Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 2938-2948.doi: 10.3864/j.issn.0578-1752.2022.15.006

• PLANT PROTECTION • Previous Articles     Next Articles

Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs

ZHOU GuiYing(),YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing()   

  1. Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, Shandong
  • Received:2022-01-12 Accepted:2022-03-08 Online:2022-08-01 Published:2022-08-02
  • Contact: ChangYing ZHENG E-mail:Zhougy0203@163.com;zhengcy67@qau.edu.cn

Abstract:

【Objective】Previous studies showed that the 0 h old eggs of Frankliniella occidentalis after 24 h treated with spirotetramat resulted in the cracking of eggs shell and inhibited the hatching of eggs. The objective of this study is to investigate the causes of morphological and structural changes of 0 h old eggs of F. occidentalis after 24 h treated with spirotetramat, and to find the key proteins and reveal the molecular mechanism of spirotetramat inhibiting the hatching of 0 h old eggs of F. occidentalis. 【Method】The 0 h old eggs of F. occidentalis were treated with 14.42 mg·L-1 spirotetramat for 24 h, and the Label-free quantitative proteomics technique was used to analyze differentially expressed proteins between the spirotetramat-treated group and the control group. Gene Ontology (GO) enrichment analysis and KEGG pathway analysis were used for functional annotation and pathway analysis of the differentially expressed proteins, and the expression of differential expressed proteins was verified by parallel reaction monitoring (PRM).【Result】A total of 204 proteins were differentially expressed after treatment with spirotetramat, of which 124 proteins were up-regulated and 80 proteins were down-regulated. Bioinformatics analysis showed that the up-regulated differentially expressed proteins were mainly involved in substance synthesis and metabolic pathways, while the down-regulated differentially expressed proteins were mainly participated in the defense response pathway to external stimuli. In addition, the results of PRM were consistent with the proteomics results. The results showed that the protein expression levels of GTP cyclohydrolase 1-1, GTP cyclohydrolase 1-2, glutathione S-transferase-like and fatty acyl-CoA reductase were significantly up-regulated, while the expression levels of endocuticle structural glycoprotein SgAbd-2-like, superoxide dismutase [Cu-Zn]-like and O-acetyl transferase in 0 h old eggs of F. occidentalis after 24 h treated with spirotetramat were significantly down-regulated, especially endocuticle structure glycoprotein SgAbd-2-like.【Conclusion】The above proteins may play multiple functions in the hatching process of F. occidentalis eggs, the endocuticle structure glycoprotein SgAbd-2-like is related to insect epidermal differentiation and other life activities, it was speculated that the expression of this protein was inhibited by spirotetramat, which resulted in egg shell rupture of F. occidentalis 0 h old eggs, the endocuticle structure glycoprotein SgAbd-2-like may play an important role in the hatching process of F. occidentalis 0 h old eggs.

Key words: Frankliniella occidentalis, spirotetramat, egg, proteomics, hatching

Fig. 1

Distribution of differentially expressed proteins in 0 h old eggs of F. occidentalis after 24 h treated with spirotetramat"

Table 1

Differentially expressed protein results statistics"

