Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (24): 4567-4581.doi: 10.3864/j.issn.0578-1752.2019.24.011

• HORTICULTURE • Previous Articles     Next Articles

Genome Identification of PpGRAS Family and Expression Pattern Analysis of Responding to UV-B in Peach

Chen LI,XueHui ZHAO,QingJie WANG,XuXu WANG,Wei XIAO,XiuDe CHEN,XiLing Fu,Ling LI,DongMei LI()   

  1. College of Horticulture Science and Engineering, Shandong Agricultural University/State Key Laboratory of Crop Biology/Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Taian 271018, Shandong
  • Received:2019-06-11 Accepted:2019-08-03 Online:2019-12-16 Published:2020-01-15
  • Contact: DongMei LI E-mail:dmli2002@sdau.edu.cn

Abstract:

【Objective】 GRAS transcription factor family genes play a key role in the regulation of plant growth and development. The objectives of this study were to analyze the distribution, structure and evolution of GRAS in the peach genome by bioinformatics, to study the expression specificity of family members in different tissues and their responses to UV-B optical signal, and to investigate the biological function of GRAS transcription factor family genes in peach. 【Method】 The facility nectarine ‘Prunus persica var. nectarina cv. Zhongyou5 was supplemented with an appropriate dose of UV-B (Ultraviolet-B). The peach GRAS gene in the peach genome was identified by using the Plant TFDB database. Phylogenetic tree, chromosome localization, relative mass and isoelectric point and other physical and chemical properties of GRAS member were analyzed with Clustal W, MEGA6.0, ProtParam tool, MCScanX, Circos, SMART, NCBI-CDD, ExPASy, GSDS2.0, and MEME, respectively. The expression pattern of GRAS gene family in different tissues was analyzed, and the expression of some members of GRAS gene family in peach treated with UV-B was detected by real-time fluorescence quantitative PCR (qRT-PCR).【Result】48 members of GRAS transcription factor family were identified from the whole genome of the peach, and they could be divided into 9 categories by constructing a phylogenetic tree. The PpGRAS gene showed uneven distribution on 8 chromosomes of peach. The theoretical isoelectric point of the family protein was ranged from 4.36 to 7.56, and the average number of amino acids encoded was 590.52. Gene’s structure analysis showed that 40 genes contained no introns, and 8 genes contained 1 intron. Conservative elemental analysis revealed that the GRAS family contains 20 conserved elements, of which Motif 2 and Motif 4 were highly conserved in the GRAS family. Members of the same subfamily contained the same conserved elements, suggesting that members of the same subfamily might have similar functions. However, some subfamily members had different expression patterns, which might be related to sequences other than the conserved motif. The PpGRAS genes had different expression patterns in different tissues; and most of PpGRAS genes could respond to UV-B treatment, but the expression changes were different in different tissues. In leaves, PpGRAS5 was up-regulated after UV-B treatment, while up to 15 genes were down-regulated. In the fruit, PpGRAS13 was up-regulated by UV-B treatment, but 9 genes were down-regulated. In the phloem, 14 genes were up-regulated after UV-B treatment, while PpGRAS16 was most down-regulated in the phloem after treatment. 【Conclusion】A total of 48 GRAS gene family members were identified from the peach genome and distributed on 8 chromosomes; most PpGRAS genes responded to UV-B treatment, but the expression changes were different in different tissues. This study laid the foundation for further analysis of the PpGRAS family of genes in response to UV-B light signals and other potential functions.

