Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (15): 3020-3028.doi: 10.3864/j.issn.0578-1752.2018.15.017

• RESEARCH NOTES • Previous Articles    

Molecular Detection of R. turanicus and Its Eggs Carrying R. raoultii in Southern Xinjiang

LIU YongHong1, LI BeiBei1, LI KaiRui1, HE Bo1, ZHANG JingBo1, PU XiaoFeng1, CHEN MeiJuan1, PAN JiaoJiao1, LI Fei2, ZHANG LuYao3, ZHAO Li1   

  1. 1College of Animal Science, Tarim University/Key Laboratory of Tarim Animal Husbandry Science and Technology of Xinjiang Production & Construction Corps, Alar 843300, Xinjiang; 2Animal Loimia Controlling and Diagnostic Center of Aksu Region, Aksu 843000, Xinjiang; 3Animal husbandry and veterinary workstations of Barkol kazak autonomous county, Kumul 839200, Xinjiang
  • Received:2018-01-05 Online:2018-08-01 Published:2018-08-01

Abstract: 【Objective】 There are 899 species of ticks in the world, belonging to 18 genera and 3 families, and there are 117 species in China, belonging to 2 families, 10 genera. There are at least 45 species in Xinjiang, accounting for more than 1/3 of the national ticks, and its distribution is extremely wide. Ticks can directly harm and spread many kinds of pathogens, and some pathogens can propagate vertically through eggs, causing huge economic losses to animal husbandry, and seriously threatening public health security. Rhipicephalus is one of the common species and dominant species in the desert and semi-desert region of southern Xinjiang. It is of great significance to confirm whether Rhipicephalus turanicus and its eggs are carrying the Rickettsia in the southern Xinjiang of China, so as to prevent and control of Rhipicephalus turanicus and its transmission of Rickettsia. 【Method】 The satiated blood female Rhipicephalus were collected from a sheep farm in alar, southern Xinjiang, and oviposited eggs at a certain humidity and temperature. A random sample of 5 independent eggs and the corresponding 5 female Rhipicephalus were as the research object. The genomic DNA were extracted from the female Rhipicephalus and eggs, respectively. In this study, ticks 12S rRNA gene and Rickettsia 16S rRNA gene were amplified by conventional PCR, and the amplification products were sequenced and underwent sequence analysis by using BLAST online platform and multiple molecular biology software. 【Result】 The 12S rRNA gene PCR amplification of 5 female ticks were all positive, and 4 segment of 12S rRNA gene sequence obtained by sequencing were identical. The similarity of Rhipicephalus 12s rRNA gene sequence and GenBank Rhipicephalus 12s rRNA gene sequences in the database were more than 99% using Blast analysis, and the top five gene sequences of the high similarity were Rhipicephalus, including Rhipicephalus from Xinjiang sheep. In this study, the Rhipicephalus 12S rRNA gene sequence was submitted to the GenBank database and obtained the login number of MG744514. The phylogenetic tree from GenBank database Rhipicephalus turanicus, Rhipicephalus sanguineus, Boophilus microplus, Dermacentor marginatus, Dermacentor nuttalli, Haemaphysalis longicornis, Hyalomma anatolicum, Hyalomma asiaticum, Hyalomma detritum, Ixodes persulcatus and peripheral-dust mites 12S rRNA gene sequence display, the Rhipicephalus 12S rRNA gene sequence obtained in this study was closest with Rhipicephalus sanguineus in the evolutionary relationship and clustered in the same small branch. Rhipicephalus was identified as Rhipicephalus turanicus. PCR amplification of all eggs Rickettsia 16S rRNA gene and 5 oviposit female Rhipicephalus, 1 Rhipicephalus and its eggs samples were positive, and the tick carrying rate was 20%. The sequencing results of 16S rRNA in female Rhipicephalus turanicus and its eggs were identical. The similarity was more than 99% of the Rickettsia raoultii 16S rRNA gene sequences in the GenBank database using Blast analysis. The top five genes of high similarity were 4 Rickettsia raoultii and 1 Rickettsia sp, including the rickettsia of the Hyalomma asiaticum and Dermacentor nuttalli from Xinjiang in 2011. In this study, the Rickettsia 16S rRNA gene sequence was submitted to the GenBank database and obtained the login number of MG744513. Evolutionary tree of 37 Rickettsia 16S rRNA gene sequences belonging to 24 species from the GenBank database showed, the Rickettsia 16S rRNA gene sequence obtained in this study was closest with Rickettsia raoultii in the evolutionary relationship and clustered in the same small branch, belonging to the speckle thermal gro up rickettsia with the other 15 kinds of rickettsia. Rhipicephalus turanicus and its eggs carried Rickettsia raoultii of spotted fever group Rickettsia. 【Conclusion】 R. raoultii were first found in Rhipicephalus turanicus and its eggs.

