Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (17): 3620-3628.doi: 10.3864/j.issn.0578-1752.2020.17.018

• RESEARCH NOTES • Previous Articles    

Estimation of Genetic Parameters of Body Weight and Egg Number Traits of Lueyang Black-Boned Chicken

DANG LiPing(),ZHOU WenXin,LIU RuiFang,BAI Yun,WANG ZhePeng()   

  1. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi
  • Received:2019-09-12 Accepted:2020-04-24 Online:2020-09-01 Published:2020-09-11
  • Contact: ZhePeng WANG E-mail:dangliping2017@163.com;wangzhepeng-001@163.com

Abstract:

【Objective】Lueyang black-boned chicken (LBC) is an indigenous breed originating from Shaanxi province of China. The breed has large adult body weight, high meat quality, abundant contents of amino acids in meat and excellent adaptation to the free-range system in the forest. But the breed has poor performance of growth and egg production. We measured body weight (BW) and egg number (EN) of LBC at different ages. Based on these phenotypic data we evaluated genetic parameters of BW and EN traits. The aim of this study is to elucidate effect of genetic factors on these traits and genetic relationship among them, thus forming a theory foundation to breeding programs of LBC.【Method】BWs at 6, 10, 14, 20 weeks of age and first egg of 799 cocks and 804 hens from 71 half-sibling families of generation 1 of LBC breeding population and individual ENs from first egg to 31, 35 and 40 weeks of age were measured. Data lower than 1st quantile-1.5×interquantile range and higher than 3rd quantile + 1.5×interquantile range was deleted prior to statistical analysis. Errors in sex records were corrected. Heritabilities were estimated using a univariate animal model where sex was designed as the fix effect, and additive genetic effect was designed as random effect. Genetic correlations among traits were estimated using a bivariate animal model. Inverse gamma distributions were used as the prior distributions for variance components of random and residual effects. Posterior distributions of variance components were obtained based on 1 000 posterior estimates which were produced using Bayesian algorithm by running 130 000 iterations of which the first 30 000 were discarded in ‘burn-in’ period and the rest was sampled every 100 iterations. Heritabilities and genetic correlations were calculated according to posterior variance components. Phenotypic correlation among traits was calculated using chart.Correlation command in PerformanceAnalytics library of R.【Result】BWs of LBC cocks were (0.56±0.07), (1.07±0.13), (1.56±0.19), (1.97±0.21) kg and BWs of hens were (0.47±0.06), (0.86±0.12), (1.18±0.16), (1.48±0.19) and (1.68±0.23) kg at 6, 10, 14, 20 weeks and first egg. ENs were 31.2±11.5, 42.5±16.7 and 54.7±20.4 at 31, 35 and 40 weeks. Heritabilities of BWs at 6, 10, 14, 20 and first egg that were 0.74, 0.76, 0.63, 0.54 and 0.52 generally decreased with increasing age. Ninety-five percent confidence interval of BW heritabilities ranged from 0.25 to 0.33. Heritabilities of ENs at 31, 35 and 40 weeks were 0.27, 0.25 and 0.26 with 95% confidence interval varying between 0.35 and 0.42. Genetic correlation among 6, 10 and 14 week BWs were moderate to high (0.52-0.68). But BWs at 6 week (0.21-0.52) and first egg (0.21-0.46) showed relatively week genetic relationship with other BWs. Ninety-five percent confidence interval of genetic correlation coefficients among BW traits ranged from 0.13 to 0.34. Genetic correlation coefficients among EN traits approached to 1 with 95% confidence interval ranging from 0.03 to 0.06. BWs and ENs did not show any significant genetic relationship. On the temporal dimension phenotypic correlation coefficients varied between 0.43 and 0.90 (P<0.001) for BW traits and between 0.79 and 0.94 (P<0.001) for EN traits. There was weak (0.023-0.15) positive correlation between BWs at 6-20 weeks and ENs. But the BW at first egg showed weak negative correlation (-0.17-0.14) with ENs. 【Conclusion】This represents the first study specifically estimating genetic parameters for LBC. The data shows that BW traits of LBC are predominately determined by genetic factors. In contrast, ENs are more influenced by environmental factors. Results from genetic correlation analysis elucidated the genetic relationship between early and late traits, and between growth and reproduction in LBC, which provide a solid foundation for early selection and multiple-trait breeding programs. High heritabilities showed by BWs suggest that the phenotypic selection of BWs could significantly increase the growth rate of LBC. However it might be more reasonable to breed pure lines and take advantage of heterosis to increase egg yield of LBS. Genetic independence between BWs and ENs suggests that it is feasible to simultaneously improve two traits in the LBC.