蛋白名称
Protein name
蛋白登录号
Protein ID
肽段数
Peptide count
特殊肽段数
Unique peptide count
分子量
Molecular weight (kD)
变化倍数Fold change P
P value
三磷酸鸟苷环水解酶1-1 GTP cyclohydrolase 1-1 A0A6J1TMB5 3 3 18.50 13.65 0.00009
三磷酸鸟苷环水解酶1-2 GTP cyclohydrolase 1-2 A0A6J1T9W9 3 3 17.58 11.16 0.00062
类谷胱甘肽硫-转移酶Glutathione S-transferase-like A0A6J1SUA2 13 13 23.29 7.37 0.00005
脂酰辅酶A还原酶Fatty acyl-CoA reductase A0A6J1TJA8 4 4 57.99 4.04 0.00067
超长链脂肪酸蛋白质的延伸
Elongation of very long chain fatty acids protein
A0A6J1SJR5; A0A6J1SRS0 2 2 39.09 2.75 0.03058
甘露聚糖酶Mannanase A0A6J1T5W2 8 8 108.14 2.59 0.03446
谷胱甘肽过氧化物酶Glutathione peroxidase A0A6J1TAR5; A0A6J1T4F1 11 11 18.60 2.13 0.00450
类胰脂肪酶相关蛋白3 Pancreatic lipase-related protein 3-like A0A6J1STX0 3 3 42.11 1.99 0.01464
酪氨酸蛋白激酶Tyrosine-protein kinase A0A6J1RYS7 3 3 95.47 1.99 0.00560
Ras相关蛋白Rab-32亚型X9
Ras-related protein Rab-32 isoform X9
A0A6J1SY76; A0A6J1SSP5; A0A6J1STV6; A0A6J1STV8; A0A6J1T0S5; A0A6J1SY71; A0A6J1SSN8; A0A6J1STV1; A0A6J1STV2 3 3 24.05 1.96 0.00719
泛素结合酶E2 G1 Ubiquitin-conjugating enzyme E2 G1 A0A6J1TK58 3 3 19.44 1.89 0.04406
脂肪酸结合蛋白,肌肉亚型X2
Fatty acid-binding protein, muscle isoform X2
A0A6J1RYX2; A0A6J1RRR7 13 13 15.01 1.84 0.02624
类谷胱甘肽S-转移酶 θ-1
Glutathione S-transferase theta-1-like
A0A6J1RZW4 5 5 25.72 1.83 0.04168
脂酰辅酶A还原酶
Fatty acyl-CoA reductase
A0A6J1SPV4; A0A6J1SJC4 6 6 57.97 1.77 0.03626
类85/88 kD钙非依赖性磷脂酶A2
85/88 kD calcium-independent phospholipase A2-like
A0A6J1RWA1 3 3 87.87 1.65 0.03396
ATP依赖型RNA解旋酶A亚型X1
ATP-dependent RNA helicase A isoform X1
A0A6J1S206; A0A6J1S943 7 7 140.50 1.64 0.01121
Ras相关蛋白rab7 Ras-related protein rab7 A0A6J1STG7 8 8 23.30 1.60 0.01576
核糖体生物合成蛋白BMS1同源异构体 X2
Ribosome biogenesis protein BMS1 homolog isoform X2
A0A6J1S7D5; A0A6J1S5Z1 6 6 151.97 1.57 0.01277
阿法丁异构体X6
Afadin isoform X6
A0A6J1SEG9; A0A6J1S933; A0A6J1S9F8; A0A6J1SGI5; A0A6J1SEG7; A0A6J1SAN7 10 10 221.95 1.57 0.00601
