Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (14): 2929-2940.doi: 10.3864/j.issn.0578-1752.2020.14.016

• HORTICULTURE • Previous Articles     Next Articles

Molecular Marker-Assisted Identification of Yellow/White Flesh Trait for 122 Peach Cultivars (Lines)

LU ZhenHua1(),SHEN ZhiJun2,NIU Liang1,PAN Lei1,CUI GuoChao1,ZENG WenFang1,WANG ZhiQiang1()   

  1. 1 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009
    2 Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014
  • Received:2019-12-25 Accepted:2020-05-18 Online:2020-07-16 Published:2020-08-10
  • Contact: ZhiQiang WANG E-mail:luzhenhua@caas.cn;wangzhiqiang@caas.cn

Abstract:

【Objective】It shows that peach flesh color (yellow/white) is controlled by the gene CCD 4 (carotenoid cleavage dioxygenase 4). Based on three types of CCD4 allele variations, molecular markers of indel, SSR-CE, and Sanger sequence for SNP were used to analyze the genotypes of 122 peach cultivars (lines), with the aim to determine the correlation between flesh color and genetic variation. This result could provide information for parental matching and the selection of corresponding molecular markers for phenotyping in their offspring. 【Method】Three types of variations were detected via PCR. LTR transposable element insertion was detected by 1% agarose gel electrophoresis, and SSR repeat numbers were detected using CE-SSR in ABI3730XL. Nucleotide substitution was detected using the Sanger sequence and analyzed with the ContigExpress software. In total, the genotypes of 122 cultivars (lines) were analyzed, and the correlation between phenotype and genetic variation was determined.【Result】After genotyping of the 122 cultivars, it was found that 31 accessions were LTR transposable element insertions with 729-bp amplified fragments, accounting for 25.4% of the total accessions, of which eight accessions (25.8%) were homozygous. Sixty-eight cultivars (lines) were SSR repeat number variations, accounting for 55.7% of the total accessions and including 25 (36.8%) homozygous types with 2-bp insertions. Of the 122 cultivars (lines), only one cultivar (Fertilia Morettini) was caused by nucleotide substitution and SSR repeat number variation, accounting for 0.82%, which was not widely used in the breeding program. LTR transposable element insertion and SSR repeat number variation were the key types affecting flesh color. Of the 122 cultivars (lines), seven yellow-flesh cultivars (lines) were caused by SSR repeat number variation and LTR transposable element insertion, accounting for 5.7%. One homozygous or two heterozygous sequence variations were both responsible for yellow flesh. The results showed that genotypes were identical with phenotypes of the 122 accessions, with 100% accuracy. 【Conclusion】The genotypes of 122 peach cultivars (lines) (white and yellow flesh color) were identified using molecular markers, which could be applied for parental selection, offspring identification in breeding programs, and flesh color selection (white or yellow) using molecular marker-assisted selection.

Key words: peach, CCD4, MAS, flesh color

Table 1

Allelic variants of CCD4 as related to phenotype in yellow/white flesh peach"