Key words: Lueyang black-boned chicken, body weight, egg number, heritability, genetic correlation

Table 1

Descriptive statistics of body weight at five periods and number of egg at three periods"

性状1)
Trait
性别
Sex
样本量
Sample size
半同胞家系数
Number of half-sibling family
全同胞家系数
Number of full-sibling family
均值
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (%)
P2)
P value
6周龄体重BW6 773 71 332 0.56 kg 0.07 12.5 <0.001
785 0.47 kg 0.06 12.8
10周龄体重BW10 551 53 244 1.07 kg 0.13 12.1 <0.001
558 0.86 kg 0.12 14.0
14周龄体重BW14 566 56 256 1.56 kg 0.19 12.2 <0.001
548 1.18 kg 0.16 13.6
20周龄体重BW20 375 71 315 1.97 kg 0.21 10.7 <0.001
517 1.48 kg 0.19 12.8
开产体重BWFE 512 71 268 1.68 kg 0.23 14.0 N/A
31周龄产蛋数EN31 486 71 266 31.2 枚 11.5 36.8 N/A
35周龄产蛋数EN35 583 71 280 42.5 枚 16.7 39.2 N/A
40周龄产蛋数EN40 601 71 282 54.7 枚 20.4 37.3 N/A

Fig. 1

Distribution of posterior heritabilities of body weight at five ages and number of eggs at three ages The curves in the figures display distribution of 1 000 posterior heritability estimates. Numbers above each figure represent the mode of posterior heritability estimates. Numbers in parentheses show 95% confidence intervals of posterior heritabilities"

Table 2

Genetic and phenotypic correlations among body weight at five ages and number of egg at three ages"