Key words: peach, GRAS gene family, bioinformatic analysis, UV-B

Table 1

Primer sequences of 48 PpGRAS genes used for qRT-PCR"

引物名称 Locus name 上游序列(5'-3') Forward primer (5'-3') 下游序列(5'-3') Reverse primer (5'-3')
Prupe.1G119100 CACCCTTCTTTGTCACACGG CCCAGCCCTCACATTCCTAA
Prupe.1G119200 AACAATTGTGGGGACTTCGC ACCTGCCCTACAAACCCTAC
Prupe.1G199300 TCCTCTCCGAGTTCAACCAC CGAGCCTTATCCCGGAATCT
Prupe.1G237500 ACTGGAGGAGCTCTGAGAGA ATGACGTTCCTGATTTCGCG
Prupe.1G329600 CTGAGTTCGCAATGAGGAGC GGGCCTCAATAAAACGGGTC
Prupe.1G501500 GCATGCGTTCGATCTGGATT CAATGAGCTCGTGGAAGTCG
Prupe.2G028700 CCATCCTCATCGGCTCAGAT CTTTCTCGGCGAGCTCTTTC
Prupe.2G138400 CACCACCTGACCAGTACCAT TCCGTTTCTGGCAGGGTATT
Prupe.2G237300 GAGGGAAAGGAAAGGGTGGA TCCTTCCATCCCAACAGCAT
Prupe.2G299400 TTAGCTTTGAAGTCCCGGGT ATTCGTCGCTGATTTGTCCG
Prupe.3G040400 GCGGATTAGTGCAGAGATGC GACTCCTGATAGCCTCCGTC
Prupe.3G162500 TCAAGGCAGCCAGTGGATTA AATTGCCTCTCCTGGTCGAA
Prupe.3G187000 TGGTGGACGAAGATGCAGAT GAACCCCTCGTACGCTATCA
Prupe.3G201900 GCATGCGAAGGAGAGGAAAG TCCAAAATGAAGTGCACCGG
Prupe.3G222800 CACCCTTCTTTGTCACACGG CCCAGCCCTCACATTCCTAA
Prupe.3G249700 ACGACTCTGAGCCACAAGAA TTCTGCTTCTTTGAACCCGC
Prupe.3G309800 GCAGCATTCTTCCCCGTATG GCCAAGAAATGTGACACCGT
Prupe.4G007500 AGGGGTAGGGGAAGCTAGAA TGCTTCTCCCTTCTTCTGCA
Prupe.4G132100 AGTGGTGGCTATTTCGGTGA GCCTCCTCAACTCCCTTCTT
Prupe.4G200200 TCTTCCACTTCCAAGCGCTA CCCAGCCCTCACATACCTAG
Prupe.4G233000 TGGCAGGCTAGGTATGTGAG CTTTCCATCCCTGCAGCATC
Prupe.4G258200 TCTTCCACTTCTCTGCCCTG GCAAACCAGCCCTTGTACAA
Prupe.5G072300 AGAGTTGTGAGGCCTGAGAC CTTCCATCCTTGCAGCATCC