Key words: Rickettsia raoultii, eggs, Rhipicephalus turanicus, Xinjiang

[1]    JOHN E. George present and future technologies for tick control. Annals of the New Academy of Sciences, 2000, 916(12): 583-588.
[2]    陈秋语. 新疆伊犁州动物蜱传疾病分子流行病学调查[D]. 兰州: 中国农业科学院兰州兽医研究所, 2016.
CHEN Q Y. The molecular epidemiological investigation of tick-borne pathogens in kazak autonmous prefecture of Ili, Xinjiang, China[D]. Lanzhou: Lanzhou Institute of Veterinary Medicine, Chinese Academy of Agricultural Sciences, 2016 (in Chinese)
[3]    吴辉, 斯清, 朱玉涛, 宋瑞其, 巴音查汗. 新疆四种优势种革蜱超微结构观察. 昆虫学报, 2016, 59(1): 85-92.
WU H, SI Q, ZHU Y T, SONG R Q, BAYIN C H. Observation on the ultrastructure of four dominant Dermacentor species (Acari: Ixodidae) in Xinjiang, northwestern China. Acta Entomologica Sinica, 2016, 59(1): 85-92. (in Chinese)
[4]    GUO D H, ZHANG Y, FU X, GAO Y, LIU Y T, QIU J H, CHANG Q C, WANG C R. Complete mitochondrial genomes of Dermacentor silvarum and comparative analyses with another hard tick Dermacentor nitens. Experimental Parasitology, 2016, 169: 22-27.
[5]    孙响, 张桂林, 刘晓明, 赵焱, 郑重. 新疆和硕地区主要蜱类及蜱媒病原体调查. 中国媒介生物学及控制杂志, 2013, 24(1): 5-7, 10.
SUN X, ZHANG GL, LIU X M, ZHAO Y, ZHEN Z. Investigation of tick species and tick?borne pathogens in Hoxud county of Xinjiang Uyghur Autonomous Region, China. Chinese Journal of Vector Biology and Control, 2013, 24(1): 5-7, 10. (in Chinese)
[6]    陈泽. 中国蜱类的系统分类及两种硬蜱的生物学特性分析. 石家庄: 河北师范大学, 2010.
CHEN Z. Taxonomic and systematic research of Chinese ticks and biological characteristic analysis of two hard tick species. Shijiazhuang: Hebei Normal University, 2010. (in Chinese)
[7]    COSTARD S, MUR L, LUBROTH J, SANCHEZ-VIZCAINO J M, PFEIFFER D U. Epidemiology of African swine fever virus. Virus Research, 2013, 173(1): 191-197.
[8]    刘继荣, 米来, 王平福, 张艳艳, 薄新文. 准噶尔盆地硬蜱区系考察与名录记述. 中国动物传染病学报, 2013, 21(1): 60-65.
LIU J R, MI L, WANG P F, ZHANG Y Y, BO X W. Faunal distribution and checklist of ticks in the junggar basin. Chinese Journal of Animal Infectious Diseases, 2013, 21(1): 60-65. (in Chinese)
[9]    GARGILI A, ESTRADA-PEÑA A, SPENGLER J R, LUKASHEV A, NUTTALL P A, BENTE D A. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Research,  2017, 144: 93-119.
