Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (16): 3181-3190.doi: 10.3864/j.issn.0578-1752.2018.16.014

;

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Regulation of Biological Clock in Ovulation-Laying of Laying Hens

WANG XiaoJuan, LIU Lei, JIAO HongChao, ZHAO JingPeng, LIN Hai   

  1. Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science, Shandong Agricultural University, Tai’an 271018
  • Received:2018-04-04 Online:2018-08-16 Published:2018-08-16

Abstract: The endogenous circadian rhythm enables the organisms to predict the changes of environmental cycle, which maintains consistency between body metabolism and the external environment. During the maturation of follicular, ovulation, and the formation of egg in birds, the coincidence of the different physiological processes in time shows the unity of the body itself and the coordination between the body and the environment. Biological clock participates in a series of behavior and physiological processes such as nutrition intake, the production of endocrine hormones and energy metabolism. In the present review, the role of biological clock in neuroendocrine, energy intake and energy metabolism has been discussed, from the points of light factor and nutrition factor, to reveal the potential regulating mechanism underlying ovulation and egg laying of hens. (1) Light signal acts on hypothalamic- pituitary-gonadal axis (HPG) by regulating the biological clock to influence reproductive activities. Under the stimulation of light, the central clocks in suprachiasmatic nucleus (SCN) and pineal act on hypothalamus, and make it to release gonadotropin releasing hormone (GnRH) and gonadotropin inhibitory hormones (GnIH) periodically. GnRH and GnIH then act on pituitary, and make it to release gonadotropin hormone, that is luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Periphery clocks in ovary receive the central synchronization signal to maintain the biological rhythm, thereby regulating the maturation of follicles and ovulation. (2) In addition to being regulated by the neuroendocrine system of HPG axis, the ovulation-egg production process of laying hens is also affected by the body's energy metabolism. The central and peripheral clock genes regulate the appetite regulation system and thus affect energy intake; Biological clock can regulate the expression of key enzymes in the process of metabolism, integrate the nuclear receptors and nutrition signaling proteins, regulate metabolism sensors and metabolites, affect gut microbes to regulate energy metabolism, and affect the synthesis, transport and deposition of yolk precursor; Melatonin secreted by bird's pineal can regulate calcium metabolism rhythmically by mediating the secretion of calcitonin, parathyroid hormone (PTH) and estrogen, and influence the formation of egg shell. The time and the behavior of energy intake, the body energy metabolism and energy status can also modulate biological clock, through some appetite regulation and energy metabolism related cytokines such as AMP-activated protein kinase (AMPK), and peroxisome proliferator-activated receptors α (PPARα). There are interactions between nutrient, biological clock and energy metabolism, which accommodate organisms with the surrounding and optimize the energy utilization. Therefore, by adjusting the time of eating and the composition of feed (such as the energy level of feed and calcium level), energy metabolism can be changed to regulate the function of the biological clock. In conclusion, it will provide a new perspective for researching regulation mechanism of egg laying, if we make an integrated study on environment factor (light management) and nutrition (feeding time and feed formula) in which biological clock linked external factors and internal energy metabolism, that is, biological clock can both response to environmental stimuli, and regulate the body's energy metabolism process, to optimize the various physiological functions.

Key words: biological clock, laying hen, egg laying, light, energy

[1]    倪银华, 吴涛, 王露, 夏李群, 张丹萍, 傅正伟. 肾上腺糖皮质激素与生物钟基因表达调控的相关研究进展. 遗传, 2008, 30(2): 135-141.
NI Y H, WU T, WANG L, XIA L Q, ZHANG D P, FU Z W. Advances in interactions between glucocorticoid hormones and circadian gene expression. Hereditas (Beijing),2008, 30(2): 135-141. (in Chinese)
[2]    WU T, JIN Y, NI Y, ZHANG D, KATO H, FU Z. Effects of light cues on re-entrainment of the food-dominated peripheral clocks in mammals. Gene, 2008, 419(1-2): 27-34.
