Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 959-968.doi: 10.3864/j.issn.0578-1752.2021.05.008

• PLANT PROTECTION • Previous Articles     Next Articles

Comparison of Life Tables for Experimental Populations of Individual- Rearing and Group-Rearing Frankliniella occidentalis

XinHua LI1(),DengJie WANG2,ZhongRen LEI1,HaiHong WANG1()   

  1. 1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    2Mianyang Academy of Agricultural Sciences, Mianyang 621000, Sichuan
  • Received:2020-05-19 Accepted:2020-06-28 Online:2021-03-01 Published:2021-03-09
  • Contact: HaiHong WANG E-mail:15733275161@163.com;wanghaihong2020@sina.com

Abstract:

【Objective】The method of individual-rearing (IR) was often used to study the life table of western flower thrip (Frankliniella occidentalis), and the results can be used to predict the population occurrence under natural conditions in the field. However, F. occidentalis often occur in groups rather than single head under natural conditions. The objective of this study to compare the life table parameters of individual-rearing and group-rearing (GR) F. occidentalis, and to explore the accuracy of population occurrence dynamics under natural conditions based on the data from individual-rearing and group-rearing.【Method】The age-stage, two-sex life table of the experimental population of F. occidentalis reared on bean pod was constructed by individual-rearing and group-rearing, respectively, and the life history and population parameters of F. occidentalis were compared under the two conditions. The means and standard errors of population growth parameters were calculated using the bootstrap method. The Mann-Whitney test (U test) was used to evaluate the differences in the population parameter, development period, and fecundity of individual-rearing and group-rearing F. occidentalis.【Result】Individual-rearing and group-rearing had significant effects on nymph stage, pupal stage, male longevity, total preoviposition period, per female oviposition, pupal weigh and adult body length, but not on egg stage, adult stage, adult preoviposition period, female longevity, pupal length, pupal width, adult width. The nymph stage (4.49 d), pupal stage (4.03 d), male longevity (22.82 d), total preoviposition period (11.37 d) of individual-rearing F. occidentalis were significantly longer than group-rearing ones (3.05, 3.32, 18.64 and 10.00 d, respectively). The pupal weigh (0.03 mg) of individual-rearing F. occidentalis was significantly lower than that of group-rearing F. occidentalis (0.07 mg). The adult body lengths of individual-rearing F. occidentalis (female: 203.72 μm, male: 149.74 μm) were significantly lower than those of group-rearing F. occidentalis (female: 288.81 μm, male: 203.39 μm). The per female oviposition of individual-rearing F. occidentalis (48) was significantly lower than that of group-rearing F. occidentalis (133.39). The intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), gross reproductive rate (GRR) and mean generation time (T) of individual-rearing F. occidentalis were 0.161 d-1, 1.175 d-1, 20.730, 35.699, 18.70 d, respectively, while those of group-rearing F. occidentalis were 0.242 d-1, 1.274 d-1, 60.499, 102.342, 16.88 d, respectively. The population growth of individual-rearing F. occidentalis was slower than that of group-rearing F. occidentalis.【Conclusion】Compared with the individual-rearing F. occidentalis, the population of group-rearing F. occidentalis grew faster and produced more offspring per unit time. Using the individual-rearing feeding method to establish a life table to predict the population dynamics of F. occidentalis may delay the best control time. The life table established by the group-rearing method should predict the population dynamics more accurately.

Key words: Frankliniella occidentalis, age-stage two-sex life table, individual-rearing, group-rearing

"

指标
Index
单头饲养 Individual-rearing 群体饲养 Group-rearing P
n Mean±SE n Mean±SE
卵期 Egg stage (d) 40 3.00±0.05 40 3.03±0.03 0.660 ns
若虫期 Nymph stage (d) 39 4.49±0.13 38 3.05±0.04 <0.001 ***
蛹期 Pupal stage (d) 34 4.03±0.23 36 3.32±0.15 0.021 *
雌成虫期 Female adult stage (d) 19 20.44±1.42 18 21.89±1.52 0.542 ns
雄成虫期 Male adult stage (d) 11 11.27±2.52 16 9.91±0.78 0.677 ns
单雌平均产卵量 Per female oviposition 19 48.00±5.53 18 133.39±5.42 <0.001 ***
雌成虫产卵前期 Adult preoviposition period (d) 19 3.56±0.64 18 2.75±0.19 0.828 ns
总产卵前期 Total preoviposition period (d) 30 11.37±0.39 34 10.00±0.005 0.003 **
雌虫寿命 Female longevity (d) 19 32.06±1.50 18 28.89±1.52 0.200 ns
雄虫寿命 Male longevity (d) 11 22.82±2.59 16 18.64±0.88 0.047 *
蛹重 Pupal weight (mg) 40 0.03±0.004 40 0.07±0.005 0.007 **
蛹长 Pupal length (μm) 40 170.24±5.17 40 181.84±4.38 0.219 ns
蛹宽 Pupal width (μm) 40 41.91±3.19 40 47.32±1.15 0.167 ns
雌成虫体长 Adult length (♀) (μm) 40 203.72±4.13 40 288.81±14.26 0.002 **
雄成虫体长 Adult length (♂) (μm) 40 149.74±3.85 40 203.39±6.77 0.002 **
雌成虫体宽 Adult width (♀) (μm) 40 42.52±0.81 40 48.58±2.18 0.072 ns
雄成虫体宽 Adult width (♂) (μm) 40 27.17±2.04 40 27.35±1.55 0.947 ns