性状
Trait
6周龄体重
BW6
10周龄体重
BW10
14周龄体重
BW14
20周龄体重
BW20
开产体重
BWFE
31周龄产蛋数 EN31 35周龄产蛋数
EN35
40周龄产蛋数 EN40
6周龄体重
BW6
0.87
(<0.001)
0.78
(<0.001)
0.76
(<0.001)
0.43
(<0.001)
0.063
(0.1<)
0.06
(0.1<)
0.048
(0.1<)
10周龄体重
BW10
0.52
(0.44, 0.57)
0.86
(<0.001)
0.84
(<0.001)
0.50
(<0.001)
0.11
(0.01<p<0.05)
0.11
(0.01<p<0.05)
0.054
(0.1<)
14周龄体重
BW14
0.43 (0.35,0.50) 0.64
(0.56,0.70)
0.90
(<0.001)
0.63
(<0.001)
0.017
(>0.1)
0.026
(>0.1)
0.023
(>0.1)
20周龄体重
BW20
0.36
(0.27, 0.45)
0.52
(0.43, 0.62)
0.68
(0.59, 0.74)
0.60
(<0.001)
0.15
(0.001<p<0.01)
0.14
(0.001<p<0.01)
0.11
(0.01<p<0.05)
开产体重
BWFE
0.21
(0.10, 0.32)
0.34
(0.18, 0.47)
0.46
(0.27, 0.60)
0.38
(0.22, 0.56)
-0.17
(<0.001)
-0.16
(<0.001)
-0.14
(<0.001)
31周龄产蛋数
EN31
0.02
(-0.08, 0.17)
0.13
(-0.06, 0.33)
0.12
(-0.18, 0.36)
0.03
(-0.31, 0.29)
-0.17
(-0.40, 0.10)
0.91
(<0.001)
0.79
(<0.001)
35周龄产蛋数
EN35
0.04
(-0.08, 0.18)
0.17
(-0.05, 0.34)
0.14
(-0.13, 0.42)
0.12
(-0.25, 0.34)
-0.22
(-0.45, 0.07)
0.99
(0.96, 0.99)
0.94
(<0.001)
40周龄产蛋数
EN40
0.04
(-0.09, 0.16)
0.13
(-0.09, 0.31)
0.10
(-0.13, 0.38)
-0.0033
(-0.29, 0.26)
-0.24
(-0.44,0.05)
1.00
(0.94, 1.00)
1.00
(0.96, 1.00)
[1] 刘福柱, 刘景星, 魏忠义. 略阳鸡及其杂种的肉用性能和胴体品质研究. 西北农林科技大学学报(自然科学版), 1990(1):66-70.
LIU F Z, LIU J X, WEI Z Y. Study on meat performance and carcass quality of Lueyang chicken and its hybrids. Journal of Northwest University of Agriculture and Forestry Science and Technology (Natural Science Edition), 1990(1):66-70. (in Chinese)
[2] 刘福柱, 魏忠义, 刘景星. 略阳鸡与泰和鸡的肉质比较. 中国畜牧杂志, 1992,28(3):28-30.
LIU F Z, WEI Z Y, LIU J X. Comparison of meat quality between Lueyang chicken and Taihe chicken. Chinese Journal of Animal Science, 1992,28(3):28-30. (in Chinese)
[3] WANG Z P, MENG G H, LI N, Yu M F, LIANG X W, MIN Y N, LIU F Z, GAO Y P. The association of very low-density lipoprotein receptor (VLDLR) haplotypes with egg production indicates VLDLR is a candidate gene for modulating egg production. Genetics & Molecular Biology, 2016,39(3):380-391. DOI: 10.1590/1678-4685- GMB-2015-0206.
doi: 10.1590/1678-4685-GMB-2015-0206 pmid: 27560838
[4] NIKNAFS S, NEJATI-JAVAREMI A, MEHRABANI-YEGANEH H, FATEMI S A. Estimation of genetic parameters for body weight and egg production traits in Mazandaran native chicken. Tropical Animal Health and Production, 2012,44(7):1437-1443. DOI: 10.1007/ s11250-012-0084-6.
doi: 10.1007/s11250-012-0084-6 pmid: 22286525
[5] ADEYINKA I A, ONI O O, NWAGU B I, ADEYINKA F D. Genetic parameter estimates of body weights of naked neck broiler chickens. International Journal of Poultry Science, 2006,5(6):589-592. DOI: 10.3923/ijps.2006.589.592.
doi: 10.3923/ijps.2006.589.592
[6] SANG B D, KONG H S, KIM H K, CHOI C H, KIM S D, CHO Y M, SANG B C, LEE J H, JEON G J, LEE H K. Estimation of genetic parameters for economic traits in Korean native chickens. Asian- Australasian Journal of Animal Sciences, 2006, 19(3): 319-323. https://doi.org/10.5713/ajas.2006.319.
doi: 10.5713/ajas.20.0386 pmid: 32898945
[7] TONGSIRI S, JEYARUBAN M G, VAN DER WERF J. Genetic parameters for egg production traits in purebred and hybrid chicken in a tropical environment. British Poultry Science, 2015,56(6):613-620. doi: 10.1080/00071668.2015.1099614.
doi: 10.1080/00071668.2015.1099614 pmid: 26406931