[3]    WU T, JIN Y, KATO H, FU Z. Light and food signals cooperate to entrain the rat pineal circadian system. Journal of Neuroscience Research, 2008, 86(14): 3246-3255.
[4]    WU T, DONG Y, YANG Z, KATO H, NI Y, FU Z. Differential resetting process of circadian gene expression in rat pineal glands after the reversal of the light/dark cycle via a 24 h light or dark period transition. Chronobiology International, 2009, 26(5): 793-807.
[5]    DONG Y, WU T, NI Y H, KATO H, FU Z W. Effect of fasting on the peripheral circadian gene expression in rats. Biological Rhythm Research, 2010, 41(1): 41-47. 
[6]    MUKHERJI A, KOBIITA A, CHAMBON P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proceedings of the National Academy of Sciences, 2015, 112(48): E6683- E6690.
[7]    IKEDA Y, SASAKI H, OHTSU T, SHIRAISHI T, TAHARA Y, SHIBATA S. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods. Chronobiology International, 2015, 32(2): 195-210.
[8]    CHAIX A, ZARRINPAR A, MIU P, PANDA S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metabolism, 2014, 20(6): 991-1005.
[9]    LARRONDO L F, OLIVARES-YAÑEZ C, BAKER C L, LOROS J J, DUNLAP J C. Circadian rhythms. Decoupling circadian clock protein turnover from circadian period determination. Science, 2015, 347(6221): 1257277.
[10]   GWINNER E, BRANDSTATTER R. Complex bird clocks. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2001, 356(1415): 1801-1810.
[11]   UNDERWOOD H, STEELE C T, ZIVKOVIC B. Circadian organization and the role of the pineal in birds. Microscopy Research and Technique, 2001, 53(1): 48-62.
[12]   CASSONE V M. Avian Circadian Organization: A Chorus of Clocks. Frontiers in Neuroendocrinology, 2014, 35(1): 76-88.
[13]   RUSSO K A. Circadian and Metabolic Influences on the Reproductive Axis. 2016.
[14]   SMITH M J JIENNES L, WISE P M. Localization of the VIP2 receptor protein on GnRH neurons in the female rat. Endocrinology, 2000, 141(11): 4317-4320.
[15]   KYRIACOU C P. The molecular ethology of the period gene in Drosophila. Behavior Genetics, 1990, 20(2): 191-211.
[16]   BERSON D M, DUNN F A, TAKAO M. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002, 295(5557): 1070-1073.
[17]   SELLIX M T, MENAKER M. Circadian clocks in the ovary. Trends in Endocrinology & Metabolism, 2010, 21(10): 628-636.
[18]   张志超. 时钟基因在母鸡生殖系统中的节律性表达及颗粒细胞中时控基因的筛选[D]. 四川: 四川农业大学, 2016.
ZHANG Z C. A study of circadian clock gene rhythmic expression in hens’ reproductive system and the screening of clock controlled genes in granulose cells [D]. Sichuan: Sichuan Agricultural University, 2016. (in Chinese)
[19]   CHEN H, ZHAO L, CHU G, KITO G, YAMAUCHI N, SHIGEYOSHI Y, HASHIMOTO S, HATTORI M A. FSH induces the development of circadian clockwork in rat granulosa cells via a gap junction protein Cx43-dependent pathway. American Journal of Physiology Endocrinology and Metabolism, 2013, 304(6): E566-E575.
[20]   CHU G, MISAWA I, CHEN H, YAMAUCHI N, SHIGEYOSHI Y, HASHIMOTO S, HATTORI M A. Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation. American Journal of Physiology Endocrinology and Metabolism, 2012, 302(6): E645-E653.
[21]   TISCHKAU S A, HOWELL R E, HICKOK J R, KRAGER S L, BAHR J M. The luteinizing hormone surge regulates circadian clock gene expression in the chicken ovary. Chronobiology International, 2011, 28(1): 10-20.