脂肪细胞质膜相关蛋白
Adipocyte plasma membrane-associated protein
A0A6J1SQ17 15 15 65.63 1.56 0.03344
ATP结合盒亚家族F成员2
ATP-binding cassette sub-family F member 2
A0A6J1SA46 13 13 71.60 0.64 0.00254
类蛋白阻塞物-E Protein obstructor-E-like A0A6J1TAJ9 5 5 40.81 0.63 0.00146
O-乙酰基转移酶O-acetyl transferase A0A6J1S6K4; A0A6J1S111 2 2 57.82 0.63 0.02456
RNA解旋酶RNA helicase A0A6J1S314; A0A6J1S9L2 24 20 60.17 0.62 0.00058
类鸟嘌呤核苷酸结合蛋白1
Guanine nucleotide-binding protein-like 1
A0A6J1T023 9 9 68.61 0.59 0.03401
T复合蛋白1亚基epsilon
T-complex protein 1 subunit epsilon isoform X1
A0A6J1S5J0; A0A6J1S3Y9 30 30 59.55 0.59 0.02217
δ-1-吡咯啉-5-羧酸合酶Delta-1-pyrroline-5-carboxylate synthase A0A6J1THW9 8 8 83.84 0.59 0.03537
泛素结合酶E2 N Ubiquitin-conjugating enzyme E2 N A0A6J1RWY7 5 5 17.19 0.58 0.01814
酪蛋白激酶I同种型X2
Casein kinase I isoform X2
A0A6J1SSW6; A0A6J1T0Y4 6 6 38.35 0.58 0.00652
微管蛋白α链Tubulin alpha chain A0A6J1TCU9 16 1 49.99 0.55 0.00865
类Ras相关蛋白Rab-18-B Ras-related protein Rab-18-B-like A0A6J1RZP1 2 2 23.35 0.52 0.04714
40S核糖体蛋白S24
40S ribosomal protein S24
A0A6J1TJB9;
A0A6J1TJZ2
5 5 15.16 0.48 0.03436
上游激活因子亚基spp27 Upstream activation factor subunit spp27 A0A6J1RYK9 10 10 28.57 0.48 0.04572
类蛋白多糖4亚型X1
Proteoglycan 4-like isoform X1
A0A6J1TNX9; A0A6J1TSU0 14 14 146.33 0.38 0.03717
丝裂原活化蛋白激酶
Mitogen-activated protein kinase
A0A6J1SZU8; A0A6J1TD29; A0A6J1S2K1 5 4 42.50 0.33 0.01435
谷氨酰胺-果糖-6-磷酸转氨酶(异构化)
Glutamine-fructose-6-phosphate transaminase (isomerizing)
A0A6J1SYR9; A0A6J1T384 22 22 76.10 0.33 0.00019
RNA解旋酶RNA helicase A0A6J1T1T7 11 11 69.78 0.33 0.02672
细胞色素P450 Cytochrome P450 6a2-like A0A6J1SXB7; F1JYR2; F1JYR1; A0A6J1SYI1; A0A6J1T5I4; A0A6J1T3E3; A0A6J1SJ06 11 10 60.04 0.28 0.02177
类铜/锌-超氧化物歧化酶Superoxide dismutase [Cu-Zn]-like A0A6J1T4V3 4 4 18.72 0.19 0.00577
类内表皮结构糖蛋白SgAbd-2
Endocuticle structural glycoprotein SgAbd-2-like
A0A6J1T9H5 6 1 11.86 0.06 0.00211