编号
Code
品种(系)
Cultivar (line)
来源
Origin
果肉类型
Flesh color
微卫星序列
SSR
SNP位点
SNP
CCD4/LTR
CCD4/LTR
1 雨花2号 Yuhua 2 NFGRN 白 White 177/177 AA 1/1
2 霞脆 Xiacui NFGRN 白 White 177/177 AA 1/1
3 雨花1号 Yuhua 1 NFGRN 白 White 177/177 AA 1/0
4 瑞光18号 Ruiguang 18 NFGRN 黄Yellow 179/179 AA 1/0
5 瑞光19号 Ruiguang 19 NFGRN 白 White 177/179 AA 1/0
6 早美Zaomei NFGRN 白 White 177/177 AA 1/0
7 红粉佳人 Pinklady NFGRN 白 White 177/177 AA 1/0
8 瑞光美玉 Ruiguangmeiyu NFGRN 白 White 177/179 AA 1/0
9 早花露 Zaohualu NFGRN 白 White 177/177 AA 1/0
10 大久保 Okubo NFGRN 白 White 177/177 AA 1/0
11 金陵黄露 Jinlinghuanglu NFGRN 黄 Yellow 179/179 AA 1/0
12 沪油002号 Huyou 002 NFGRN 白 White 177/179 AA 1/0
13 锦绣 Jinxiu NFGRN 黄 Yellow 177/177 AA 0/1
14 金童7号 Babygold 7 NFGRN 黄 Yellow 177/179 AA 1/1
15 沪油003号 Huyou 003 NFGRN 黄 Yellow 177/179 AA 1/1
16 玉霞蟠桃 Yuxiapantao NFGRN 白 White 177/179 AA 1/0
17 五月火 Mayfire NFGRN 黄 Yellow 179/179 AA 1/0
18 早凤玉 Zaofengyu NFGRN 白 White 177/179 AA 1/0
19 沪021号 Hu 021 NFGRN 白 White 177/177 AA 1/1
20 日川白凤 Richuanbaifeng NFGRN 白 White 177/177 AA 1/1
21 瑞光7号 Ruiguang 7 NFGRN 白 White 177/179 AA 1/0
22 瑞光22号 Ruiguang 22 NFGRN 黄 Yellow 179/179 AA 1/0
23 阿姆肯 Armking NFGRN 黄 Yellow 179/179 AA 1/0
24 霞晖2号 Xiahui 2 NFGRN 白 White 177/177 AA 1/0
25 瑞蟠3号 Ruipan 3 NFGRN 白 White 177/177 AA 1/0
26 早金露 Zaojinlu NFGRN 黄 Yellow 177/179 AA 1/1
27 瑞蟠5号 Ruipan 5 NFGRN 白 White 177/177 AA 1/1
28 晚硕蜜 Wanshuomi NFGRN 白 White 177/177 AA 1/0
29 早露蟠桃 Zaolupantao NFGRN 白 White 177/177 AA 1/0
30 霞晖8号 Xiahui 8 NFGRN 白 White 177/179 AA 1/0
31 晚白花 Wanbaihua NFGRN 白 White 177/177 AA 1/1
32 连黄 Lianhuang NFGRN 黄 Yellow 177/179 AA 0/1
33 春花 Chunhua NFGRN 白 White 177/177 AA 1/1
34 黄露蟠桃 Huanglupantao NFGRN 白 White 177/177 AA 1/1
35 金童5号 Babygold 5 NFGRN 黄 Yellow 177/179 AA 1/1
36 砂子早生 Sunago Wase NFGRN 白 White 177/177 AA 1/1
37 早上海水蜜 Zaoshanghaishuimi NFGRN 白 White 177/177 AA 1/0
38 金童9号 Babygold 9 NFGRN 黄 Yellow 177/177 AA 0/1
39 紫金红2号 Zijinghong 2 NFGRN 黄 Yellow 179/179 AA 1/0
40 银花露 Yinhualu NFGRN 白 White 177/177 AA 1/1
编号
Code
品种(系)
Cultivar (line)
来源
Origin
果肉类型
Flesh color
微卫星序列
SSR
SNP位点
SNP
CCD4/LTR
CCD4/LTR
41 弗雷德里克 Frederica NFGRN 黄 Yellow 179/179 AA 1/0
42 新白凤 Early Hakuho NFGRN 白 White 177/177 AA 1/0
43 奉化玉露早 Fenghuayuluzao NFGRN 白 White 177/177 AA 1/0
44 霞晖4号 Xiahui 4 NFGRN 白 White 177/179 AA 1/0
45 早硕蜜 Zaoshuomi NFGRN 白 White 177/177 AA 1/0
46 早魁蜜 Zaokuimi NFGRN 白 White 177/177 AA 1/0
47 霞光 Xiaguang NFGRN 黄 Yellow 177/179 AA 1/1
48 瑞蟠4号 Ruipan 4 NFGRN 白 White 177/177 AA 1/0
49 京玉 Jingyu NFGRN 白 White 177/177 AA 1/1
50 金霞蟠桃 Jinxiapantao NFGRN 黄 Yellow 179/179 AA 1/1
51 京红 Jinghong NFGRN 白 White 177/177 AA 1/0
52 银河 Galaxy NFGRN 白 White 177/179 AA 1/0
53 瑞光28号 Ruiguang 28 NFGRN 黄 Yellow 179/179 AA 1/0
54 瑞蟠2号 Ruipan 2 NFGRN 白 White 177/177 AA 1/0
55 金晖 Jinhui NFGRN 黄 Yellow 177/177 AA 0/1
56 雨花露 Yuhualu NFGRN 白 White 177/177 AA 1/0
57 白花水蜜 Baihuashuilu NFGRN 白 White 177/177 AA 1/1
58 丰黄 Fenghuang NFGRN 黄 Yellow 177/177 AA 0/1
59 晖雨露 Huiyulu NFGRN 白 White 177/177 AA 1/0
60 奉化玉露 Fenghuayulu NFGRN 白 White 177/177 AA 1/0
