Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4396-4404.doi: 10.3864/j.issn.0578-1752.2021.20.013

• HORTICULTURE • Previous Articles     Next Articles

Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach

MENG JunRen(),NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang(),ZENG WenFang()   

  1. Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009
  • Received:2020-12-03 Accepted:2021-02-26 Online:2021-10-16 Published:2021-10-25
  • Contact: ZhiQiang WANG,WenFang ZENG E-mail:82101186035@caas.cn;wangzhiqiang@caas.cn;zengwenfang@caas.cn

Abstract:

【Objective】Tandem repeats and large segment deletions of Polygalacturonase (PG) gene was related to the clingstone/freestone characteristic of peach (Prunus persica) fruit. In this study, the sequence character of F-M locus of clingstone peach was analyzed to provide a basis for the development of related molecular markers. 【Method】With a Bacterial Artificial Chromosome library of clingstone peach 87-7-1 constructed, the positive BAC clone contained F-M locus was screened from the BAC library by PCR analysis. The screened BAC clone was sequenced by single-molecule nanopore technology. Gene annotation and sequence alignment were performed by bioinformatics. 【Result】PCR primers were designed based on re-sequencing data of existing peach varieties, and PCR reactions were performed with all the BAC library clones. Amplification products of the sequences in upstream/downstream of F-M loci were corrected, and then the target clone 46-B-10 was obtained. Full-length sequencing showed that the fragment with the length of 111612 bp and GC content of 37.03% was inserted between upstream and downstream primers. The homologous region of 46-B-10 was determined by sequence alignment with the reference genome Prunus_persica_v2.0. Five genes (Prupe.4G261700, Prupe.4G261800, Prupe.4G261900, Prupe.4G262000, and Prupe.4G262500) in F-M locus were found in the BAC clone 46-B-10. In comparison, 87-7-1 with 34 kb sequence including four genes was discarded, and one of them was EndoPGF, which controlled peach freestone and was reported previously. 【Conclusion】Compared with the reference genome freestone variety ‘Lovell’, there was only EndoPGM (Prupe.4G261900) in F-M locus of clingstone peach individual 87-7-1, while EndoPGF (Prupe.4G262200) was discarded. In this study, the structural variation of F-M locus in clingstone peach was determined, which has laid an important foundation for the development of molecular markers for clingstone/freestone trait in peach.

Key words: peach, clingstone/freestone, PG gene, BAC library

Table 1

Upstream and downstream primers of F-M loci and amplification sequences"

位置
Location
引物名称
Primer code
引物序列
Primer sequence
片段大小
Size ( bp)
扩增序列
Amplification sequence
F-M基因座上游
Upstream of F-M
8771-PG F1 CACTAATGCTATGCGATTGTGA 178 CACTAATGCTATGCGATTGTGATCTTAACATGTAAAAATTTGCGATTAATACCTATTACAGAGAAGACTCTGCTAGATTATTGATAGATCCCTCCTTGTTTGTCCAAGTAGGGATTAAGGATAGTTTAAGTAGTGGGCTCACTTCTCTCGAGTTTATCCAAACGGAAATCTGAGAGTG
8771-PG R1 CACTCTCAGATTTCCGTTTGG
F-M基因座下游
Downstream of F-M
8771-PG F2 TCCAGCTTAAGGCATCCACT 207 TCCAGCTTAAGGCATCCACTTGTTTCGGTTATGCAAGTGGATTAAGAATTGGATTGATTGTTGATGATGATATCACAACAAAAAAATTAGGCATGTACCATTATTCCAAGACTTCAGTTGGCCAAAGTCTCTTCCATGTGGAAATCTCTTCCTTGGTTCTAAGCTTCCTGATGCCCCCGTAAAACCCATCTGCCTCATTTCCCTCCT
8771-PG R2 AGGAGGGAAATGAGGCAGAT

Fig. 1

Phenotype of clingstone/freestone trait in peach A: 87-7-1, Clingstone; B: Zhongtao8, Freestone"