Fig. 1

Age-stage specific survival rate (sxj) of individual-rearing and group-rearing F. occidentalis"

Fig. 2

Age-specific survival rate (lx), female age-specific fecundity (fx,4),age-specific fecundity of total population (mx), and age-specific maternity (lxmx) of individual-rearing and group-rearing F. occidentalis"

Fig. 3

Age-stage life expectancy (exj) of individual-rearing and group-rearing F. occidentalis"

Fig. 4

Age-stage reproductive value (vxj) of individual-rearing and group-rearing F. occidentalis"

Table 2

Estimated population parameters of individual-rearing and group-rearing F. occidentalis"

种群参数Population parameter 单头饲养Individual-rearing 群体饲养Group-rearing P
内禀增长率 Intrinsic rate of increase (r) (d-1) 0.161±0.00004 0.242±0.00004 <0.001 ***
周限增长率 Finite rate of increase (λ) (d-1) 1.175±0.00005 1.274±0.00005 <0.001 ***
净增殖率 Net reproductive rate (R0) 20.730±0.01 60.499±0.03 <0.001 ***
平均世代时间 Mean generation time (T) (d) 18.70±0.003 16.88±0.0006 <0.001 ***
总生殖率 Gross reproductive rate (GRR) 35.699±0.02 102.342±0.04 <0.001 ***
[1] REITZ S R, GAO Y, KIRK W D J, HODDLE M S, LEISS K A, FUNDERBURK J E. Invasion biology, ecology, and management of western flower thrips. Annual Review of Entomology, 2020,65:17-37.
pmid: 31536711
[2] REITZ S R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist, 2009,92(1):7-13.
[3] CHILDERS C C, LEWIS T. Feeding and oviposition injuries to plants//Thrips As Crop Pests. Wallingford, UK: CAB International, 1997: 505-537.
[4] WU S, TANG L, ZHANG X, XING Z, LEI Z, GAO Y. A decade of a thrips invasion in China: Lessons learned. Ecotoxicology, 2018,27(7):1032-1038.
pmid: 29027089
[5] GAO Y, LEI Z, REITZ S R. Western flower thrips resistance to insecticides: Detection, mechanisms and management strategies. Pest Management Science, 2012,68(8):1111-1121.
pmid: 22566175
[6] ZHANG B, QIAN W, QIAO X, XI Y, WAN F. Invasion biology, ecology, and management of Frankliniella occidentalis in China. Archives of Insect Biochemistry and Physiology, 2019,102(3):e21613.
[7] MORRIS R F, MILLER C A. The development of life tables for the spruce budworm. Canadian Journal of Zoology, 1954,32(4):283-301.
[8] ZHANG Z J, WU Q J, LI X F, ZHANG Y J, XU B Y, ZHU G R. Life history of western flower thrips, Frankliniella occidentalis (Thysan., Thripae), on five different vegetable leaves. Journal of Applied Entomology, 2007,131(5):347-354.
[9] SORIA C, MOLLEMA C. Life-history parameters of western flower thrips on susceptible and resistant cucumber genotypes. Entomologia Experimentalis et Applicata, 1995,74(2):177-184.
[10] 郅军锐, 李景柱, 盖海涛. 西花蓟马取食不同豆科蔬菜的实验种群生命表. 昆虫知识, 2010,47(2):313-317.
ZHI J R, LI J Z, GAI H T. Life table for experimental population of Frankliniella occidentalis feeding on leguminous vegetables. Chinese Bulletin of Entomology, 2010,47(2):313-317. (in Chinese)
[11] HULSHOF J, KETOJA E, VÄNNINEN I. Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata, 2003,108(1):19-32.
[12] GAUM W G, GILIOMEE J H, PRINGLE K L. Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on English cucumbers. Bulletin of Entomological Research, 1994,84(2):219-224.
[13] ULLAH M S, LIM U T. Life history characteristics of Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) in constant and fluctuating temperatures. Journal of Economic Entomology, 2015,108(3):1000-1009.
doi: 10.1093/jee/tov035 pmid: 26470222
[14] JIANG S, ZHANG N, WANG S, WANG J, LI J, ZHANG B, ZHENG C. Effects of heat shock on life parameters of Frankliniella occidentalis (Thysanoptera: Thripidae) F1 offspring. Florida Entomologist, 2014,97(3):1157-1166.
