, FERREIRA DA CRUZ A C, RIBEIRO DA SILVA T C, OSSAMU TANAKA F A, SILVEIRA NOGUEIRA F T, OTONI W C. Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass Brachypodium distachyon . Protoplasma , 2017,254(11):2017-2024.
doi: 10.1007/s00709-017-1089-9
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[9] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[10] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[11] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[12] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[13] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[14] WEI Xi,WANG QianHua,GE XiaoYang,CHEN YanLi,DING YanPeng,ZHAO MingZhe,LI FuGuang. Effects of Different Red and Blue Ratios on the Somatic Embryogenesis and Plant Regeneration of Cotton [J]. Scientia Agricultura Sinica, 2019, 52(6): 968-980.
[15] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!