[22]   OLANREWAJU H A, THAXTON J P, DOZIER W A, PURSWELL J. ROUSH W B, BRANTON S L. A review of lighting programs for broiler production. International Journal of Poultry Science, 2006, 5(4): 301-308.
[23]   杨利国. 动物繁殖学. 北京: 中国农业出版社, 2003.
YANG L G. Animal Reproduction. Beijing: China Agriculture Press, 2003. (in Chinese)
[24]   HAHN T P, BALL G F. Changes in brain GnRH associated with photorefractoriness in house sparrows (Passer domesticus). General and Comparative Endocrinology, 1995, 99(3): 349-363.
[25]   RANI S, SINGH S, MISRA M, KUMAR V. The influence of light wavelength on reproductive photorefractoriness in migratory blackheaded bunting (Emberiza melanocephala). Reproduction Nutrition Development, 2001, 41(4): 277-284.
[26]   JOHNSTON J D. Photoperiodic regulation of prolactin secretion: changes in intra-pituitary signalling and lactotroph heterogeneity. Journal of Endocrinology, 2004. 180(3): 351-356.
[27]   SHARP P J, BLACHE D. A neuroendocrine model for prolactin as the key mediator of seasonal breeding in birds under long- and short-day photoperiods. Canadian Journal of Physiology and Pharmacology, 2003, 81(4): 350-358.
[28]   WANG X J, LI Y, SONG Q Q, GUO Y Y, JIAO H C, SONG Z G, LIN H. Corticosterone regulation of ovarian follicular development is dependent on the energy status of laying hens. The Journal of Lipid Research, 2013, 54(7): 1860-1876.
[29]   TAO Z, SONG W, ZHU C, XU W, LIU H, ZHANG S, HUIFANG L. Comparative transcriptomic analysis of high and low egg-producing duck ovaries. Poultry Science, 2017, 96(12): 4378-4388.
[30]   ZHANG Z C, WANG Y G, LI L, YIN H D, LI D Y, WANG Y, ZHAO X L, LIU Y P, ZHU Q. Circadian clock genes are rhythmically expressed in specific segments of the hen oviduct. Poultry Science, 2016, 95(7): 1653-1659.
[31]   BUYSE J, ADELSOHN D S, DECUYPERE E, SCANES C G. Diurnal-nocturnal changes in food intake, gut storage of ingesta, food transit time and metabolism in growing broiler chickens: a model for temporal control of energy balance. British Poultry Science, 1993, 34(4): 699-709.
[32]   VAN DER POL C W, MOLENAAR R, BUITINK C J, VAN ROOVERT-REIJRINK I A, MAATJENS C M, VAN DEN BRAND H, KEMP B. Lighting schedule and dimming period in early life: consequences for broiler chicken leg bone development. Poultry Science, 2015, 94(12): 2980-2988.
[33]   FICK L J, FICK G H, BELSHAM D D. Rhythmic clock and neuropeptide gene expression in hypothalamic mHypoE-44 neurons. Molecular and Cellular Endocrinology, 2010, 323(2): 298-306.
[34]   KETTNER N M, MAYO S A, HUA J, LEE C, MOORE D D, FU L. Circadian dysfunction induces leptin resistance in mice. Cell Metabolism, 2015, 22(3): 448-459.
[35]   YOSHIDA K, MCCORMACK S, ESPA R A, CROCKER A, SCAMMELL T E. Afferents to the orexin neurons of the rat brain. Journal of Comparative Neurology, 2006, 494(5): 845-861.
[36]   ESTABROOKE I V, MCCARTHY M T, KO E, CHOU TC, CHEMELLI R M, YANAGISAWA M, SAPER C B, SCAMMELL T E. Fos expression in orexin neurons varies with behavioral state. Journal of Neuroscience, 2001, 21(5): 1656-1662.