[15] 王海鸿, 薛瑶, 雷仲仁. 恒温和波动温度下西花蓟马的实验种群生命表. 中国农业科学, 2014,47(1):61-68.
WANG H H, XUE Y, LEI Z R. Life tables for experimental populations of Frankliniella occidentalis (Thysanoptera: Thripidae) under constant and fluctuating temperature. Scientia Agricultura Sinica, 2014,47(1):61-68. (in Chinese)
[16] 杨广明, 郅军锐, 李顺欣, 刘利. 乙基多杀菌素和印楝素对西花蓟马生长发育及繁殖的亚致死效应. 应用生态学报, 2016,27(11):3698-3704.
YANG G M, ZHI J R, LI S X, LIU L. Sublethal effects of spinetoram and azadirachtin on development and reproduction of Frankliniella occidentalis (Pergande). Chinese Journal of Applied Ecology, 2016,27(11):3698-3704. (in Chinese)
[17] ZHANG T, REITZ S R, WANG H, LEI Z. Sublethal effects of Beauveria bassiana (Ascomycota: Hypocreales) on life table parameters of Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology, 2015,108(3):975-985.
doi: 10.1093/jee/tov091 pmid: 26470219
[18] DING T, CHI H, GOKCE A, GAO Y, ZHANG B. Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Scientific Reports, 2018,8(1):3346.
doi: 10.1038/s41598-018-21689-z pmid: 29463836
[19] NIELSEN M C, TEULON D A J, CHAPMAN R B, BUTLER R C, DRAYTON G M, PHILIPSEN H. Comparison of life history parameters of two Frankliniella occidentalis (Thysanoptera: Thripidae) strains in New Zealand. Environmental Entomology, 2010,39(2):303-311.
pmid: 20388257
[20] LOWRY V K, SMITH J W, MITCHELL F L. Life-fertility tables for Frankliniella fusca (Hinds) and F. occidentalis (Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America, 1992,85:744-754.
[21] HOLLINGSWORTH R G. Life history observations on Thrips florum(Thysanoptera: Thripidae) infesting gardenia in Hawaii, and a comparison of the humidity requirements for T. florum and Frankliniella occidentalis. Proceedings of the Hawaiian Entomological Society, 2003,36:79-87.
[22] TERRY L I. Frankliniella occidentalis (Thysanoptera: Thripidae) oviposition in apple buds: Role of bloom state, blossom phenology, and population density. Environmental Entomology, 1991,20(6):1568-1576.
doi: 10.1093/ee/20.6.1568
[23] WOODHEAD A P, PAULSON C R. Larval development of Diploptera punctata reared alone and in groups. Journal of Insect Physiology, 1983,29(9):665-668.
doi: 10.1016/0022-1910(83)90040-9
[24] OMKAR S, PATHAK . Crowding affects the life attributes of an aphidophagous ladybird beetle, Propylea dissecta. Bulletin of Insectology, 2009,62(1):35-40.
[25] ŠMITS A. Performance of pine looper Bupalus piniarius larvae under population build-up conditions. Entomologia Experimentalis et Applicata, 2002,104(1):117-124.
doi: 10.1046/j.1570-7458.2002.00998.x
[26] GIBBS M, LACE L A, JONES M J, MOORE A J. Intraspecific competition in the speckled wood butterfly Pararge aegeria: Effect of rearing density and gender on larval life history. Journal of Insect Science, 2004,4:16.
pmid: 15861232
[27] GIBBS M, BREUKER C J. Effect of larval-rearing density on adult life history traits and developmental stability of the dorsal eyespot pattern in the speckled wood butterfly, Pararge aegeria. Entomologia Experimentalis et Applicata, 2005,118(1):41-47.
doi: 10.1111/eea.2006.118.issue-1
[28] MCFARLANE J E, ALLI I, STEEVES E. Studies on the group effect in Acheta domesticus (L.) using artificial diets. Journal of Insect Physiology, 1984,30(2):103-107.
[29] YU E Y, GASSMANN A J, SAPPINGTON T W. Effects of larval density on dispersal and fecundity of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). PLoS ONE, 2019,14(3):e0212696.
doi: 10.1371/journal.pone.0212696 pmid: 30822329
[30] 蒋善军, 罗礼智, 胡毅, 张蕾. Cry1Ac毒蛋白对粘虫生长发育、繁殖及飞行能力的影响. 昆虫学报, 2010,53(12):1360-1366.