[8] KAMALI M A, GHORBANI S H, MORADI SHARBABAK M, ZAMIRI M J. Heritabilities and genetic correlations of economic traits in Iranian native fowl and estimated genetic trend and inbreeding coefficients. British Poultry Science, 2007,48(4):443-448. DOI: 10.1080/00071660701505013.
doi: 10.1080/00071660701505013 pmid: 17701497
[9] GHAZIKHANI SHAD A, NEJATI JAVAREMI A, MEHRABANI YEGANEH H. Animal model estimation of genetic parameters for most important economic traits in Iranian native fowls. Pakistan Journal of Biological Sciences, 2007,10(16):2787-2789. DOI: 10.3923/pjbs.2007.2787.2789.
doi: 10.3923/pjbs.2007.2787.2789 pmid: 19070107
[10] DANA N, VANDER WAAIJ E H, VAN ARENDONK J A. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Tropical Animal Health and Production, 2011,43(1):21-28. DOI: 10.1007/s11250-010-9649-4.
doi: 10.1007/s11250-010-9649-4 pmid: 20625931
[11] TONGSIRI S, JEYARUBAN G M, HERMESCH S, VAN DER WERF J H, LI L, CHORMAI T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian- Australasian Journal of Animal Sciences, 2019,32(7):930-938. DOI: 10.5713/ajas.18.0690.
doi: 10.5713/ajas.18.0690 pmid: 30744369
[12] LWELAMIRA J, KIFARO G C, GWAKISA P S. Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Tropical Animal Health and Production, 2009,41(1):51-59. DOI: 10.1007/s11250-008-9153-2.
doi: 10.1007/s11250-008-9153-2 pmid: 19052902
[13] ZEREHDARAN S, VEREIJKEN A J, VAN ARENDONK J, VAN DER WAAIJT E H. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poultry Science, 2004,83(4):521-525. DOI: 10.1093/ps/83.4.521.
doi: 10.1093/ps/83.4.521 pmid: 15109049
[14] GOTO T, TSUDZUKI M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: A review. Journal of Poultry Science, 2017,54:1-12. DOI: 10.2141/ jpsa.0160121.
doi: 10.2141/jpsa.0160121
[15] ONO T, OHARA K, ISHIKAWA A, KOUGUCHI T, NAGANO A J, TAKENOUCHI A, IGAWA T, TSUDZUKI M. Mapping of quantitative trait loci for growth and carcass-related traits in chickens using a restriction-site associated DNA sequencing method. Journal of Poultry Science, 2019,56(3):166-176. DOI: 10.2141/jpsa.0180066.
doi: 10.2141/jpsa.0180066
[16] FURROW R E, CHRISTIANSEN F B, FELDMAN M W. Environment-sensitive epigenetics and the heritability of complex diseases. Genetics, 2011,189(4):1377-87. DOI: 10.1534/genetics. 111.131912.
doi: 10.1534/genetics.111.131912 pmid: 21968193
[17] ZHAO X L, REN W S, SIEGEL P B, LI J, WANG Y, YIN H D, ZHANG Y, LAI S, SHU G, ZHU Q. Meat quality characteristics of chickens as influenced by housing system, sex, and genetic line interactions. Italian Journal of Animal Science, 2018, 17(2): 462-468. https://doi.org/10.1080/1828051X.2017.1363639.
[18] MACKAY T F. Q&A: Genetic analysis of quantitative traits. Journal of Biology, 2009,8(3):23. DOI: 10.1186/jbiol133.
doi: 10.1186/jbiol133 pmid: 19435484
[19] WILSON A J, RÉALE D, CLEMENTS M N, MORRISSEY M M, POSTMA E, WALLING C A, KRUUK L E, NUSSEY D H. An ecologist's guide to the animal model. Journal of Animal Ecology, 2010,79(1):13-26. DOI: 10.1111/j.1365-2656.2009.01639.x.
doi: 10.1111/j.1365-2656.2009.01639.x pmid: 20409158
[20] HADFIELD J D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. Journal of Statistical Software, 2010,33(2):1-22. DOI: 10.18637/jss.v033.i02.
[21] HYNDMAN R J. Computing and graphing highest density regions. The American Statistician, 1996,50(2):120-126. DOI: 10.2307/ 2684423.