[10]   万康林, 张哲夫, 王宏英, 侯学霞, 张金声. 中国莱姆病螺旋体宿主动物的初步调查研究. 卫生研究, 1999, 28(1): 7-9.
WAN K L, ZHANG Z L, WANG H Y, HOU X X, ZHANG J S. Prel iminary investigation on reservoir hosts of borrelia burgdorferi in China. Journal of Hygiene Research, 1999, 28(1): 7-9. (in Chinese)
[11]   刘钟灵, 赵俊龙, 马丽华, 姚宝安. 寄生于中国水牛 Bubalus Bubalis 的巴贝斯虫一新种(梨形虫目: 巴贝斯科). 畜牧兽医学报, 1997, 28(1): 84-89.
LIU Z L, ZHAO J L, MA L H, YAO B A. Babesia orientalis sp. nov. parasitized in buffalo Bubalus Bubalis in China (Piroplasmida: Babesiidae ). Acta Veterinaria et Zootechnica Sinica, 1997, 28(1): 84-89. (in Chinese)
[12]   徐军, 王安东, 罗丹, 徐新龙, 戴莉, 杨杰, 徐建军, 热依罕古丽, 萨尼叶古丽, 王丽娜, 杜景云, 李志远, 王远志. 中哈边境艾比湖湿地游离蜱斑点热群立克次体的分子流行病学研究. 中国兽医杂志, 2016, 52(8): 18-20.
XU J, WANG A D LUO D, XU X L, DAI L, YANG J, XU J J, RE YHGL, SA NYGL, WANG L N, DU J Y, LI Z Y, WANG Y Z. Molecular epidemiological study of the spotted fever group Rickettsia in free-living ticks in the wetlands of Aibi Lake, China- Kazakhstan border. Chinese Journal of Veterinary Medicine, 2016, 52(8): 18-20. (in Chinese)
[13]   李颖. 我国东北森林景区媒介蜱感染与传播无形体的研究[D]. 苏州: 苏州大学, 2012.
LI Y. Investigation on the infection with Anaplasma phagocytophilum in ticks from forest area in northeast of China[D]. Suzhou: Soochow University, 2012. (in Chinese)
[14]   WANG R, LI N, LIU J, LI T, LIU M, YU Z, LIU J. Symbiont dynamics of the Tibetan tick Haemaphysalis tibetensis (Acari: Ixodidae). Parasites & Vectors, 2017, 25, 10(1): 259.
[15]   BALDRIDGE G D, BURKHARDT N Y, SIMSER J A, KURTTI T J, MUNDERLOH U G. Sequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Applied & Environmental Microbiology, 2004, 70(11): 6628-6636.
[16]   HARRIS E K, VERHOEVE V I, BANAJEE K H, MACALUSO J A, AZAD A F, MACALUSO K R. Comparative vertical transmission of Rickettsia by Dermacentor variabilis and Amblyomma maculatum. Ticks and Tick-borne Diseases,  2017, 8(4): 598-604.
[17]   Beati L, Keirans J E. Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (Acari: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological characters. Journal of Parasitology, 2001, 87(1): 32-48.
[18]   ANSTEAD C A, CHILTON N B. A novel Rickettsia species detected in Vole Ticks (Ixodes angustus) from Western Canada. Applied and Environmental Microbiology, 2013, 79(24): 7583-7589.
[19]   WANG Y Z, MU L M, ZHANG K, YANG M H, ZHANG L, DU J Y, LIU Z Q, LI Y X, LU W H, CHEN C F, WANG Y, CHEN R G, XU J, YUAN L, ZHANG W J, ZUO W Z, SHAO R F. A broad-range survey of ticks from livestock in Northern Xinjiang: changes in tick distribution and the isolation of Borrelia burgdorferi sensu stricto. Parasites & Vectors, 2015, 8(1): 449.