JIANG S J, LUO L Z, HU Y, ZHANG L. Effects of Cry1Ac protein on growth and development, reproduction and flight potential of the oriental armyworm, Mythimna separata (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 2010,53(12):1360-1366. (in Chinese)
[31] 乔利, 潘兹亮, 卢兆成, 张丽霞, 仵均祥. 单头饲养与群体饲养对亚洲玉米螟生长发育与繁殖的影响. 西北农业学报, 2011,20(10):204-206.
QIAO L, PAN Z L, LU Z C, ZHANG L X, WU J X. Growth development and reproduction of the Ostrinia furnacalis(Guenee) under single raising and group raising. Acta Agriculturae Boreali-Occidentalis Sinica, 2011,20(10):204-206. (in Chinese)
[32] 李艳, 江幸福, 张蕾, 程云霞, 刘彦群, 罗礼智. 幼虫密度对二点委夜蛾生长发育及繁殖的影响. 应用昆虫学报, 2014,51(3):623-629.
LI Y, JIANG X F, ZHANG L, CHENG Y X, LIU Y Q, LUO L Z. Effects of larval density on the development and reproduction of Athetis lepigone. Chinese Journal of Applied Entomology, 2014,51(3):623-629. (in Chinese)
[33] LI X, FENG D, XUE Q, MENG T, MA R, DENG A, CHI H, WU Z, ATLIHAN R, MEN L, ZHANG Z. Density-dependent demography and mass-rearing of Carposina sasakii (Lepidoptera: Carposinidae) incorporating life table variability. Journal of Economic Entomology, 2019,112(1):255-265.
pmid: 30329061
[34] FANTINOU A A, PERDIKIS D C, STAMOGIANNIS N. Effect of larval crowding on the life history traits of Sesamia nonagrioides (Lepidoptera: Noctuidae). European Journal of Entomology, 2008,105(4):625-630.
doi: 10.14411/eje.2008.084
[35] FESCEMYER H W, HAMMOND A M. Effect of larval density and plant age on size and biochemical composition of adult migrant moths, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Environmental Entomology, 1988,17(2):213-219.
[36] WEAVER D K, MCFARLANE J E. The effect of larval density on growth and development of Tenebrio molitor. Journal of Insect Physiology, 1990,36(7):531-536.
[37] LYIMO E O, TAKKEN W, KOELLA J C. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomologia Experimentalis et Applicata, 1992,63(3):265-271.
[38] HAPAIRAI L K, MARIE J, SINKINS S P, BOSSIN H C. Effect of temperature and larval density on Aedes polynesiensis (Diptera: Culicidae) laboratory rearing productivity and male characteristics. Acta Tropica, 2014,132(Suppl.):S108-S115.
[39] YANG F, HU G, SHI J J, ZHAI B P. Effects of larval density and food stress on life-history traits of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Applied Entomology, 2015,139(5):370-380.
[40] SAPPINGTON T W, SHOWERS W B. Lack of translation of density-induced morphological polyphenism to long-duration flight behavior of black cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1992,85(2):188-194.
[41] CHI H, YOU M S, ATLIHAN R, SMITH C L, KAVOUSI A, ÖZGÖKÇE M S, GÜNCAN A, TUAN S J, FU J W, XU Y Y, et al. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis, 2020,40(2):103-124.
[42] NING S, ZHANG W, SUN Y, FENG J. Development of insect life tables: Comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Scientific Reports, 2017,7(1):4821.
doi: 10.1038/s41598-017-05041-5 pmid: 28684791
[43] CHI H, LIU H. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica, 1985,24(2):225-240.
[44] CHANG C, HUANG C Y, DAI S M, ATLIHAN R, CHI H. Genetically engineered ricin suppresses Bactrocera dorsalis (Diptera: Tephritidae) based on demographic analysis of group-reared life table. Journal of Economic Entomology, 2016,109(3):987-992.
doi: 10.1093/jee/tow091 pmid: 27122495
[45] CHI H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988,17(1):26-34.
doi: 10.1093/ee/17.1.26
[46] CHI H, SU H Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006,35(1):10-21.
[47] CHI H. TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis. 2009, http://140.120.197.173/Ecology/.