Fig. 2

GO enrichment analyses of differentially expressed proteins in 0 h old eggs of F. occidentalis after 24 h treated with spirotetramat"

Fig. 3

KEGG pathway analyses of differentially expressed proteins in 0 h old eggs of F. occidentalis after 24 h treated with spirotetramat"

Fig. 4

Parallel reaction monitoring was used to verify differentially expressed proteins"

[1] KIRK W D J, TERRY L I. The spread of the Western flower thrips Frankliniella occidentalis (Pergande). Agricultural and Forest Entomology, 2003, 5(4): 301-310.
doi: 10.1046/j.1461-9563.2003.00192.x
[2] 张友军, 吴青君, 徐宝云, 朱国仁. 危险性外来入侵生物--西花蓟马在北京发生危害. 植物保护, 2003, 29(4): 58-59.
ZHANG Y J, WU Q J, XU B Y, ZHU G R. Dangerous alien invasive species - Occurrence and damages of Frankliniella occidentalis in Beijing. Plant Protection, 2003, 29(4): 58-59. (in Chinese)
[3] 郑长英, 刘云虹, 张乃芹, 赵希丽. 山东省发现外来入侵有害生物-西花蓟马. 青岛农业大学学报(自然科学版), 2007, 24(3): 172-174.
ZHENG C Y, LIU Y H, ZHANG N Q, ZHAO X L. Invaded insect pest - Frankliniella occidentalis first reported in Shandong Province. Journal of Qingdao Agricultural University (Natural Science), 2007, 24(3): 172-174. (in Chinese)
[4] GERMAN T L, ULLMAN D E, MOYER J W. Tospoviruses: Diagnosis, molecular biology, phylogeny, and vector relationships. Annual Review of Phytopathology, 1992, 30: 315-348.
doi: 10.1146/annurev.py.30.090192.001531
[5] ULLMAN D E, SHERWOOD J L, GERMAN T L. Thrips as vectors of plant pathogens//Thrips as Crop Pests, 1997: 539-565.
[6] YANG X M, ZHOU G Y, SUN L J, ZHENG C Y. Ovicidal activity of spirotetramat and its effect on hatching, development and formation of Frankliniella occidentalis egg. Scientific Reports, 2021, 11(1): 20751.
doi: 10.1038/s41598-021-00160-6
[7] RENOZ F, DEMETER S, DEGAND H, NICOLIS S C, LEBBE O, MARTIN H, DENEUBOURG J L, FAUCONNIER M L, MORSOMME P, HANCE T. The modes of action of Mentha arvensis essential oil on the granary weevil Sitophilus granarius revealed by a label-free quantitative proteomic analysis. Journal of Pest Science, 2022, 95: 381-395.
doi: 10.1007/s10340-021-01381-4
[8] KOCOUREK F, STARA J, SOPKO B, TALACKO P, HARANT K, HOVORKA T, ERBAN T. Proteogenomic insight into the basis of the insecticide tolerance/resistance of the pollen beetle Brassicogethes (Meligethes) aeneus. Journal of Proteomics, 2021, 233: 104086.
doi: 10.1016/j.jprot.2020.104086
[9] CHEN J, CUI D N, ULLAH H, HAO K, TU X B, ZHANG Z H. Serpin7 controls egg diapause of migratory locust (Locusta migratoria) by regulating polyphenol oxidase. FEBS Open Bio, 2020, 10(5): 707-717.
doi: 10.1002/2211-5463.12825
[10] RAUNIYAR N. Parallel reaction monitoring: A targeted experiment performed using high resolution and high mass accuracy mass spectrometry. International Journal of Molecular Sciences, 2015, 16(12): 28566-28581.
doi: 10.3390/ijms161226120
[11] RONSEIN G E, PAMIR N, VON HALLER P D, KIM D S, ODA M N, JARVIK G P, HEINECKE J W. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) exhibit comparable linearity, dynamic range and precision for targeted quantitative HDL proteomics. Journal of Proteomics, 2015, 113: 388-399.
doi: 10.1016/j.jprot.2014.10.017
[12] SI W Y, WANG Q J, LI Y, DONG D J. Label-free quantitative proteomic analysis of insect larval and metamorphic molts. BMC Developmental Biology, 2020, 20(1): 24.
doi: 10.1186/s12861-020-00227-z
[13] TANG B Z, MENG E, ZHANG H J, ZHANG X M, ASGARI S, LIN Y P, LIN Y Y, PENG Z Q, QIAO T, ZHANG X F, HOU Y M. Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles. Journal of Proteomics, 2019, 192: 37-53.
doi: 10.1016/j.jprot.2018.08.003