Prupe.5G091700 TCTGAGCACAAAGAGGGGAG GCCTTATCTGCCTGAGTTGC
Prupe.5G156100 GCTGGCGATTGTTAACGGAT ATCCTTTCTGAACCCTCGCA
Prupe.6G037000 CCCTCTCTTCTTCAACCGGT CAAAACCTGCCCTCCTCAAC
Prupe.6G073300 TTGGTCAATCTTTGGAGCGC GAACCCCTTCTCCCATGTCA
Prupe.6G073400 GGCCACAAGTTCCTCCTTTG CTACCGCCAAGTTGCTCATC
Prupe.6G073500 GTTGACGGGCTTGACTTTGT ACTAAACGTCACGGGGCTAA
Prupe.6G073600 TTTTGCAAGGCCACAGACTC ACCGTTTGAAGCCACATGAC
Prupe.6G073700 GACATCGATGAGGAGGAGCT TGTGGATCAAATGGAGGCCT
Prupe.6G073800 TGGTCATGTCCGAGGTGTAC CCATTGTTCTCCTCCACCCT
Prupe.6G073900 CGATGAACCAAGGGATGCAG TCGCCACAAACCCTCTGTAT
Prupe.6G074000 TCGAAATCTCCGAGCTCTCC ATTGGCGGTGAAGTGAGAGA
Prupe.6G220800 GATTTGGCGACGCTGAGATT GCTCCACCATATGCCTCTCT
Prupe.6G223200 AGGAAGGAGGAAGGGGAGAT TTGACTTGGTTATGGGGCCT
Prupe.6G257000 AAAGATGGAGGACACTGGCA GGTTGTCTCATTGTGCTGCA
Prupe.6G282800 CTGGCTATCTCCTGGGATGG TCAGGAGAGGCTAGCTGAGA
Prupe.6G300900 GGAGGGTGTGGAGAGAGAAG AGAGAGGCCTTTCGTTCCAA
Prupe.7G150900 CGCTTTCTCTCTCACTCCCT CAGAAAACCGGAACCCAGTG
Prupe.7G153700 ACGAAGGGTCATCATCTGCA TGGGAAATTTGCTCAAGGGC
Prupe.7G236100 ACTCACTCGATGCTAGCCTC CCAAAGTGTACCCATCGCAG
Prupe.8G016200 CCCCTTCATCAAGTTTGCCC ATGTTCCCACTCCGGTCATT
Prupe.8G054000 TGAGGGAAATGGAGCAGAGG GCCACACGCTGAAAAGAAGA
Prupe.8G220900 TTGCATGCCACCAAGAAGTC TCTTCTGCTTGCCTGCTACT
Prupe.8G266100 TCTCATGCACCTCCGATCTC ATATGGAATGGTCGGGCGAT
Prupe.I004400 AAGACCAGTCACTTCTCCGG CGAAACGCTGCTTCCGATTA
Prupe.I004500 CAAGAGCTATTGGTTCGGGC CCTGTTTCGATCAGCTCTGC
Actin GTTATTCTTCATCGGCGTCTTCG CTTCACCATTCCAGTTCCATTGTC