[37]   KALSBEEK A, YI C X, LA FLEUR S E, FLIERS E. The hypothalamic clock and its control of glucose homeostasis. Trends in Endocrinology and Metabolism, 2010, 21(7): 402-410.
[38]   FROY O. Metabolism and circadian rhythms-implications for obesity. Endocrine Reviews, 2010, 31(1): 1-24.
[39]   YAN A, ZHANG L, TANG Z, ZHANG Y, QIN C, LI B, LI W, LIN H. Orange-spotted grouper (Epinephelus coioides) orexin: Molecular cloning, tissue expression, ontogeny, daily rhythm and regulation of NPY gene expression. Peptides, 2011, 32(7):1363-1370.
[40]   KALSBEEK A, PALM I F, LA FLEUR S E, SCHEER F A, PERREAU-LENZ S, RUITER M, KREIER F, CAILOTTO C, BUIJS R M. SCN outputs and the hypothalamic balance of life. Journal of Biological Rhythms, 2006, 21(6): 458-469.
[41]   KENNAWAY D J, VARCOE T J, VOULTSIOS A, BODEN M J. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS One, 2013, 8(6): e65255.
[42]   ADAMANTIDIS A, DE LECEA L. The hypocretins as sensors for metabolism and arousal. The Journal of Physiology, 2009, 587(Pt 1): 33-40.
[43]   SAPER C B, CHOU T C, ELMQUIST J K. The need to feed: homeostatic and hedonic control of eating. Neuron, 2002, 36(2): 199-211.
[44]   ASHER G, SASSONE-CORSI P. Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock. Cell, 2015, 161(1): 84-92.
[45]   VETTER C, SCHEER F A J L.Circadian Biology: Uncoupling Human Body Clocks by Food Timing. Current Biology, 2017, 27(13): R656-R658.
[46]   WEHRENS S M T, CHRISTOU S, ISHERWOOD C, MIDDLETON B, GIBBS M A, ARCHER S N, SJENE D J, JOHNSTON J D. Meal timing regulates the human circadian system. Current Biology, 2017, 27(12): 1768-1775.
[47]   ZVONIC S, PTITSYN A A, CONRAD S A, SCOTT L K, FLOYD Z E, KILROY G, WU X, GOH B C, MYNATT R L, GIMBLE J M. Characterization of peripheral circadian clocks in adipose tissues. Diabetes, 2006, 55(4): 962-970.
[48]   BRAY M S, RATCLIFFE W F, GRENETT M H, BREWER R A, GAMBLE K L, YOUNG M E. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. International Journal of Obesity, 2013, 37(6): 843-852.
[49]   VOLLMERS C, GILL S, DITACCHIO L, PULIVARTHY S R, LE H D, PANDA S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proceedings of the National Academy of Sciences, 2009, 106(50): 21453-21458.
[50]   NIELSEN B L, LITHERLAND M, NODDEGAARD F. Effects of qualitative and quantitative feed restriction on the activity of broiler chickens. Applied Animal Behaviour Science, 2003. 83(4): 309-323.
[51]   LAMIA K A, SACHDEVA U M, DITACCHIO L, WILLIAMS E C, ALVAREZ J G, EGAN D F, VASQUEZ D S, JUGUILON H, PANDA S, SHAW R J, THOMPSON C B, EVANS R M. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 2009, 326(5951): 437-440.
[52]   ANDO H, KUMAZAKI M, MOTOSUGI Y, USHIJIMA K, MAEKAWA T, ISHIKAWA E, FUJIMURA A. Impairment of peripheral circadian clocks precedes metabolic abnormalities in ob/ob mice. Endocrinology, 2011, 152(4): 1347-1354.
[53]   CATON P W, KIESWICH J, YAQOOB M M, HOLNESS M J, SUGDEN M C. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes, Obesity and Metabolism, 2011, 13(12): 1097-1104.