61 花玉露 Huayulu NFGRN 白 White 177/177 AA 1/0
62 瑞光23 号 Ruiguang 23 NFGRN 白 White 177/179 AA 1/0
63 瑞蟠1号 Ruipan 1 NFGRN 白 White 177/177 AA 1/0
64 霞晖3号 Xiahui 3 NFGRN 白 White 177/177 AA 1/0
65 金童8号 Babygold 8 NFGRN 白 White 177/177 AA 0/1
66 霞晖1号 Xiahui 1 NFGRN 白 White 177/177 AA 1/0
67 雨花3号 Yuhua 3 NFGRN 白 White 177/177 AA 1/1
68 金陵锦桃 Jinlingjintao NFGRN 白 White 177/177 AA 1/0
69 源东白桃 Yuandongbaitao NFGRN 白 White 177/177 AA 1/1
70 新白花 Xinbaihua NFGRN 白 White 177/177 AA 1/1
71 金童6号 Babygold 6 NFGRN 黄 Yellow 177/179 AA 1/1
72 紫金红3号 Zijinhong 3 NFGRN 黄 Yellow 179/179 AA 1/0
73 金山早红 Jinshanzaohong NFGRN 黄 Yellow 179/179 AA 1/0
74 早红港 Early Redhaven NFGRN 黄 Yellow 177/177 AA 0/1
75 霞晖5号 Xiahui 5 NFGRN 白 White 177/177 AA 0/0
76 南山甜桃 Nanshantiantao NFGRN 白 White 177/177 AA 1/0
77 锦香 Jinxiang NFGRN 黄 Yellow 177/177 AA 0/1
78 弗尔蒂尼莫蒂尼 Fertilia Morettini NFGRN 黄 Yellow 177/179 AT 1/0
79 京春 Jingchun NFGRN 白 White 177/177 AA 1/0
80 中蟠1号 Zhongpan 1 ZFRI 白 White 177/179 AA 1/0
81 99-54-36 ZFRI 白 White 177/179 AA 1/0
编号
Code
品种(系)
Cultivar (line)
来源
Origin
果肉类型
Flesh color
微卫星序列
SSR
SNP位点
SNP
CCD4/LTR
CCD4/LTR
82 36-3 ZFRI 白 White 177/179 AA 1/0
83 黄金蜜1号 Huangjinmi 1 ZFRI 黄 Yellow 179/179 AA 1/0
84 09南9-22 09nan9-22 ZFRI 白 White 177/177 AA 1/0
85 09南10-5 09nan10-5 ZFRI 白 White 177/179 AA 1/0
86 4-3-11 ZFRI 黄 Yellow 179/179 AA 1/0
87 5-3-7 ZFRI 黄 Yellow 179/179 AA 1/0
88 中油桃13号 Zhongyoutao 13 ZFRI 白 White 177/179 AA 1/0
89 春美 Chunmei ZFRI 白 White 177/179 AA 1/0
90 中桃9号 Zhongtao 9 ZFRI 白 White 177/179 AA 1/0
91 中桃10号 Zhogntao 10 ZFRI 黄 Yellow 179/179 AA 1/0
92 08北-12-1 08bei-12-1 ZFRI 白 White 177/177 AA 1/0
93 双喜红 Shuangxihong ZFRI 黄 Yellow 179/179 AA 1/0
94 中油20号 Zhognyou 20 ZFRI 白 White 177/179 AA 1/0
95 中桃红玉 Zhongtaohongyu ZFRI 白 White 177/179 AA 1/0
96 06-3-113 ZFRI 黄 Yellow 179/179 AA 1/0
97 05-3-102 ZFRI 黄 Yellow 179/179 AA 1/0
98 晚油桃 Wanyoutao ZFRI 黄 Yellow 179/179 AA 1/0
99 中油18号 Zhongyou 18 ZFRI 白 White 177/179 AA 1/0
100 1区井蟠 Yiqujingpan ZFRI 白 White 177/179 AA 1/0
101 中桃22号 Zhongtao 22 ZFRI 白 White 177/179 AA 1/0
102 春瑞 Chunrui ZFRI 白 White 177/179 AA 1/0
103 9-6-180 ZFRI 白 White 177/179 AA 1/0
104 04-7-13 ZFRI 白 White 177/179 AA 1/0
105 中桃白玉 Zhongtaobaiyu ZFRI 白 White 177/177 AA 1/0
106 中油19号 Zhongyou 19 ZFRI 黄 Yellow 179/179 AA 1/0
107 中油27号 Zhongyou 27 ZFRI 白 White 177/179 AA 1/0
108 中油12号 Zhongyou 12 ZFRI 白 White 177/179 AA 1/0
109 4-1-6 ZFRI 黄 Yellow 177/179 AA 1/1
110 枣油桃 Zaoyoutao ZFRI 白 White 177/179 AA 1/0
111 红不软 Hongburuan ZFRI 白 White 177/177 AA 1/0
112 6-7-6 ZFRI 白 White 177/179 AA 1/0
113 13-33 ZFRI 白 White 177/179 AA 1/0
114 4-9-16 ZFRI 白 White 177/179 AA 1/0
115 小花红芒果 Xiaohuahongmangguo ZFRI 黄 Yellow 179/179 AA 1/0
116 中桃8号 Zhongtao 8 ZFRI 白 White 177/179 AA 1/0
117 中油15号 Zhongyou 15 ZFRI 白 White 177/179 AA 1/0
118 红芒果 Hongmangguo ZFRI 黄 Yellow 179/179 AA 1/0
119 中蟠2号 Zhongpan 2 ZFRI 黄 Yellow 179/179 AA 1/0
120 春蜜 Chunmi ZFRI 白 White 177/179 AA 1/0
121 中农金辉 Zhongnongjinhui ZFRI 黄 Yellow 179/179 AA 1/0
122 中桃5号 Zhongtao 5 ZFRI 白 White 177/179 AA 1/0