[22] ZHAO X L, REN W S, SIEGEL P B, LI J, WANG Y, YIN H D, ZHANG Y, LAI S, SHU G, ZHU Q. Meat quality characteristics of chickens as influenced by housing system, sex, and genetic line interactions. Italian Journal of Animal Science, 2018,17(2):462-468. DOI: 10.1080/1828051X.2017.1363639.
doi: 10.1080/1828051X.2017.1363639
[23] HUSSEIN E O S, SULIMAN G M, AL-OWAIMER A N, AHMED S H, ABUDABOS A M, ABD EL-HACK M E, TAHA A E, SAADELDIN I M, SWELUM A A. Effects of stock, sex, and muscle type on carcass characteristics and meat quality attributes of parent broiler breeders and broiler chickens. Poultry Science, 2019,98(12):6586-6592. DOI: 10.3382/ps/pez464.
doi: 10.3382/ps/pez464 pmid: 31393587
[24] SINGH M K, KUMAR S, SHARMA R K, SINGH S K, SINGH B, SINGH D V. Genetic parameter estimates for juvenile body weight in indigenous Uttara chickens. Indian Journal of Animal Research, 2019,53(4):429-434. DOI: 10.18805/ijar.B-3560.
[25] SAATEI M, DEWI I A P, AKSOY R, KIRMIZIBAYRAK T, ULUTAS Z. Estimation of genetic parameter for weekly live weight in one to one sire and dam pedigree recorded Japanese quail. Montpellier: 7th World Congress on Genetic Applied to Livestock Production, 2002.
[26] ASLAM M L, BASTIAANSEN J W, CROOIJMANS R P, DUCRO B J, VEREIJKEN A, GROENEN M A. Genetic variances, heritabilities and maternal effects on body weight, breast meat yield, meat quality traits and the shape of the growth curve in turkey birds. BMC Genetics, 2011,12(1):14. DOI: 10.1186/1471-2156-12-14.
[27] 郭军, 王克华, 曲亮, 沈曼曼, 窦套存, 胡玉萍. 基于随机回归模型的如皋黄鸡产蛋数遗传参数分析. 西北农林科技大学学报(自然科学版), 2016,44(5):8-12. doi: 10.13207/j.cnki.jnwafu.2016.05.002.
GUO J, WANG K H, QU L, SHEN M M, DOU T C, HU Y P. Random-based genetic parameter analysis of number of egg of Rugao yellow. Journal of Northwest University of Agriculture and Forestry Science and Technology (Natural Science Edition), 2016,44(5):8-12. doi: 10.13207/j.cnki.jnwafu.2016.05.002. (in Chinese)
[28] SZYDŁOWSKI M, SZWACZKOWSKI T. Bayesian segregation analysis of production traits in two strains of laying chickens. Poultry Science, 2001,80(2):125-131. DOI: 10.1093/ps/80.2.125.
doi: 10.1093/ps/80.2.125 pmid: 11232998
[29] 熊化鑫, 张丽萍, 任晋东, 唐军旺, 周树和, 林兴钦, 卢立志. 灵昆鸡产蛋性状与遗传参数分析. 中国农学通报, 2016,32(11):6-10.
XIONG H X, ZHANG L P, REN J D, TANG J H, ZHOU S H, LIN X Q, LU L Z. Egg production trait of Lingkun chicken and genetic parameter analysis. Chinese Agricultural Science Bulletin, 2016,32(11):6-10. (in Chinese)
[30] FERREIRA P B, RORATO P R N, BREDA F C, MICHELOTTI V T, ROSA A P, MACEDO A. Genotypic parameters for egg production in pure breed hens by using random regression model. Ciência Rural, 2017, 47(5): e20141631. http://dx.doi.org/10.1590/0103-8478cr20141631.
[31] DECUYPERE E, HOCKING P M, TONA K, ONAGBESAN O, BRUGGEMAN V, JONES E, CASSY S, RIDEAU N, MÉTAYER S, JEGO Y. Broiler breeder paradox: a project report. World's Poultry Science Journal, https://doi.org/10.1017/ S0043933906001073.
doi: 10.1079/wps19710012 pmid: 4926520
[32] JOHNSON P A, KENT T R, URICK M E, TREVINO L S, GILES J R. Expression of anti-Mullerian hormone in hens selected for different ovulation rates. Reproduction, 2009,137(5):857. DOI: 10.1530/REP- 08-0406.
doi: 10.1530/REP-08-0406 pmid: 19225043
[33] SODINI S M, KEMPER K E, WRAY N R, TRZASKOWSKI M. Comparison of genotypic and phenotypic correlations: Cheverud’s conjecture in humans. Genetics, 2018,209:941-948. DOI: 10.1534/ genetics.117.300630.
doi: 10.1534/genetics.117.300630 pmid: 29739817