[54]   MCCARTHY J J, ANDREWS J L, MCDEARMON E L, CAMPBELL K S, BARBER B K, MILLER B H, WALKER J R, HOGENESCH J B, TAKAHASHI J S, ESSER K A. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiological Genomics, 2007, 31(1): 86-95.
[55]   KALSBEEK A, RUITER M, LA FLEUR S E, CAILOTTO C, KREIER F, BUIJS R M. The hypothalamic clock and its control of glucose homeostasis. Progress in Brain Research, 2006, 153: 283-307.
[56]   FROY O. The relationship between nutrition and circadian rhythms in mammals. Frontiers in Neuroendocrinology, 2007, 28(2-3): 61-71.
[57]   YANG X, DOWNES M, YU RT, BOOKOUT AL, HE W, STRAUME M, MANGELSDORF D J, EVANS R M. Nuclear receptor expression links the circadian clock to metabolism. Cell, 2006, 126(4): 801-810.
[58]   HERICHOVA I, ZEMAN M, JURANI M, LAMOS?OVA D. Daily rhythms of melatonin and selected biochemical parameters in plasma of Japanese quail. Avian and Poultry Biology Reviews, 2004, 15(3-4): 205-210.
[59]   SHOSTAK A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes, 2013, 62(7): 2195-2203.
[60]   TUREK F W, JOSHU C, KOHSAKA A, LIN E, IVANOVA G, MCDEARMON E, LAPOSKY A, LOSEE-OLSON S, EASTON A, JENSEN D R, ECKEL R H, TAKAHASHI J S, BASS J. Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 2005, 308(5724): 1043-1045.
[61]   PASCHOS G K, IBRAHIM S, SONG W L, KUNIEDA T, GRANT G, REYES T M, BRADFIELD C A, VAUGHAN C H, EIDEN M, MASOODI M, GRIFFIN J L, WANG F, LAWSON J A, FITZGERALD G A. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nature Medicine, 2012, 18(12): 1768-1777.
[62]   SHIMBA S, ISHII N, OHTA Y, OHNO T, WATABE Y, HAYASHI M, WADA T, AOYAGI T, TEZUKA M. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proceedings of the National Academy of Sciences, 2005, 102(34): 12071-12076.
[63]   LAU P, NIXON S J, PARTON R G, MUSCAT G E. RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: Caveolin-3 and CPT-1 are direct targets of ROR. The Journal of Biological Chemistry, 2004, 279(35): 36828-36840.
[64]   GARBARINO-PICO E, CARPENTIERI A R, CASTAGNET P I, PASQUARE S J, GIUSTO N M, CAPUTTO B L, GUIDO M E. Synthesis of retinal ganglion cell phospholipids is under control of an endogenous circadian clock: daily variations in phospholipid- synthesizing enzyme activities. Journal of Neuroscience Research, 2004, 76(5): 642-652.
[65]   HATORI M, HIROTA T, IITSUKA M, KURABAYASHI N, HARAGUCHI S, KOKAME K, SATO R, NAKAI A, MIYATA T, TSUTSUI K, FUKADA Y. Light-dependent and circadian clock-regulated activation of sterol regulatory element-binding protein, X-box-binding protein 1, and heat shock factor pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(12): 4864-4869.
[66]   DEMIERRE M F, HIGGINS P D R, GRUBER S B, HAWK E, LIPPMAN S M. Statins and cancer prevention. Nature Reviews Cancer, 2005, 5(12): 930-942.
[67]   CRETENET G, LE CLECH M, GACHON F. Circadian clock-coordinated 12 hr period rhythmic activation of the IRE1α pathway controls lipid metabolism in mouse liver. Cell Metabolism, 2010, 11(1): 47-57.
[68]   CANAPLE L, RAMBAUD J, DKHISSI-BENYAHYA O, RAYET B, TAN N S, MICHALIK L, DELAUNAY F, WAHLI W, LAUDET V. Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor α defines a novel positive feedback loop in the rodent liver circadian clock. Journal of Molecular Endocrinology, 2006, 20(8): 1715-1727.