Table 2

List of PpGRAS genes and their related information"

基因编号
Gene name
基因登录号
Locus name
染色体
Chromosome
类别
Group
定位
Locus
开放阅读
框长度
ORF length (bp)
蛋白长度
Protein length (aa)
分子量
Molecular
weight (Da)
等电点
Isoelectric
point
PpGRAS1 Prupe.1G119100 1 9323354 9325141 1788 596 66738.9 4.93
PpGRAS2 Prupe.1G119200 1 9326642 9327967 1326 442 49126.9 6.94
PpGRAS3 Prupe.1G199300 1 19270496 19271845 1350 450 50539.2 5.08
PpGRAS4 Prupe.1G237500 1 25203094 25204641 1548 516 57213.2 6.51
PpGRAS5 Prupe.1G329600 1 31282447 31283783 1311 437 48095.8 6.83
PpGRAS6 Prupe.1G501500 1 41498576 41500096 1521 507 55337.3 5.20
PpGRAS7 Prupe.2G028700 2 2987997 2990761 1386 462 52324.3 6.28
PpGRAS8 Prupe.2G138400 2 19548826 19551964 2145 715 78010.1 5.40
PpGRAS9 Prupe.2G237300 2 25838372 25841556 2007 669 75561.2 5.62
PpGRAS10 Prupe.2G299400 2 28850212 28852416 1938 646 70121.6 7.19
PpGRAS11 Prupe.3G040400 3 2895471 2897333 1647 549 61096.3 6.41
PpGRAS12 Prupe.3G162500 3 18144529 18147307 1782 594 64551.4 4.91
PpGRAS13 Prupe.3G187000 3 20103771 20105111 1341 447 48568 5.80
PpGRAS14 Prupe.3G201900 3 21021917 21025350 1668 556 62383.7 6.96
PpGRAS15 Prupe.3G222800 3 22307572 22309814 1590 530 58784.2 6.51
PpGRAS16 Prupe.3G249700 3 23979126 23980343 1218 406 45828.1 7.56
PpGRAS17 Prupe.3G309800 3 26939961 26942210 2127 709 78477.6 6.15
PpGRAS18 Prupe.4G007500 4 396663 398565 1623 541 60455.4 6.24
PpGRAS19 Prupe.4G132100 4 7314327 7315982 1599 533 59633.6 4.61
PpGRAS20 Prupe.4G200200 4 12432037 12435877 1758 586 65220.3 5.84
PpGRAS21 Prupe.4G233000 4 14976407 14979370 1713 571 63145.4 5.17
PpGRAS22 Prupe.4G258200 4 18325403 18326818 1416 472 52583.6 6.00
PpGRAS23 Prupe.5G072300 5 8700201 8703734 2268 756 82196.4 6.55
PpGRAS24 Prupe.5G091700 5 10228192 10230468 2094 698 76771.2 5.37
PpGRAS25 Prupe.5G156100 5 13931708 13933297 1590 530 58679 6.31
PpGRAS26 Prupe.6G037000 6 2793373 2794605 1233 411 46253.6 6.94
PpGRAS27 Prupe.6G073300 6 4999593 5001653 2061 687 77912 4.95
PpGRAS28 Prupe.6G073400 6 5005442 5008392 2154 718 81656.6 6.58
PpGRAS29 Prupe.6G073500 6 5010337 5012421 2085 695 78198.1 6.34
PpGRAS30 Prupe.6G073600 6 5020790 5022844 2055 685 77016.8 6.09
PpGRAS31 Prupe.6G073700 6 5025889 5029019 2076 692 78813.9 6.22
PpGRAS32 Prupe.6G073800 6 5037609 5040687 2121 707 79850.6 5.92
PpGRAS33 Prupe.6G073900 6 5044672 5047324 2355 785 88209.9 5.58
PpGRAS34 Prupe.6G074000 6 5052682 5054723 1998 666 74774.8 6.41
PpGRAS35 Prupe.6G220800 6 22642849 22644378 1530 510 57075.9 5.46
PpGRAS36 Prupe.6G223200 6 22836944 22839388 1437 479 53107.6 5.58
PpGRAS37 Prupe.6G257000 6 24964599 24968826 2253 751 84278.9 6.66
PpGRAS38 Prupe.6G282800 6 26358992 26360827 1611 537 60502 4.36
PpGRAS39 Prupe.6G300900 6 27305816 27309379 2550 850 91964.8 6.81
PpGRAS40 Prupe.7G150900 7 16214663 16216336 1674 558 62194.2 6.20
PpGRAS41 Prupe.7G153700 7 16381917 16385916 1806 602 65807.8 5.08
PpGRAS42 Prupe.7G236100 7 20509687 20511389 1614 538 59160.2 5.81
PpGRAS43 Prupe.8G016200 8 1519578 1522426 1641 547 60817.4 4.83
PpGRAS44 Prupe.8G054000 8 6129612 6131018 1407 469 53325 7.17
PpGRAS45 Prupe.8G220900 8 20048389 20050058 1539 513 57646.5 6.55
PpGRAS46 Prupe.8G266100 8 22267137 22269341 1923 641 72100.3 5.58
PpGRAS47 Prupe.I004400 U 740 3677 2121 707 79888.5 5.82
PpGRAS48 Prupe.I004500 U 13496 16456 2037 679 76744.6 6.60

Fig. 1

Chromosome localization and collinear prediction of GRAS family genes in peach"

Fig. 2

Phylogenetic tree comparison of peach and Arabidopsis GRAS protein sequences"

Fig. 3

Structures of GRAS genes in peach"

Fig. 4

Conserved motif of GRAS gene family in peach"

Fig. 5

Sequence logos of GRAS domains in peach"

Fig. 6

Tissue expression pattern of the PpGRAS genes in peach (A); the ratio of the gene expression level of UV-B treatment to the gene expression level of CK (B)"