[20]   KIRSTINE KLITGAARD, MARIANN CHRIÉL, ANASTASIA ISBRAND, JENSEN T K, BØDKER R. Identification of Dermacentor reticulatus Ticks crrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerging Infectious Diseases, 2017, 23(12): 2072-2074.
[21]   MEDIANNIKOV O, MATSUMOTO K, SAMOYLENKO I, DRANCOURT M, ROUX V, RYDKINA E, DAVOUST B, TARASEVICH I, BROUQUI P, FOURNIER P E. Rickettsia raoultii sp. nov. , a spotted fever group rickettsia associated with Dermacentor ticks in Europe and Russia. International Journal of Systematic and Evolutionary Microbiology,  2008, 58(7): 1635-1659.
[22]   闻静, 焦丹, 鞠文东, 黄玉明, 王悦, 王建华, 时晓杰, 成洪艳, 程成, 孙毅. 新发蜱传病原体——劳氏立克次体的研究现状. 中国人兽共患病学报, 2015, 31(4): 361-364.
WEN J, JIAO D, JU W D, HUANG Y M, WANG Y, WANG J H, SHI X J, CHENG H Y, CHENG C, SUN Y. Emerging tick-borne pathogen - the research status on Rickettsia raoultii. Chinese Journal of Zoonoses, 2015, 31(4): 361-364. (in Chinese)
[23]   CAO W C, ZHAN L, DE VLAS S J, WEN B H, YANG H, RICHARDUS J H, HABBEMA J D. Molecular detection of spotted fever group Rickettsia in Dermacentor silvarum from a forest area of northeastern China. Journal of Medical Entomology,  2008, 45(4): 741-744.
[24]   WANG Y, LIU Z, YANG J, CHEN Z, LIU J, LI Y, YIN H. Rickettsia raoultii–like Bacteria in Dermacentor spp. Ticks, Tibet, China. Emerging Infectious Diseases, 2012, 18(9): 1531-1533.
[25]   TIAN Z C, LIU G Y, SHEN H, XIE J R, LUO J, TIAN M Y. First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China. Parasites & Vectors,  2012, 5: 191-194.
[26]   LIU D, WANG Y Z, ZHANG H, LIU Z Q, WURELI H Z, WANG S W, TU C C, CHEN C F. First report of Rickettsia raoultii and R. slovaca in Melophagus ovinus, the sheep ked. Parasites & Vectors, 2016, 9(1): 600-605.
[27]   郭刚. 新疆北疆地区鼠类和体外寄生生物病原携带及遗传特征研究[D]. 乌鲁木齐: 新疆医科大学, 2016.
GUO G. Distribution and genetic study on the rodents, ectozoic parasites and associated pathogens in northern region of Xinjiang[D]. Urumqi: Xinjiang Medical University, 2016. (in Chinese)
[28]   WEN J, JIAO D, WANG J H, YAO D H, LIU Z X, ZHAO G, JU W D, CHENG C, LI Y J, SUN Y. Rickettsia raoultii, the predominant Rickettsia found in Dermacentor silvarum ticks in China-Russia border areas. Experimental and Applied Acarology,  2014, 63(4): 579-585.
[29]   JIA N, ZHENG Y, MA L, HUO Q, NI X, JIANG B, CAO W. Human infections with Rickettsia raoultii, China. Emerging Infectious Diseases, 2014, 20(5): 866-868.
[30]   PAROLA P, ROVERY C, ROLAIN J, BROUQUI P, DAVOUST B, RAOULT D. Rickettsia slovaca and R. raoultii in tick-borne rickettsioses. Emerging Infectious Diseases, 2009, 15(7): 1105-1108.
[1] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[2] TANG MingYao,SHEN ChongYang,CHEN ShuHuang,TANG GuangMu,LI QingJun,YAN CuiXia,GENG QingLong,FU GuoHai. Yield of Wheat and Maize and Utilization Efficiency of Nitrogen, Phosphorus and Potassium in Xinjiang [J]. Scientia Agricultura Sinica, 2022, 55(14): 2762-2774.