[69]   SCHMUTZ I, RIPPERGER JA, BAERISWYL-AEBISCHER S, ALBRECHT U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes & Development, 2010, 24(4): 345-357.
[70]   COSTA MJ, SO A Y, KAASIK K, KRUEGER K C, PILLSBURY M L, FU Y H, PTACEK L J, YAMAMOTO K R, FELDMAN B J. Circadian rhythm gene period 3 is an inhibitor of the adipocyte cell fate. The Journal of Biological Chemistry, 2011, 286(11): 9063-9070.
[71]   MINAMI Y, KASUKAWA T, KAKAZU Y, IIGO M, SUGIMOTO M, IKEDA S, YASUI A, VAN DER HORST G T, SOGA T, UEDA H R. Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences, 2009, 106(24): 9890-9895.
[72]   UM J H, PENDERGAST J S, SPRINGER D A, FORETZ M, VIOLLET B, BROWN A, KIM M K, YAMAZAKI S, CHUNG J H. AMPK regulates circadian rhythms in a tissue- and isoform-specific manner. PLoS One, 2011, 6(3): e18450.
[73]   RODGERS J T, LERIN C, HAAS W, GYGI S P, SPIEGELMAN B M, PUIGSERVER P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005, 434(7029): 113-118.
[74]   UM J H, YANG S, YAMAZAKI S, KANG H, VIOLLET B, FORETZ M, CHUNG J H. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iε (CKIε)-dependent degradation of clock protein mPer2. The Journal of Biological Chemistry, 2007, 282(29): 20794-20798.
[75]   NAKAHATA Y, SAHAR S, ASTARITA G, KALUZOVA M, SASSONE-CORSI P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 2009, 324(5927): 654-657.
[76]   RAMSEY K M, YOSHINO J, BRACE C S, ABRASSART D, KOBAYASHI Y, MARCHEVA B, HONG H K, CHONG J L, BUHR E D, LEE C, TAKAHASHI J S, IMAI S, BASS J. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 2009, 324(5927): 651-654.
[77]   O'NEILL J S, MAYWOOD E S, CHESHAM J E, TAKAHASHI J S, HASTINGS M H. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science, 2008, 320(5878): 949-953.
[78]   SAKKOU M, WIEDMER P, ANLAG K, HAMM A, SEUNTJENS E, ETTWILLER L, TSCHÖP M H, TREIER M. A role for brain-specific homeobox factor Bsx in the control of hyperphagia and locomotory behavior. Cell Metabolism, 2007, 5(6): 450-463.
[79]   KOHSAKA A, LAPOSKY A D, RAMSEY K M, ESTRADA C, JOSHU C, KOBAYASHI Y, TUREK F W, BASS J. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism, 2007, 6(5): 414-421.
[80]   KUDO T, NAKAYAMA E, SUZUKI S, AKIYAMA M, SHIBATA S. Cholesterol diet enhances daily rhythm of Pai-1 mRNA in the mouse liver. American Journal of Physiology. Endocrinology and metabolism, 2004, 287(4): E644- E651.
[81]   NIELSEN B L, LITHERLAND M, NODDEGAARD F. Effects of qualitative and quantitative feed restriction on the activity of broiler chickens. Applied Animal Behaviour Science, 2003. 83(4): 309-323.
[82]   ASHER G, SASSONECORSI P. Time for Food: The Intimate interplay between nutrition, metabolism, and the circadian clock. Cell, 2015, 161 (1): 84-92.
[83]   SUZUKI T. Regulation of intestinal epithelial permeability by tight junctions. Cellular and Molecular Life Sciences, 2013, 70 (4): 631-659.
[84]   LIANG X, BUSHMAN F D, FITZGERALD G A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (33): 10479-10484.
[85]   THAISS C A, ZEEVI D, LEVY M, SEGAL E, ELINAV E. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes, 2015, 6(2): 137-142.