[1] 李冬梅, 李少旋, 徐功勋, 李晨, 付喜玲, 陈修德, 张海森, 高东升 . 设施作物响应UV-B辐射的研究进展. 植物生理学报, 2018,54(1):36-44.
LI D M, LI S X, XU G X, LI C, FU X L, CHEN X D, ZHANG H S, GAO D S . Research advances of plant response to UV-B radiation in greenhouse. Plant Physiology Journal, 2018,54(1):36-44. (in Chinese)
[2] LIU X Y, WIDMER A . Genome-wide comparative analysis of the GRAS gene family in populus,Arabidopsis and rice. Plant Molecular Biology Reporter, 2014,32:1129-1145.
[3] GILL S S, TUTEJA N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010,48(12):909-930.
[4] LIDON F C, TEIXEIRA M, RAMALHO J C . Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B-irradiated rice. Journal of Agronomy and Crop Science, 2012,198(2):130-144.
[5] LI F R, PENG S L, CHEN B M, HOU Y P . A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecologica, 2010,36(1):1-9.
[6] BALLARE C L, CALDWELL M M, FLINT S D, ROBINSON S A, BORNMAN J F . Effects of solar ultraviolet radiation on terrestrial ecosystems. patterns, mechanisms, and interactions with climate change. Photochemical and Photobiological Sciences, 2011,10(2):226-241.
[7] FROHNMEYER H, STAIGER D . Ultraviolet-B radiation-mediated responses in plants, balancing damage and protection. Plant Physiology, 2003,133(4):1420-1428.
[8] 郭玉才 . 不同棚膜及人工补充紫外线B对设施桃树形态建造和叶片生理的影响[D]. 泰安: 山东农业大学, 2009.
GUO Y C . Effects of film and UV-B on morphology and leaf physiology of peach tree in greenhouse [D]. Tai’an: Shandong Agricultural University, 2009. (in Chinese)
[9] CHRISTIE J M, ARVAI A S, BAXTER K J, HEILMANN M, PRATT A J O’HARA A, KELLY S M, SMITH B O, HITOMI K, JENKINS G I, GETZOFF E D . Plant UVR8 photoreceptor senses UVB by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 2012,335(6075):1492-1496.
[10] WU D, HU Q, YAN Z, CHEN W, YAN C Y, HUANG X, ZHANG J, YANG P Y, DENG H T, WANG J W, DENG X W, SHI Y G . Structural basis of ultraviolet-B perception by UVR8. Nature, 2012,484(7393):214-219.
[11] OSTERLUND M T, HARDTKE C S, WEI N, DENG X W . Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000,405(6785):462-466.
[12] HIDEG E, JANSEN M A K, STRID A . UV-B exposure, ROS, and stress: Inseparable companions or loosely linked associates? Trends in Plant Science, 2013,18(2):107-115.
[13] SUN X L, JONES W T, RIKKERINK E H A . GRAS proteins: The versatile roles of intrinsically disordered proteins in plant signalling. Biochemical Journal, 2012,442(1):1-12.
[14] BOLLE C . The role of GRAS proteins in plant signal transduction and development. Planta, 2004,218(5):683-692.
[15] TIAN C G, WAN P, SUN S H, LI J Y, CHEN M S . Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Molecular Biology, 2004,54(4):519-532.
[16] 孙欣, 王晨, 房经贵, 慕茜, 王西成 . 葡萄GRAS基因家族生物信息学分析. 江西农业学报, 2011,23(7):1-8.
SUN X, WANG C, FANG J G, MU Q, WANG X C . Bioinformatics analysis of GRAS gene family in grapevine. Acta Agriculturae Jiangxi, 2011,23(7):1-8. (in Chinese)
[17] ENGSTROM E M . Phylogenetic analysis of GRAS proteins from moss, lycophyte and vascular plant lineages reveals that GRAS genes arose and underwent substantial diversification in the ancestral lineage common to bryophytes and vascular plants. Plant Signaling and Behavior, 2011,6(6):850-854.
[18] PENG J R, CAROL P, RICHARDS D E, KING K E, COWLING R J, MURPHY G P, HARBERD N P . The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes and Development, 2017,11(23):3194-3205.