[34] CHEVERUD J M. A comparison of genetic and phenotypic correlations. Evolution, 1988,42(5):958-968. doi: 10.1111/j.1558- 5646.1988.tb02514.x.
doi: 10.1111/j.1558-5646.1988.tb02514.x pmid: 28581166
[1] DONG MingMing,ZHAO FanFan,GE JianJun,ZHAO JunLiang,WANG Dan,XU Lei,ZHANG MengHua,ZHONG LiWei,HUANG XiXia,WANG YaChun. Heritability Estimation and Correlation Analysis of Longevity and Milk Yield of Holstein Cattle in Xinjiang Region [J]. Scientia Agricultura Sinica, 2022, 55(21): 4294-4303.
[2] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[3] LI HuiXia,TIAN Gang,WANG YuWen,LIU Xin,LIU Hong. Genetic Correlation Coefficients of Foxtail Millet Traits Between Parents and Hybrids [J]. Scientia Agricultura Sinica, 2020, 53(2): 239-246.
[4] LIU YouChun,LIU WeiSheng,WANG XingDong,YANG YanMin,WEI Xin,SUN Bin,ZHANG Duo,YANG YuChun,LIU Cheng,LI TianZhong. Screening and Inheritance of Fruit Storage-Related Traits Based on Reciprocal Cross of Southern×Northern High Bush Blueberry (Vaccinium Linn) [J]. Scientia Agricultura Sinica, 2020, 53(19): 4045-4056.
[5] ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding [J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
[6] GUO Jun,QU Liang,DOU TaoCun,WANG XingGuo,SHEN ManMan,HU YuPing,WANG KeHua. Using Random Regression Models to Estimate Genetic Parameters on Body Weights in Layers [J]. Scientia Agricultura Sinica, 2020, 53(11): 2297-2304.
[7] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[8] PAN Chen-1, HU Yan-2, BAO Man-Zhu-1, AI Ye-1, HE Yan-Hong-1. Analysis of Genetic Effects of the Cross Combinations of Tagetes patula [J]. Scientia Agricultura Sinica, 2014, 47(12): 2395-2404.
[9] HU Yan, XU Wen-Juan, LIU Hong-Xiang, SONG Wei-Tao, SONG Chi, TAO Zhi-Yun, DAN Yan-Ju, LI Hui-Fang. The Profiles of Related Genes mRNA Expression in Duck Hypothalamus-Pituitary Growth Axis During Early Development [J]. Scientia Agricultura Sinica, 2013, 46(17): 3712-3720.
[10] LIU Jun-Feng, WU Chen, KONG Xiang-Feng, YANG Huan-Sheng, GENG Mei-Mei, YIN Yu-Long, HE Ruo-Gang. Analysis of Chemical Composition in Amniotic Fluid and Allantonic Fluid of Fetus with Different Body Weights in Huanjiang Mini-Pigs [J]. Scientia Agricultura Sinica, 2011, 44(19): 4066-4071.
[11] LIU Xiao-Gang, LI Da-Biao, HOU Xian-Zhi, KAO Gui-Lan, WANG Hai-Rong, YANG Jin-Li, ZHANG Chong-Zhi, XIA Wei. Effect of Undernutrition and Compensation on the Growth of Small Intestinal Mucosa in Lambs [J]. Scientia Agricultura Sinica, 2011, 44(17): 3613-3621.
[12] GAN Zhi-cai,SHANG Lun-xue,LIU Yong,YU Yong-xiong
. Correlation Analysis of Agronomic Characters and Heritability of Saponins Content in Medicago sativa L.
[J]. Scientia Agricultura Sinica, 2010, 43(2): 259-265 .
[13] ZHANG Min-zhao,ZONG Yu,WANG Xue-ying,CAI Xue,ZHANG Zhi-yong
. Study on the Death-Feigning Behavior of the Harmful Mollusk, Cathaica fasciola (Draparnaud 1801)
[J]. Scientia Agricultura Sinica, 2009, 42(11): 3914-3921 .
[14]

.

Study on the Potential of Duck Hepatitis Virus (DHV-Ⅰ) to Stimulate the Body Weight Gain and Body Length Gain and the Effects of Silymarin on Them in Younger Duck

[J]. Scientia Agricultura Sinica, 2009, 42(1): 304-311 .
[15] . The Studies on the Genetic Difference of Nitrogen Utilization Efficiency in Winter Wheat Varieties [J]. Scientia Agricultura Sinica, 2007, 40(3): 472-477 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!