Table 2

Primers used for CCD4 allele in peach"

名称
Code
引物序列
Primer sequence
退火温度
Annealing temperature (℃)
片段长度
Size (bp)
CCD4-F 5'-ACCACCTGTTTGACGGAGAC-3' 55 594
CCD4-R 5'-TGCTCATGAAGAGCTTGCCA-3'
LTR-F(CCD4) 5'-TACCTGAGAGCTTCTCGTGC-3' 55 729
CCD4-SSR-F 5'- ROX -CCCATTTTGCAGTGAAGGGC-3' 55 177
CCD4-SSR-R 5'-GCTGTGGTGCTTTTGTGGAG-3'
CCD4-SNP-F 5′-GGGTGATCCAATGCCTAAGA-3′ 55 510
CCD4-SNP-R 5′-GGCTCTCTAGCCACGAAAAA-3′

Fig. 1

Molecular marker of three alleles of CCD4 detecting"

Fig. 2

CCD4 gene and LTR insertion mutation detected in 122 peach cultivars M:DL2000 DNA marker。A: Agarose assay for CCD4 F/R amplification in 122 peach cultivars (lines); B: Agarose assay for LTR amplification of CCD4 in 122 peach cultivars (lines)"

Fig. 3

Three types of SSR fingerprints in CCD4 locus"

Fig. 4

Genotyping results using Sanger sequencing (A: Heterozygous SNP locus; B: Homozygous SNP)"

Table 3

Allelic variants of CCD4 in yellow flesh peach cultivars (lines)"