[48] EFRON B, TIBSHIRANI R J. An introduction to the Bootstrap. Monographs on Statistics and Applied Probability, 1993,57:436.
[49] CHI H, YANG T C. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology, 2003,32(2):327-333.
[50] LUDEWIG A H, GIMOND C, JUDKINS J C, THORNTON S, PULIDO D C, MICIKAS R J, DORING F, ANTEBI A, BRAENDLE C, SCHROEDER F C. Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics, 2017,13(4):e1006717.
doi: 10.1371/journal.pgen.1006717 pmid: 28394895
[51] DAKSHAYANI K, MATHAD S B. A comparative study of growth, development and survival of the cricket Plebeiogryllus guttiventris walker reared singly and in groups. Experientia, 1973,29(8):978-979.
doi: 10.1007/BF01930414
[52] DURISKO Z, KEMP R, MUBASHER R, DUKAS R. Dynamics of social behavior in fruit fly larvae. PLoS ONE, 2014,9(4):e95495.
doi: 10.1371/journal.pone.0095495 pmid: 24740198
[53] NIJHOUT H F. The control of body size in insects. Developmental Biology, 2003,261(1):1-9.
pmid: 12941617
[54] KOYAMA T, MIRTH C K. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion of Insect Science, 2018,25:1-8.
doi: 10.1016/j.cois.2017.11.002
[55] TARAVATI S, MANNION C. Effect of aggregation and cage setting on some life-history parameters of Aleurodicus rugioperculatus (Hemiptera: Aleyrodidae). Journal of Economic Entomology, 2016,109(1):249-254.
doi: 10.1093/jee/tov299 pmid: 26494708
[56] TSUNODA T, FUKUCHI A, NANBARA S, TAKAGI M. Effect of body size and sugar meals on oviposition of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Vector Ecology, 2010,35(1):56-60.
doi: 10.1111/j.1948-7134.2010.00028.x pmid: 20618648
[57] BERGER D, WALTERS R, GOTTHARD K. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 2008,22(3):523-529.
doi: 10.1111/fec.2008.22.issue-3
[58] BLAY S, YUVAL B. Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): Effects of male and female body size and the availability of sperm. Annals of the Entomological Society of America, 1999,92(2):278-284.
doi: 10.1093/aesa/92.2.278
[59] BABA M. Oviposition habits of Simulium kawamurae (Diptera: Simuliidae), with reference to seasonal changes in body size and fecundity. Journal of Medical Entomology, 1992,29(4):603-610.
pmid: 1495068
[60] EDWARDS A W. The genetical theory of natural selection. Genetics, 2000,154(4):1419-1426.
pmid: 10747041
[61] MIN K, FLATT T, KULAOTS I, TATAR M. Counting calories in Drosophila diet restriction. Experimental Gerontology, 2007,42(3):247-251.
doi: 10.1016/j.exger.2006.10.009
[62] FLATT T. Survival costs of reproduction in Drosophila. Experimental Gerontology, 2011,46(5):369-375.
doi: 10.1016/j.exger.2010.10.008
[63] FOWLER K, PARTRIDGE L. A cost of mating in female fruitflies. Nature, 1989,338:760-761.
doi: 10.1038/338760a0
[64] PARTRIDGE L, GREEN A, FOWLER K. Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. Journal of Insect Physiology, 1987,33(10):745-749.
doi: 10.1016/0022-1910(87)90060-6
[65] 杨广明, 郅军锐, 李顺欣, 张宇羽. 延迟交配对西花蓟马成虫寿命及繁殖力的影响. 山地农业生物学报, 2015,34(4):31-34.
YANG G M, ZHI J R, LI S X, ZHANG Y Y. Effect of delayed mating on adult longevity and reproduction of Frankliniella occidentalis. Journal of Mountain Agriculture and Biology, 2015,34(4):31-34. (in Chinese)
[1] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[2] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[3] CHEN YiQu, XIANG Xin, GONG ChangWei, WANG XueGui. Effects of Sublethal Doses of Chlorantraniliprole on the Detoxification Enzymes Activities and the Growth and Reproduction of Spodoptera exigua [J]. Scientia Agricultura Sinica, 2017, 50(8): 1440-1451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!