[19] 张文颖, 朱旭东, 崔腾飞, 贾海峰, 房经贵, 王晨 . 葡萄VvRGL基因应答GA调控无核果实发育的研究. 西北植物学报, 2019,39(3):381-390.
ZHANG W Y, ZHU X D, CUI T F, JIA H F, FANG J G, WANG C . VvRGL genes regulate seedless fruit development by responding to GA in grapevine. Acta Botanica Boreali-Occidentalia Sinica, 2019,39(3):381-390. (in Chinese)
[20] SCHUMACHER K, SCHMITT T, ROSSBERG M, SCHMITZ G, THERES K . The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proceedings of the National Academy of Sciences, 1999,96(1):290-295.
[21] 张焕欣, 董春娟, 尚庆茂 . 辣椒GRAS家族全基因组鉴定与表达分析. 园艺学报, 2017,44(12):2305-2317.
ZHANG H X, DONG C J, SHANG Q M . Genome-wide identification and expression analysis of GRAS gene family in pepper. Acta Horticulturae Sinica, 2017,44(12):2305-2317. (in Chinese)
[22] 周莲洁, 张富春, 王艳 . GRAS家族基因在植物生长、代谢及逆境胁迫中的功能研究进展. 植物生理学报, 2013,49(9):855-860.
ZHOU L J, ZHANG F C, WANG Y . Research progress on the functional mechanism of GRAS family genes in plant growth, metabolism and stress. Plant Physiology Journal, 2013,49(9):855-860. (in Chinese)
[23] HEO J O, CHANG K S, KIM I A, LEE M H, LEE S A, SONG S K, LEE M M, LIM J . Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root. Proceeding of the National Academy of Sciences of the United States of America, 2011,108(5):2166-2171.
[24] MA H S, LIANG D, SHUAI P, XIA X L, YIN W L . The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. Journal of Experimental Botany, 2010,61(14):4011-4019.
[25] WANG Y P, TANG H B, DEBARRY J D, TAN X, LI J P, WANG X Y, LEE T H, JIN H Z, MARLER B, GUO H, KISSINGER J C, PATERSON A H . MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012,40(7):e49.
[26] KRZYWINSKI M, SCHEIN J, BIROL I . Circos: An information aesthetic for comparative genomics. Genome Research, 2009,19(9):1639-1645.
[27] HUANG S X, GAO Y F, LIU J K, PENG X L, NIU X L, FEI Z J, CAO S Q, LIU Y S . Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Molecular Genetics and Genomics, 2012,287(6):495-513.
[28] NAKANO T, SUZUKI K, FUJIMURA T, SHINSHI H . Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006,140(2):411-432.
[29] 孙明岳, 周君, 谭秋平, 付喜玲, 陈修德, 李玲, 高东升 . 苹果bZIP转录因子家族生物信息学分析及其在休眠芽中的表达. 中国农业科学, 2016,49(7):1325-1345.
SUN M Y, ZHOU J, TAN Q P, FU X L, CHEN X D, LI L, GAO D S . Analysis of basic leucine zipper genes and their expression during bud dormancy in apple (Malus×domestica). Scientia Agricultura Sinica, 2016,49(7):1325-1345. (in Chinese)
[30] SONG J, GAO Z H, HUO X M, SUN H L, XU Y S, SHI T, NI Z J . Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiologiae Plantarum, 2015,37:145.
[31] HUANG W, XIAN Z Q, KANG X, TANG N, LI Z G . Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology, 2015,15(1):209.
[32] 黄伟 . 番茄GRAS转录因子家族的鉴定及SlGRAS24基因的功能研究[D]. 重庆: 重庆大学, 2016.
HUANG W . Comprehensive genome-wide analysis of the GRAS transcription factor family in tomato and functional identification of SlGRAS24[D]. Chongqing: Chongqing University, 2016. (in Chinese)
[33] ACHARDA P, VRIEZEN W H, VAN DER STRAETEN D, HARBERD N P . Ethylene regulates Arabidopsis development via the modulation of ELLA protein growth repressor function. The Plant Cell, 2003,15(12):2816-2825.
[34] 吴杏春 . 水稻对UV-B辐射增强的生理生化响应及其适应机制研究[D]. 福州: 福建农林大学, 2001.
WU X C . Studies on physiochemical response and its adaptive mechanism of rice (Oryza sativa L.) exposed to enhanced Ultraviolet- B radiation[D]. Fuzhou: Fujian Agriculture and Forestry University, 2001. (in Chinese)