基因型 Genotype 品种(系) Cultivar (line)
CT插入
CT insertion
瑞光18号 Ruiguang 18
金陵黄露 Jinlinghuanglu
五月火 Mayfire
瑞光22号 Ruiguang 22
阿姆肯 Armking
连黄 Lianhuang
紫金红2号 Zijinghong 2
弗雷德里克 Frederica
金霞蟠桃Jinxiapantao
瑞光28号 Ruiguang 28
紫金红3号 Zijinhong 3
金山早红 Jinshanzaohong
黄金蜜1号 Huangjinmi 1
4-3-11
5-3-7
中桃10号 Zhongtao 10
双喜红 Shuangxihong
06-3-113
05-3-102
晚油桃 Wanyoutao
中油19号 Zhongyou 19
小花红芒果 Xiaohuahongmangguo
红芒果 Hongmangguo
中蟠2号 Zhongpan 2
中农金辉 Zhongnongjinhui
LTR插入
LTR insertion
锦绣 Jinxiu
连黄 Lianhuang
金童9号 Babygold 9
金晖 Jinhui
丰黄 Fenghuang
早红港 Early Redhaven
锦香 Jinxiang
金童8号 Babygold 8
CT重复+LTR插入
CT insertion + LTR insertion
金童7号 Babygold 7
沪油003号 Huyou 003
早金露 Zaojinlu
金童5号 Babygold 5
霞光 Xiaguang
金童6号 Babygold 6
04-7-13
CT插入+SNP替换
CT insertion +SNP subsitution
弗尔蒂尼莫蒂尼
Fertilia Morettini
[1] LAYNE D R, BASSI D. The Peach: Botany, Production and Uses . 2008:17.
[2] ROBERTSON A J, HORVAT R J, LYON B G, MEREDITH F I, SENTER S D, OKIE W R. Comparison of quality characteristic of selected yellow and white-fleshed peach cultivar. Journal of Food Science, 1990,55:1308-1311.
[3] ARANZANA M J, ILLA E, HOWAD W, ARÚS P. A first insight into peach [Prunus persica(L.) Batsch] SNP variability. Tree Genetics and Genomes, 2012,8:1359-1369.
doi: 10.1007/s11295-012-0523-6
[4] CONNORS C H. Some notes on the inheritance of unit characters in the peach. Proceedings of the American Society for Horticultural Sciences, 1920,16:24-36.
[5] BRANDI F, BAR E, MOURGUES F, HORVATH G, TURCSI E, GIULIANO G, LIVERANI A, TARTARINI S, LEWINSOHN E, ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 2011,11:24.
doi: 10.1186/1471-2229-11-24 pmid: 21269483
[6] MA J J, LI J, ZHAO J B, ZHOU H, REN F, WANG L, GU C, LIAO L, HAN Y P. Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in peach. Plant Molecular Biology Report, 2014,32:246-257.
[7] WARBURTON M L, BECERRA-VELÀSQUEZ V L, GOFFREDA J C, BLISS F A. Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theoretical and Applied Genetics, 1996,93:920-925.
doi: 10.1007/BF00224094 pmid: 24162426
[8] ARÚS P, VERDE I, SOSINSKI B, ZHEBENTYAYEVA T, ABBOTT A G. The peach genome. Tree Genetics and Genomes, 2012,8:531-547.
[9] CANTÍN C M, GOGORCENA Y, MORENO M A. Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica(L.) Batsch] breeding progenies. Euphytica, 2010,171:211.
[10] 俞明亮, 马瑞娟, 沈志军, 章镇. 桃果肉颜色、果皮茸毛和花粉育性性状的分子标记. 园艺学报, 2006,33(3):511-517.
YU M L, MA R J, SHEN Z J, ZHANG Z. Molecular markers linked to specific characteristics of Prunus persica (L.) Batsch. Acta Horticulturae Sinica, 2006,33(3):511-517. (in Chinese)
[11] ADAMI M, FRANCESCHI P D, BRANDI F, LIVERANI A, GIOVANNINI D, ROSATI C, DONDINI L, TARTARINI S. Identifying a carotenoid cleavage dioxygenase (CCD4) gene controlling yellow/white fruit flesh color of peach. Plant Molecular Biology Report, 2013,31:1166-1175.
[12] FALCHI R, VENDRAMIN E, ZANON L, SCALABRIN S, CIPRIANI G, VERDE I, VIZZOTTO G, MORGANTE M. Three distinct mutational mechanisms acting on a single gene underpin the origin of yellow flesh in peach. The Plant Journal, 2013,76:175-187.
doi: 10.1111/tpj.12283 pmid: 23855972
[13] 张南南, 牛良, 崔国朝, 潘磊, 曾文芳, 王志强, 鲁振华. 一种高通量提取桃DNA方法的建立与应用, 中国农业科学, 2018,51(13):2614-2621.
ZHANG N N, NIU L, CUI G C, PAN L, ZENG W F, WANG Z Q, LU Z H. Establishment and application of a high-throughout protocol for peach (Prunus persica) DNA extraction. Scientia Agricultura Sinica, 2018,51(13):2614-2621. (in Chinese)