Fig. 2

Schematic diagram of the BAC library was screened by PCR"

Fig. 3

Agarose assays for PCR confirmed positive clones and the BAC clone plasmid A: M: DL 2000 DNA Marker; Lane 1-14: BAC clones 46-B-1-14 as template, and the positive control uses the clingstone with melting flesh peach Huangjinmi 3 as the template, while the negative control uses sterilized water as the template. B: M: TSINGKE 1.5 kb Marker, BAC: Plasmid extracted"

Fig. 4

Sequence alignment of PGs of BAC clone 46-B-10 and reference genome"

Fig. 5

Collinearity alignment of BAC clone and reference genome sequence The arrows indicate the location of upstream and downstream primers, and the dotted lines indicate the missing part"

Table 2

Sequence alignment of PGs of BAC clone 46-B-10 and reference genome"

基因ID
Gene ID
参考基因组基因序列长度
Gene length of reference sequence (bp)
BAC克隆基因序列长度
Gene length of BAC clone (bp)
基因序列相似度
Similarity of gene sequences (%)
编码氨基酸序列相似度
Similarity of coding amino acid sequences (%)
Prupe.4G261700 1519 1545 94.24 99.49
Prupe.4G261800 1771 1751 98.52 98.98
Prupe.4G261900 3262 3225 96.36 99.75
Prupe.4G262000 1516 1552 83.30 79.22
Prupe.4G262100 2380 / / /
Prupe.4G262200 2660 / / /
Prupe.4G262300 2544 / / /
Prupe.4G262400 3648 / / /
Prupe.4G262500 4553 4547 99.08 99.75

Fig. 6

PCR confirmed positive clones freestone/clingstone peach M: DL 2000 DNA Marker. 1-10: Freestone peach. Chunxue, Zaoyoutao, Zhongyou 22, Zhongtao 6, Xinzhongnan12-14, Xinzhongnan12-36, Xinzhongnan12-44, Xinzhongnan12-54, Xinzhongnan13-10, respectively; 11-20: Clingstone peach. Xinzhongnan12-55, Xinzhongnan12-59, Xinzhongnan12-60, Xinzhongnan13-4, Xinzhongnan13-14, 87-7-1, Zhongyou 8, Zhongyou 13, Zhongtao 5, Zhongyoutao 4, respectively; 21: The negative control uses sterilized water as the template"