[86]   VOIGT R M, FORSYTH C B, GREEN S J, MUTLU E, ENGEN P, VITATERNA M H, TUREK F W, KESHAVARZIAN A. Circadian disorganization alters intestinal microbiota. PloS One, 2014, 9(5): e97500.
[87]   TRINDER M, BISANZ J E, BURTON J P, REID G. Bacteria Need “Sleep” too?: microbiome circadian rhythmicity, metabolic disease, and beyond. University of Toronto Medical Journal, 2015, 92(3): 52-55.
[88]   LIANG X, BUSHMAN F D, FITZGERALD G A. Time in motion: the molecular clock meets the microbiome. Cell, 2014, 159(3): 469-470.
[89]   ROSSELOT A E, HONG C I, MOORE S R. Rhythm and bugs: Circadian clocks, gut microbiota, and enteric infections. Current Opinion in Gastroenterology, 2016, 32(1): 7-11.
[90]   THAISS C A, ZEEVI D, LEVY M, ZILBERMAN-SCHAPIRA G, SUEZ J, TENGELER A C, ABRAMSON L, KATZ M N, KOREM T, ZMORA N, KUPERMAN Y, BITON I, GILAD S, HARMELIN A, SHAPIRO H, HALPERN Z, SEGAL E, ELINAV E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 2014, 159(3): 514-529.
[91]   ZARRINPAR A, CHAIX A, YOOSEPH S, PANDA S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metabolism, 2014, 20(6): 1006-1017.
[92]   THAISS C A, LEVY M, KOREM T, DOHNALOVA L, SHAPIRO H, JAITIN D A, DAVID E, WINTER D R, GURY-BENARI M, TATIROVSKY E, TUGANBAEV T, FEDERICI S, ZMORA N, ZEEVI D, DORI-BACHASH M, PEVSNER-FISCHER M, KARTVELISHVILY E, BRANDIS A, HARMELIN A, SHIBOLET O, HALPERN Z, HONDA K, AMIT I, SEGAL E, ELINAV E. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell, 2016, 167(6): 1495-1510.
[93]   MONTAGNER A, KORECKA A, POLIZZI A, LIPPI Y, BLUM Y, CANLET C, TREMBLAY-FRANCO M, GAUTIER-STEIN A, BURCELIN R, YEN Y C, JE H S, AL-ASMAKH M, MITHIEUX G, ARULAMPALAM V, LAGARRIGUE S, GUILLOU H, PETTERSSON S, WAHLI W. Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Scientific Reports, 2016. 6: 20127.
[94]   LEONE V, GIBBONS S M, MARTINEZ K, HUTCHISON A L, HUANG E Y, CHAM C M, PIERRE J F, HENEGHAN A F, NADIMPALLI A, HUBERT N, ZALE E, WANG Y, HUANG Y, THERIAULT B, DINNER A R, MUSCH M W, KUDSK K A, PRENDERGAST B J, GILBERT J A, CHANG E B. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host & Microbe, 2015, 17(5): 681-689.
[95]   LADIZESKY M G,BOGGIO V,ALBORNOZ L E, CASTRILLON P O, MAUTALEN C, CARDINALI D P. Melatonin increases oestradiol-induced bone formation in ovariectomized rats. Journal of Pineal Research, 2003, 34(2): 143-151.
[96]   CONTI A, CONCONI S, HERTENS E, SKWARLO-SONTA K, MARKOWSKA M, MAESTRONI J M. Evidence for melatonin synthesis in mouse and human bone marrow cell. Journal of Pineal Research, 2000, 28(4): 193-202.
[97]   CUTANDO A,ANEIROS-FERNANDEZ J, LOPEZ-VALVERDE A, ARIAS-SANTIAGO S, ANEIROS-CACHAZA J, REITER R J. A new perspective in Oral health: potential importance and actions of melatonin receptors MT1,MT2,MT3,and RZR/ROR in the oral cavity. Archives of Oral Biology, 2011, 56(10): 944-950.