[14] FUKAMATSU Y, TAMURA T, HIHARA S, ODA K. Mutations in the CCD4 carotenoid cleavage dioxygenase gene of yellow-flesh peaches. Bioscience, Biotechnology, and Biochemistry, 2013,77(12):2514-2516.
[15] ARANZANA M J, ABBASSI E, HOWAD W, ARÚS P. Genetic variation, population structure and linkage disequilibrium in peach commercial varieties. BMC Genetics, 2010,11:69.
doi: 10.1186/1471-2156-11-69 pmid: 20646280
[16] VERDE I, ABBOTT A G, SCALABRIN S, JUNG S, SHU S Q, MARRONI F, ZHEBENTYAYEVA T, DETTORI M T, GRIMWOOD J, CATTONARO F, ZUCCOLO A, ROSSINI L, JENKINS J, VENDRAMIN E, MEISEL L A, DECROOCQ V, SOSINSKI B, PROCHNIK S, MITROS T, POLICRITI A, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013,45:487-494.
doi: 10.1038/ng.2586 pmid: 23525075
[17] FRESNEDO-RAMÍREZ J, FRETT T J, SANDEFUR P J, SALGADO- ROJAS A, CLARK J R, GASIC K, PEACE C P, ANDERSON N, HARTMANN T P, BYRNE D H, , BINK M C A M, , VAN DE WEG W E, CRISOSTO C H, GRADZIEL T M. QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genetics and Genomes, 2016,12:25.
[18] DARDICK C, CALLAHAN A, HORN R, RUIZ K B, ZHEBENTYAYEVA T, HOLLENDER C, WHITAKER M, ABBOTT A, SCORZA R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. The Plant Journal, 2013,75:618-630.
doi: 10.1111/tpj.12234 pmid: 23663106
[19] HOLLENDER C A, PASCAL T, TABB A, HADIARTO T, SRINIVASAN C, WANG W P, LIU Z C, SCORZA R, DARDICK C. Loss of a highly conserved sterile alpha motif domain gene (WEEP) results in pendulous branch growth in peach trees. Proceedings of the National Academy of Sciences of the USA, 2018,115(20):E4690-E4699.
doi: 10.1073/pnas.1704515115 pmid: 29712856
[20] HOLLENDER C A, HADIARTO T, SRINIVASAN C, SCORZA R, DARDICK C. A brachytic dwarfism trait (dw) in peach trees is caused by a nonsense mutation within the gibberellic acid receptor PpeGID1c. New Phytologist, 2016,210:227-239.
doi: 10.1111/nph.13772 pmid: 26639453
[21] 鲁振华, 牛良, 张南南, 姚家龙, 崔国朝, 曾文芳, 潘磊, 王志强. 基于SNP标记桃矮化基因的精细定位. 中国农业科学, 2017,50(18):3572-3580.
LU Z H, NIU L, ZHANG N N, YAO J L, CUI G C, ZENG W F, PAN L, WANG Z Q. Fine mapping of dwarfing gene for peach based on SNP markers. Scientia Agricultura Sinica, 2017,50(18):3572-3580. (in Chinese)
[22] GU C, WANG L, WANG W, ZHOU H, MA B Q, ZHENG H Y, FANG T, OGUTU C, VIMOLMANGKANG S, HAN Y P. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. Journal of Experimental Botany, 2016,67(6):1993-2005.
pmid: 26850878
[23] LÓPEZ-GIRONA E, ZHANG Y, EDUARDO I, MORA J R H, ALEXIOU K G, ARÚS P, ARANZANA M J. A deletion affecting an LRR-RLK gene co-segregates with the fruit flat shape trait in peach. Scientific Report, 2017,7:6714.
[24] VENDRAMIN E, PEA G, DONDINI L, PACHECO I, DETTORI M T, GAZZA L, SCALABRIN S, STROZZI F, TARTARINI S, BASSI D, VERDE I, ROSSINI L. A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS ONE, 2014,9(3):e90574.
doi: 10.1371/journal.pone.0090574 pmid: 24595269
[25] PAN L, ZENG W F, NIU L, LU Z H, WANG X B, LIU H, CUI G C, ZHU Y Q, CHU J F, LI W P, FANG W C, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach(Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015,66(22):7031-7044.
doi: 10.1093/jxb/erv400 pmid: 26307136
[26] SHEN Z J, CONFOLENT C, LAMBERT P, POËSSEL J L, QUILOT-TURION B, YU M L, MA R J, PASCAL T. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genetics and Genomes, 2013,9:1435-1446.