[3] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[4] MA LingLing,FENG Jia,WANG Jing,QI GuangHai,MA YouBiao,WU ShuGeng,ZHANG HaiJun,QIU Kai. The Changes of Eggshell Quality in the Laying Cycle of Hy-Line Brown Layers [J]. Scientia Agricultura Sinica, 2021, 54(17): 3766-3779.
[5] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
[6] CHEN LiJing,CHEN Zhuo,LI Na,SUN YaWei,LI HongBo,SONG WenWen,ZHANG Yang,YAO Gang. Comparison of the Carcass and Beef Quality Traits with the Expression of the Lipid Metabolism Related Genes Between Xinjiang Brown Cattle and Angus Beef Cattle [J]. Scientia Agricultura Sinica, 2020, 53(22): 4700-4709.
[7] XIANG JiShan,LIU PengPeng,SANG Wei,CUI FengJuan,HAN XinNian,NIE YingBin,KONG DeZhen,ZOU Bo,XU HongJun,MU PeiYuan. Allelic Variations of Pins Genes in Xinjiang Spring Wheat Varieties and Their Influence on Processing Quality of Xinjiang Hand-Stretched Noodles [J]. Scientia Agricultura Sinica, 2020, 53(19): 3857-3866.
[8] JI XuSheng,LI Xu,WAN ZeFu,YAO Xia,ZHU Yan,CHENG Tao. Pixel-Based and Object-Oriented Classification of Jujube and Cotton Based on High Resolution Satellite Imagery over Alear, Xinjiang [J]. Scientia Agricultura Sinica, 2019, 52(6): 997-1008.
[9] LIU Yu, LIU ShengYu, LU JuanFang, YU QingFan, XI WanPeng. Evaluation of Flavor Quality and Antioxidant Capacity of Apple Fruits from Three Xinjiang Red-Flesh Lines [J]. Scientia Agricultura Sinica, 2017, 50(8): 1495-1504.
[10] WEI Yang, DING JianLi, WANG Fei. Optimal Scale Analysis of Soil Salinity Prediction in Oasis Irrigated Area of Arid Land Based on Landsat OLI [J]. Scientia Agricultura Sinica, 2017, 50(15): 2969-2982.
[11] LIU LiYuan, ZHOU JingHang, ZHANG MengHua, LI JinXia, FANG JiQing, TAN ShiXin, WANG AiFang, HUANG XiXia, WANG YaChun. Genetic Effect Analysis of SNPs from 6 Genes on SCS and Milk Production Traits in Xinjiang Brown Cattle [J]. Scientia Agricultura Sinica, 2017, 50(13): 2592-2603.
[12] BAI Yan, MAO ShuChun, TIAN LiWen, LI Li, DONG HeZhong. Advances and Prospects of High-Yielding and Simplified Cotton Cultivation Technology in Xinjiang Cotton-Growing Area [J]. Scientia Agricultura Sinica, 2017, 50(1): 38-50.
[13] TIAN Yue-zhen, FENG Wen, WANG Ya-chun, HUANG Xi-xia,YU Ying. Analysis of Effect Factors on SCC and Milk Production Traits of Xinjiang Brown Cattle [J]. Scientia Agricultura Sinica, 2016, 49(12): 2437-2448.
[14] LIU Juan, LIAO Kang, Mansuer·Nasir, SUN Qi, LIU Huan, JIA Yang. Analysis of Genetic Diversity and Construction of DNA Fingerprint Database of Xinjiang Apricot Varieties (Lines) [J]. Scientia Agricultura Sinica, 2015, 48(4): 748-758.
[15] YAN Du-jian, ZHOU Qi-wu, LU Hao, WU Chen-chen, ZHAO Bao-yu, CAO Dan-dan, MA Feng, LIU Xiao-xue. The Disaster, Ecological Distribution and Control of Poisonous Weeds in Natural Grasslands of Xinjiang Uygur Autonomous Region [J]. Scientia Agricultura Sinica, 2015, 48(3): 565-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!