[98]   TAYLOR A C, HORVAT-GORDON M, MOORE A, BARTELL P A. The effects of melatonin on the physical properties of bones and egg shells in the laying hen. Plos one, 2013, 8(2): e55663.
[99]   ARYA A K, SACHDEVA N. Parathyroid Hormone (PTH) Assays and Applications to Bone Disease: Overview on Methodology. Part of the Biomarkers in Disease: Methods, Discoveries and Applications book series (BDMDA), 2017: 127-154.
[100] FRASER W D, AHMAD A M, VORA J P. The physiology of the circadian rhythm of parathyroid hormone and its potential as a treatment for osteoporosis. Current Opinion in Nephrology and Hypertension, 2004, 13(4): 437-444.
[101]刘俊美. 蛋种鸡夜间补光的效果. 中国禽业导刊, 2006, 23(22): 30.
LIU J M. The effect of the night replenishing on the egg-laying breeder. Guide to Chinese Poultry, 2006, 23(22): 30. (in Chinese)
[1] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[2] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[3] FAN YanGen,WANG Yu,LIU FuHao,ZHAO XiuXiu,XIANG QinZeng,ZHANG LiXia. Screening and Verification of CsHIPP26.1 Interaction Protein in Tea Plant [J]. Scientia Agricultura Sinica, 2022, 55(8): 1630-1641.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[8] XU FangFu,BIAN JinLong,HAN Chao,CHEN ZhiQing,LIU GuoDong,XING ZhiPeng,HU YaJie,WEI HaiYan,ZHANG HongCheng. Temperature and Light Adaptability of High-Quality Japonica Rice and Optimum Seeding Date in Huaibei Region [J]. Scientia Agricultura Sinica, 2021, 54(7): 1365-1381.
[9] ZHU TieZhong,KE Jian,YAO Bo,CHEN TingTing,HE HaiBing,YOU CuiCui,ZHU DeQuan,WU LiQuan. Super-High Yield Characteristics of Mechanically Transplanting Double- Cropping Early Rice in the Northern Margin Area of Yangtze River [J]. Scientia Agricultura Sinica, 2021, 54(7): 1553-1564.
[10] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[11] FAN WeiGuo,PAN XueJun,HE ChunLi,CHEN Hong,ZHOU YuJia. Accumulation of Sugar and Flavonoids as Well as Their Association with Changes of Light Intensity During Fruit Development of Rosa roxburghii [J]. Scientia Agricultura Sinica, 2021, 54(24): 5277-5289.
[12] LIU YuQing,YAN GaoWei,ZHANG Tong,LAN JinPing,GUO YaLu,LI LiYun,LIU GuoZhen,DOU ShiJuan. Overexpression of OsPR1A Enhanced Xa21-Mediated Resistance to Rice Bacterial Blight [J]. Scientia Agricultura Sinica, 2021, 54(23): 4933-4942.
[13] YAO Qing,YAO Bo,LÜ Jun,TANG Jian,FENG Jin,ZHU XuHua. Research on Fine-Grained Image Recognition of Agricultural Light- Trap Pests Based on Bilinear Attention Network [J]. Scientia Agricultura Sinica, 2021, 54(21): 4562-4572.
[14] TAO Bu, QI YongZhi, QU Yun, CAO ZhiYan, ZHAO XuSheng, ZHEN WenChao. Construction and Verification of Fusarium Head Blight Prediction Model in Haihe Plain Based on Boosted Regression Tree [J]. Scientia Agricultura Sinica, 2021, 54(18): 3860-3870.
[15] WEI YaNan,PENG Hui,YANG Qian,ZHENG XiaoYuan,TANG ZhongQi,ZHU Yan,XIE JianMing,BI Yang. Effects of Dark and Light Treatments on Wound Healing of Potato Tubers [J]. Scientia Agricultura Sinica, 2021, 54(12): 2619-2629.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!