[7] GHIANI A, ONELLI E, AINA R, COCUCCI M, CITTERIO S. A comparative study of melting and non-melting flesh peach cultivars reveals that during fruit ripening endo-polygalacturonase (endo-PG) is mainly involved in pericarp textural changes, not in firmness reduction. Journal of Experimental Botany, 2011, 62(11):4043-4054.
doi: 10.1093/jxb/err109
[8] DIRLEWANGER E, COSSON P, BOUDEHRI K, RENAUD C, CAPDEVILLE G, TAUZIN Y, LAIGRET F, MOING A. Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes, 2006, 3(1):1-13.
[9] OGUNDIWIN E A, PEACE C P, GRADZIEL T M, PARFITT D E, BLISS F A, CRISOSTO C H. A fruit quality gene map of Prunus. BMC Genomics, 2009, 10:587.
doi: 10.1186/1471-2164-10-587
[10] PEACE C P, CRISOSTO C H, GRADZIEL T M. Endopolygalacturonase: a candidate gene for freestone and melting fleshin peach. Molecular Breeding, 2005, 16(1):21-31.
doi: 10.1007/s11032-005-0828-3
[11] GU C, WANG L, WANG W, ZHOU H, MA B Q, ZHENG H Y, FANG T, OGUTU C, VIMOLMANGKANG S, HAN Y P. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. Journal of Experimental Botany, 2016, 67(6):1993-2005.
doi: 10.1093/jxb/erw021
[12] PETERSON D G, TOMKINS J P, FRISCH D A, WING R A, PATERSON A H. Construction of plant bacterial artificial chromosome (BAC) libraries: An illustrated guide. Journal of Agricultural Genomics, 2000, 5:1-3
[13] 李海权, 刁现民. 基因组细菌人工染色体文库(BAC)的构建及应用. 生物技术通报, 2005(1):6-11.
LI H Q, DIAO X M. Construction and application of genomics bacterial artificial chromosome (BAC) library. Biotechnology Bulletin, 2005(1):6-11. (in Chinese)
[14] 刘长青, 吴宏梅, 包阿东, 陆涛峰, 刘帅, 张洪海, 唐学玺, 关伟军, 马月辉. 细菌人工染色体基因组文库构建关键技术研究. 生物技术通报, 2008(4):66-69.
LIU C Q, WU H M, BAO A D, LU T F, LIU S, ZHANG H H, TANG X X, GUAN W J, MA Y H. Discuss of several problems in bacterial artificial chromosome library construction. Biotechnology Bulletin, 2008(4):66-69. (in Chinese)
[15] 刘佳棽, 王虞英, 宋婧一. 北京地区两用桃育种研究进展. 北京农业科学, 2000, 18(6):23-25.
LIU J C, WANG Y Y, SONG J Y. Research progress of dual-use peach breeding in Beijing. Beijing Agricultural Sciences, 2000, 18(6):23-25. (in Chinese)
[1] PREDIERI S, RAGAZZINI P, RONDELLI R. Sensory evaluation and peach fruit quality. Acta Horticulturae, 2006, 713:429-434.
[2] 曾文芳, 王志强, 牛良, 潘磊, 丁义峰, 鲁振华, 崔国朝. 桃果实肉质研究进展. 果树学报, 2017, 34(11):1475-1482.
[16] SHI X, ZENG H Y, XUE Y D, LUO M Z. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange. Plant Methods, 2011, 7:33.
doi: 10.1186/1746-4811-7-33
[17] VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S Q, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, CATTONARO F, ZUCCOLO A, ROSSINI L, JENKINS J, VENDRAMIN E, MEISEL L A, DECROOCQ V, SOSINSKI B, PROCHNIK S, MITROS T, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5):487-494.
doi: 10.1038/ng.2586
[18] KEILWAGEN J, HARTUNG F, GRAU J. GeMoMa: Homology-based gene prediction utilizing intron position conservation and RNA-seq data. Methods in Molecular Biology, 2019, 1962:161-177.
[19] CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009
[20] GARINET S, LAURENT-PUIG P, BLONS H, OUDART J B. Current and future molecular testing in NSCLC, what can we expect from new sequencing technologies? Journal of Clinical Medicine, 2018, 7:144.
doi: 10.3390/jcm7060144
[21] GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 2016, 17(6):333-351.
doi: 10.1038/nrg.2016.49
[22] LU F, AMMIRAJU J S S, SANYAL A, ZHANG S L, SONG R T, CHEN J F, LI G S, SUI Y, SONG X A, CHENG Z K, DE OLIVEIRA A C, BENNETZEN J L, JACKSON S A, WING R A, CHEN M S. Comparative sequence analysis of MONOCULM1-orthologous regions in 14 Oryza genomes. Proceedings of the National Academy of Sciences, 2009, 106(6):2071-2076.