[14] SILVA R S, ARCANJO L P, SOARES J R S, FERREIRA D O, SERRÃO J E, MART INS J C, COSTA Á H, PICANÇO M C. Insecticide toxicity to the borer Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae): Developmental and egg-laying effects. Neotropical Entomology, 2018, 47(2): 318-325.
doi: 10.1007/s13744-017-0553-8
[15] SANTOS N D, DE MOURA K S, NAPOLEAO T H, SANTOS G K, COELHO L C, NAVARRO D M, PAIVA P M. Oviposition-stimulant and ovicidal activities of Moringa oleifera Lectin on Aedes aegypti. PLoS ONE, 2012, 7(9): e44840.
doi: 10.1371/journal.pone.0044840
[16] 郑长英, 马亚斌, 冯志国, 李洪刚, 李红霞, 李娜, 张彬. 一种大量收集西花蓟马卵的方法: CN105210997A[P].(2018-01-26) [2022-01-12].
ZHENG C Y, MA Y B, FENG Z G, LI H G, LI H X, LI N, ZHANG B. A method for mass collection of Frankliniella occidentalis eggs: CN105210997A[P].(2018-01-26) [2022-01-12]. (in Chinese)
[17] 刘俊珍. 颅内动脉瘤破裂风险相关血清蛋白差异表达的分析[D]. 南昌: 南昌大学, 2021.
LIU J Z. Analysis of the difference expression of serum protein related to the risk of intracranial aneurysm rupture[D]. Nanchang: Nanchang University, 2021. (in Chinese)
[18] 涂晓辉. 菜粉蝶超氧化物歧化酶基因的鉴定、表达模式与抗氧化功能分析[D]. 合肥: 安徽农业大学, 2020.
TU X H. Identification, expression pattern, and antioxidant function of superoxide dismutase genes from Pieris rapae[D]. Hefei: Anhui Agricultural University, 2020. (in Chinese)
[19] ZHUO X F, LING X Y, GUO H J, ZHU-SALZMAN K, SUN Y C. Serratia symbiotica enhances fatty acid metabolism of pea aphid to promote host development. International Journal of Molecular Sciences, 2021, 22(11): 5951.
doi: 10.3390/ijms22115951
[20] ZHANG S, LUO J Y, LV L M, WANG C Y, LI C H, ZHU X Z, CUI J J. Effects of Lysiphlebia japonica (Ashmead) on cotton-melon aphid Aphis gossypii Glover lipid synthesis. Insect Molecular Biology, 2015, 24(3): 348-357.
doi: 10.1111/imb.12162
[21] HEMINGWAY J, HAWKES N J, MCCARROLL L, RANSON H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 2004, 34(7): 653-665.
doi: 10.1016/j.ibmb.2004.03.018
[22] 李茂业, 黄岩, 蒋秀云, 何佶弦, 刘苏. 小地老虎谷胱甘肽-S-转移酶AiGSTs1的分子特性及其对杀虫剂胁迫的响应. 应用昆虫学报, 2021, 58(4): 938-948.
LI M Y, HUANG Y, JIANG X Y, HE J X, LIU S. Molecular characterization of glutathione-S-transferase (AiGSTs1) in Agrotis ipsilon subject to insecticide stress. Chinese Journal of Applied Entomology, 2021, 58(4): 938-948. (in Chinese)
[23] 杨晓敏. 螺虫乙酯抑制西花蓟马卵孵化的生理生化机制[D]. 青岛: 青岛农业大学, 2021.
YANG X M. Physiological and biochemical mechanism of spirotetramat inhibiting hatching of Frankliniella occidentalis[D]. Qingdao: Qingdao Agricultural University, 2021. (in Chinese)
[24] 胡艳红. 白蜡虫脂酰辅酶A还原酶基因 (EpFAR) 的克隆表达与功能研究[D]. 南京: 南京林业大学, 2018.
HU Y H. Cloning, expression characterization and functional assay of a fatty acyl-CoA reductase gene in scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidea)[D]. Nanjing: Nanjing Forestry University, 2018. (in Chinese)
[25] 李晓龙. 扶桑绵粉蚧脂质合成相关基因的特性和功能研究[D]. 杭州: 浙江农林大学, 2016.
LI X L. Characterization and functions of lipid biosynthesis related genes of the cotton mealbug Phenacoccus solenopsis[D]. Hangzhou: Zhejiang A&F University, 2016. (in Chinese)
[26] 侯丽. 两种小GTP酶Rab4b,Rab32及蛋白激酶C delta (PKC δ) 在棉铃虫变态过程中的功能研究[D]. 济南: 山东大学, 2012.
HOU L. Function analysis of Rab4b, Rab32 and protein kinase C delta (PKC δ) during metamorphosis in Helicoverpa armigera[D]. Ji’nan: Shandong University, 2012. (in Chinese)
[27] WILLIS J H. Structural cuticular proteins from arthropods: Annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochemistry and Molecular Biology, 2010, 40(3): 189-204.
[28] LU J B, LUO X M, ZHANG X Y, PAN P L, ZHANG C X. An ungrouped cuticular protein is essential for normal endocuticle formation in the brown planthopper. Insect Biochemistry and Molecular Biology, 2018, 100: 1-9.
doi: 10.1016/j.ibmb.2018.06.001