[35] HUANG W, PENG S Y, XIAN Z Q, LIN D B, HU G J, YANG L, REN M Z, LI Z G . Overexpression of a tomato miR171 target gene, SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnology Journal, 2016,15(4):472-488.
[36] KOIZUMI K, WU S, MACRAE-CRERAR A, GALLAGHER K L . An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Current Biology, 2011,21(18):1559-1564.
[37] KAMIYA N, ITOH J I, MORIKAMI A, NAGATO Y, MATSUOKA M . The SCARECROW gene’s role in asymmetric cell divisions in rice plants. The Plant Journal, 2003,36(1):45-54.
[38] LIM J, HELARIUTTA Y, SPECHT C D, JUNG J, SIMS L, BRUCE W B, DIEHN S, BENFEY P N . Molecular analysis of the SCARECROW gene in maize reveals a common basis for radial patterning in diverse meristems. The Plant Cell, 2000,12(8):1307-1318.
[39] 董丽莉, 赵韩生, 李利超, 孙化雨, 王丽丽, 高志民 . 毛竹PeSCL3基因表达特征及其启动子活性研究. 热带亚热带植物学报, 2016,24(3):252-258.
DONG L L, ZHAO H S, LI L C, SUN H Y, WANG L L, GAO Z M . Expression characteristics and promoter activity analysis of PeSCL3 gene from phyllostachys edulis. Journal of Tropical and Subtropical Botany, 2016,24(3):252-258. (in Chinese)
[40] 陈丽华, 葛晖, 柴丽娟, 陈尚武, 马会勤 . 葡萄SCARECROW基因家族的分析与表达. 中国农业大学学报, 2012,17(1):80-87.
CHEN L H, GE H, CHAI L J, CHEN S W, MA H Q . Putative SCARECROW gene family of Vitis vinifera L. and their differential expression under GA treatment. Journal of China Agricultural University, 2012,17(1):80-87. (in Chinese)
[1] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[2] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[3] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[4] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[5] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[6] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[7] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[8] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[9] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
[10] MENG JunRen,ZENG WenFang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,NIU Liang. Development and Application of KASP Molecular Markers of Some Important Traits for Peach [J]. Scientia Agricultura Sinica, 2021, 54(15): 3295-3307.
[11] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[12] ZHANG YaFei,PENG FuTian,XIAO YuanSong,LUO JingJing,DU AnQi. Effects of Potassium Fertilizers Being Bag-Controlled Released on Fruit Yield and Quality of Peach Trees and Soil Chloride Content [J]. Scientia Agricultura Sinica, 2020, 53(19): 4035-4044.
[13] LU ZhenHua,SHEN ZhiJun,NIU Liang,PAN Lei,CUI GuoChao,ZENG WenFang,WANG ZhiQiang. Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(14): 2929-2940.
[14] TAN Bin,CHEN TanXing,HAN YaPing,ZHANG YaRu,ZHENG XianBo,CHENG Jun,WANG Wei,FENG JianCan. Cloning and Expression Analysis of SERK2 Gene in Different Forms of Calli on Peach (Prunus persica L.) [J]. Scientia Agricultura Sinica, 2019, 52(5): 882-892.
[15] WANG GuoDong,XIAO YuanSong,PENG FuTian,ZHANG YaFei,GAO HuaiFeng,SUN XiWu,HE Yue. Effects of Urea Application Combined with Different Amounts of Nano-Carbon on Plant Growth Along with Nitrogen Absorption and Utilization in Young Peach Trees [J]. Scientia Agricultura Sinica, 2018, 51(24): 4700-4709.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!