doi: 10.1007/s11295-013-0649-1
[27] LISCH D. How important are transposons for plant evolution? Nature Reviews Genetics, 2013,14:49-61.
doi: 10.1038/nrg3374 pmid: 23247435
[28] KOBAYASHI S, GOTO-YAMAMOTO N, HIROCHIKA H. Retrotransposon-induced mutations in grape skin color. Science, 2014,304(5673):982.
doi: 10.1126/science.1095011 pmid: 15143274
[29] ZHANG L Y, HU J, HAN X L, LI J J, GAO Y, RICHARDS C M, ZHANG C X, TIAN Y, LIU G M, GUL H, WANG D J, TIAN Y, YANG C X, MENG M H, YUAN G P, KANG G D, WU Y L, WANG K, ZHANG H T, WANG D P, CONG P H. A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour. Nature Communication, 2019,10:1494.
[30] BUTELLI E, LICCIARDELLO C, ZHANG Y, LIU J, MACKAY S, BAILEY P, REFORGIATO-RECUPERO G, MARTIN C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. The Plant Cell, 2012,24:1242-1255.
doi: 10.1105/tpc.111.095232 pmid: 22427337
[31] CHEN T, ZHANG Y D, ZHAO L, ZHU Z, LIN J, ZHANG S B, WANG C L. Fine mapping and candidate gene analysis of a green- revertible albino gene gra (t) in rice. Journal of Genetics and Genomics, 2009,36(2):117-123.
doi: 10.1016/S1673-8527(08)60098-3 pmid: 19232310
[32] LEE G, PIAO R H, LEE Y J, KIM B, SEO J H, LEE D Y, JANG S, JIN Z, LEE C S, CHIN J H, KOH H. Identification and characterization of large embryo, a new gene controlling embryo size in rice (Oryza sativa L.). Rice, 2019,12:22.
doi: 10.1186/s12284-019-0277-y pmid: 30972509
[33] FERREIRA D S, KEVEI Z, KUROWSKI T, FONSECA M E N, MOHAREB F, BOITEUX L S, THOMPSON A J. Bifurcate flower truss: a novel locus controlling inflorescence branching in tomato contains a defective MAP kinase gene. Journal of Experimental Botany, 2018,69(10):2581-2593.
doi: 10.1093/jxb/ery076 pmid: 29509915
[1] LI FeiFei, LIAN XueFei, YIN Tao, CHANG YuanYuan, JIN Yan, MA XiaoChuan, CHEN YueWen, YE Li, LI YunSong, LU XiaoPeng. The Relationship Between Mastication and Development of Segment Membranes in Citrus Fruits [J]. Scientia Agricultura Sinica, 2023, 56(2): 333-344.
[2] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[3] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[4] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[5] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[6] WEI JingJie,JIANG NingBo,LIANG Yan,ZHANG Qian,SUN YingJian,HU Ge. Effect of Matrine on NLRP3 Inflammasome Signaling Pathway in H9N2 AIV Infected Mice [J]. Scientia Agricultura Sinica, 2022, 55(21): 4315-4326.
[7] XIA YuXin,LIANG Yan,WANG HaiYang,GUO MengLing,ZHOU Bu,DAI Xu,YANG ZhangPing,MAO YongJiang. Effects of the Number of Subclinical Mastitis and Somatic Cell Score in Milk of Parity 1 on Somatic Cell Score of Holstein Cows for Parity 2 [J]. Scientia Agricultura Sinica, 2022, 55(20): 4052-4064.
[8] MengQi WANG,Na MI,Jing WANG,YuShu ZHANG,RuiPeng JI,NiNa CHEN,XiaXia LIU,Ying HAN,WangYiPu LI,JiaYing ZHANG. Simulation of Canopy Silking Dynamic and Kernel Number of Spring Maize Under Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(18): 3530-3542.
[9] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[10] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[11] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[12] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[13] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[14] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[15] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!