[29] XIONG G, TONG X L, GAI T T, LI C, QIAO L, MONTEIRO A, HU H, HAN M J, DING X, WU S Y, XIANG Z H, LU C, DAI F Y. Body shape and coloration of silkworm larvae are influenced by a novel cuticular protein. Genetics, 2017, 207(3): 1053-1066.
doi: 10.1534/genetics.117.300300
[30] QIAO L, XIONG G, WANG R X, HE S Z, CHEN J, TONG X L, HU H, LI C L, GAI T T, XIN Y Q, LIU X F, CHEN B, XIANG Z H, LU C, DAI F Y. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori. Genetics, 2014, 196(4): 1103-1115.
doi: 10.1534/genetics.113.158766
[31] SUMAN D S, WANG Y, BILGRAMI A L, GAUGLER R. Ovicidal activity of three insect growth regulators against Aedes and Culex mosquitoes. Acta Tropica, 2013, 128(1): 103-109.
doi: 10.1016/j.actatropica.2013.06.025
[32] 贾盼, 张晶, 杨洋, 刘卫敏, 张建珍, 赵小明. 飞蝗内表皮结构糖蛋白基因 LmAbd-2 的表达与功能分析. 中国农业科学, 2019, 52(4): 651-660.
JIA P, ZHANG J, YANG Y, LIU W M, ZHANG J Z, ZHAO X M. Expression and function analysis of endocuticle structural glycoprotein gene LmAbd-2 in Locusta migratoria. Scientia Agricultura Sinica, 2019, 52(4): 651-660. (in Chinese)
[33] 袁江江. 西花蓟马抗药性监测及SgAbd-1-like基因的克隆和定量分析[D]. 荆州: 长江大学, 2019.
YUAN J J. Resistance monitoring and cloning and quantitative analysis of SgAbd-1-like gene in Frankliniella occidentalis (Pergande)[D]. Jingzhou: Yangtze University, 2019. (in Chinese)
[1] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[2] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[3] WANG Chao,FANG DongLu,ZHANG PanRong,JIANG Wen,PEI Fei,HU QiuHui,MA Ning. Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics [J]. Scientia Agricultura Sinica, 2022, 55(23): 4728-4742.
[4] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[5] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[6] XinHua LI,DengJie WANG,ZhongRen LEI,HaiHong WANG. Comparison of Life Tables for Experimental Populations of Individual- Rearing and Group-Rearing Frankliniella occidentalis [J]. Scientia Agricultura Sinica, 2021, 54(5): 959-968.
[7] GAO YongBo,WANG ShiXian,WEI Min,LI Jing,GAO ZhongQiang,MENG Lun,YANG FengJuan. Effects of Nitrogen, Phosphorus and Potassium Dosage on the Yield, Root Morphology, Rhizosphere Microbial Quantity and Enzyme Activity of Eggplant Under Substrate Cultivation [J]. Scientia Agricultura Sinica, 2021, 54(21): 4623-4634.
[8] MA LingLing,FENG Jia,WANG Jing,QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai. The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3766-3779.
[9] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[10] DANG LiPing,ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng. Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2020, 53(17): 3620-3628.
[11] WANG XiaoJuan, LIU Lei, JIAO HongChao, ZHAO JingPeng, LIN Hai. Regulation of Biological Clock in Ovulation-Laying of Laying Hens [J]. Scientia Agricultura Sinica, 2018, 51(16): 3181-3190.
[12] LIU YongHong, LI BeiBei, LI KaiRui, HE Bo, ZHANG JingBo, PU XiaoFeng, CHEN MeiJuan, PAN JiaoJiao1, LI Fei, ZHANG LuYao, ZHAO Li. Molecular Detection of R. turanicus and Its Eggs Carrying R. raoultii in Southern Xinjiang [J]. Scientia Agricultura Sinica, 2018, 51(15): 3020-3028.
[13] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
[14] LIU Lu, LU Jing, WANG Ying, PANG XiaoYang, XU Man, ZHANG ShuWen, Lü JiaPing. Antitumor Effect of Violacein Against HT29 by Comparative Proteomics [J]. Scientia Agricultura Sinica, 2017, 50(9): 1694-1704.
[15] HAO WenYuan, LI FeiWu, YAN Wei, LI CongCong, HAO DongYun, GUO ChangHong. Assessment of the Unintended Effects of Four Genetically Modified Maize Varieties by Proteomic Approach [J]. Scientia Agricultura Sinica, 2017, 50(19): 3652-3664.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!