[23] SUI Y, LI B, SHI J F, CHEN M S. Genomic, regulatory and epigenetic mechanisms underlying duplicated gene evolution in the natural allotetraploid Oryza minuta. BMC Genomics, 2014, 15:11.
doi: 10.1186/1471-2164-15-11
[24] 蒲妍君, 袁静, 庞军玲, 韩方普, 赵军. 玉米转录因子ABP9基因的BAC克隆鉴定及染色体定位. 生物技术进展, 2016, 6(6):435-442.
PU Y J, YUAN J, PANG J L, HAN F P, ZHAO J. BAC clone identification and chromosomal localizationof maize transcription factor ABP9. Progress in Biotechnology, 2016, 6(6):435-442. (in Chinese)
[25] HOANG P N T, MICHAEL T P, GILBERT S, CHU P, MOTLEY S T, APPENROTH K J, SCHUBERT I, LAM E. Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies. The Plant Journal, 2018, 96(3):670-684.
doi: 10.1111/tpj.2018.96.issue-3
[26] CAO H X, VU G T H, WANG W Q, APPENROTH K J, MESSING J, SCHUBERT I. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. The New Phytologist, 2016, 209(1):354-363.
doi: 10.1111/nph.2016.209.issue-1
[27] DETTORI M T, QUARTA R, VERDE I. SSRs, RAPDs, morphological markers. Genome, 2001, 44(5):783-790.
doi: 10.1139/g01-065
[28] 麻国升, 王力荣, 曹珂, 朱更瑞, 方伟超, 陈昌文, 王新卫. 桃2个endo-PG基因序列SNPs的遗传多样性及其与果实黏离核性状的关联分析. 果树学报, 2014, 31(3):345-352.
MA G S, WANG L R, CAO K, ZHU G R, FANG W C, CHEN C W, WANG X W. Polymorphism of SNPs in two endo-PG genes and its association analysis for flesh adhesion trait in peach. Journal of Fruit Science, 2014, 31(3):345-352. (in Chinese)
[29] 杨英军, 张开春, 林珂, 姜全. 桃果实离核性状的RAPD分子标记及克隆. 果树学报, 2007, 24(5):585-588.
YANG Y J, ZHANG K C, LIN K, JIANG Q. RAPD markers linked to freestone gene of peach fruit. Journal of Fruit Science, 2007, 24(5):585-588. (in Chinese)
[30] 韩晴, 曹珂, 朱更瑞, 方伟超, 陈昌文, 王新卫, 刘扩展, 游双红, 王力荣. 桃肉质及粘离核性状形成及其相关基因的表达分析. 华北农学报, 2019, 34(3):52-58.
HAN Q, CAO K, ZHU G R, FANG W C, CHEN C W, WANG X W, LIU K Z, YOU S H, WANG L R. Formation of flesh texture and adhesion and expression analysis of related genes in peach fruit. Acta Agriculturae Boreali-Sinica, 2019, 34(3):52-58. (in Chinese)
[31] BECKMAN T G, SHERMAN W B. The non-melting semi-freestone peach. Fruit Varieties Journal, 1996, 50(3):189-193.
[32] BASSI D, MONET R. The Peach: Botany, Production and Uses. Wallingford, UK: CABI, 2008.
[2] ZENG W F, WANG Z Q, NIU L, PAN L, DING Y F, LU Z H, CUI G C. Research process on peach fruit flesh texture. Journal of Fruit Science, 2017, 34(11):1475-1482. (in Chinese)
[3] MONET R. Peach genetics: Past, present and future. Acta Horticulturae, 1989, 254:49-53.
[4] MORGUTTI S, NEGRINI N, NOCITO F F, GHIANI A, BASSI D, COCUCCI M. Changes in endopolygalacturonase levels and characterization of a putative endo-PG gene during fruit softening in peach genotypes with nonmelting and melting flesh fruit phenotypes. The New Phytologist, 2006, 171(2):315-328.
doi: 10.1111/nph.2006.171.issue-2
[5] CALLAHAN A M, SCORZA R, BASSETT C, NICKERSON M, ABELES F B. Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peach. Functional Plant Biology, 2004, 31(2):159-168.
doi: 10.1071/FP03131
[6] BAILEY J S. The inheritance of certain fruit and foliage characters in the peach. Massachusetts Agricultural Experimental Station Research Bulletin, 1949: 452.
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[9] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[10] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[11] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[12] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[13] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[14] Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI. Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach [J]. Scientia Agricultura Sinica, 2019, 52(24): 4567-4581.
[15] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!