Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (23): 4728-4742.doi: 10.3864/j.issn.0578-1752.2022.23.013

• Food Science and engineering • Previous Articles     Next Articles

Physiological Metabolic Rol e of Nanocomposite Packaged Agaricus bisporus During Postharvest Cold Storage Analyzed by TMT-Based Quantitative Proteomics

WANG Chao1(),FANG DongLu2,ZHANG PanRong1,JIANG Wen1,PEI Fei1,HU QiuHui1,MA Ning1,*()   

  1. 1College of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing 210023
    2College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037
  • Received:2022-03-09 Accepted:2022-05-25 Online:2022-12-01 Published:2022-12-06
  • Contact: Ning MA E-mail:wangchaonufe@163.com;maning@nufe.edu.cn

Abstract:

【Background】 Agaricus bisporus (A. bisporus) is prone to quality deterioration, such as umbrella opening, water loss, and browning after harvest, which seriously affects the storage quality and commercial value. Our previous research has confirmed that the nanocomposite packaging material (Nano-PM) could effectively delay the postharvest quality deterioration of A. bisporus, but the preservation mechanism is still unclear. 【Objective】 In this study, the differentially expressed proteins of A. bisporus in Nano-PM and polyethylene packaging material (Normal-PM) during storage were analyzed by Tandem Mass Tag (TMT) quantitative proteomics technology. The preservation mechanism of Nano-PM on A. bisporus was further explored. 【Method】 A. bisporus was taken as the research object. The Nano-PM was used for the preservation of A. bisporus, and the Normal-PM was used as the control. The protein extraction and trypsin hydrolysis were performed on A. bisporus during storage. The differentially expressed proteins were screened by TMT labeling and liquid chromatography-tandem mass spectrometry detection. Combined with bioinformatics analysis, the main metabolic pathways involved in differential proteins were studied. Quantitative real-time polymerase chain reaction (qPCR) technology was used to determine the gene expression levels of differential proteins..【Result】 The Nano-PM effectively maintained the appearance quality of A. bisporus and delayed the increase of cell membrane permeability. The number of differential proteins in two groups increased during storage. In the middle (6 d) and late (10 d) stages of storage, the numbers of differential proteins were 62 and 148, respectively. Among them, 22 differential proteins were common. Combined with bioinformatics analysis, these differential proteins were mainly related to pathways, such as energy metabolism and lipid metabolism. The lipid metabolism pathway was mainly analyzed, and the results showed that the Nano-PM had a regulatory effect on the membrane lipid metabolism of A. bisporus. Compared with the Normal-PM, the protein expression of fatty acid synthase, phosphorylcholine cytidylyltransferase, and phosphatidic acid phosphatase under Nano-PM were up-regulated, while the protein expression of key enzymes in membrane lipid degradation, such as phospholipase D and lipase, were down-regulated. At the gene level, the expression of genes encoding these proteins were consistent with the proteomics results..【Conclusion】 The differential proteins of different packaged A. bisporus during storage could be screened and analyzed by TMT-based quantitative proteomics technology. Nano-PM regulated the membrane lipid metabolism of A. bisporus, and inhibited the expression of membrane lipid degradation-related enzymes, which effectively delayed the increase in cell membrane permeability of A. bisporus, maintained the structure and function of the cell membrane, and delayed the quality deterioration of A. bisporus during storage.

Key words: nanocomposite packaging, Agaricus bisporus, preservation, proteomics

Table 1

Primer sequences used for qPCR"

引物名称Primer name 引物序列Primes sequence (5′-3′)
GAPDH F: ACGACAACGAGTGGGGTTAC R: TTTCTTCTCGAGCACGGTCC
CS F: ATCTGGGATGGCTCCGTCTTGG R: GACCTTCAGGCAATGGCTCTTGG
PLD F: CAGTCACAGCGTTAGAGCGGATG R: CCTCCAGCGGTAGCATCAACTTG
CTP F: CTCCACCCTTGCCCACCATTATTC R: TGCTGCTGTTGAAGTCGAAGAGTC
PPase F: CGATGCCTGAAGAAGATGCCTCTG R: CGTCGTGTACCTCCTGCTCTAATTC
FAS F: GGACTTGATGACCGCTCTGAACTC R: GGTGACGATACGCCTATTAGCCTTC
LPS F: CATTCTCCTACTGCTTCCATTCACTCC R: CACCACCATAACCTGCCAAGACC

Table 2

qPCR condition settings"

步骤 Step 循环次数 Cycle 温度 Temperature (℃) 时间 Time (s)
预变性 Initial denaturation 1 95 30
循环反应 Cycling stage 40 95 10
60 30
融解曲线 Melt curve 1 95 15
60 60
95 15

Fig. 1

Flow chart of TMT quantitative proteomics analysis of metabolic law of A. bisporus with different packages"

Fig. 2

Changes in appearance quality (A) and cell membrane permeability (B) of A. bisporus during storage in different packages *indicate sinificant difference (P<0.05). The same as below"

Fig. 3

Quantities of differentially expressed proteins during storage of A. bisporus in different packages A: The differentially expressed proteins between the Nano-PM group and the Normal-PM group at 6 d; B: The differentially expressed proteins between the Nano-PM group and the Normal-PM group at 10 d"

Fig. 4

Differentially expressed proteins of A. bisporus during storage in different packaging groups A: The volcano plot of differentially expressed proteins between the Nano-PM group and the Normal-PM group at 6 d; B: The volcano plot of the differentially expressed proteins between the Nano-PM group and the Normal-PM group at 10 d; C: Venn diagram of differentially expressed proteins between Nano-PM group and Normal-PM group during storage. N: Nano-PM group; P: Normal-PM group; CK: Fresh group"

Fig. 5

GO (A) and KEGG (B) analysis of differentially expressed proteins during storage of A. bisporus in different packaging groups"

Table 3

Main differentially expressed proteins of A. bisporus during storage in different packaging groups"

蛋白Accession
Protein accession
蛋白描述
Protein description
基因名称
Gene name
差异倍数Fold change
6N/6P 10N/10P
XP_006456433.1 吡喃糖脱氢酶受体蛋白Pyranose dehydrogenase receptor protein AGABI1DRAFT_116682 0.58 /
XP_006457863.1 鸟嘌呤核苷酸结合蛋白Guanine nucleotide-binding protein AGABI1DRAFT_82206 1.95 1.82
XP_006458170.1 核糖体生物合成蛋白Ribosome biogenesis protein AGABI1DRAFT_33715 / 0.55
XP_006459487.1 未表征蛋白质Uncharacterized protein AGABI1DRAFT_114418 0.58 /
XP_006460807.1 PRA家族蛋白PRA family protein AGABI1DRAFT_112435 0.62 0.55
XP_006463403.1 未表征蛋白质Uncharacterized protein AGABI1DRAFT_108190 / 1.68
XP_006454671.1 膜组分蛋白Membrane component protein AGABI1DRAFT_103710 1.76 2.09
XP_006453769.1 未表征蛋白质Uncharacterized protein AGABI1DRAFT_124747 0.53 0.64
XP_006453957.1 几丁质合成酶Chitin synthase AGABI1DRAFT_52110 / 0.59
XP_006460122.1 未表征蛋白质Uncharacterized protein AGABI1DRAFT_127941 0.55 0.66
XP_006462684.1 磷脂酶D Phospholipase D AGABI1DRAFT_58967 0.68 0.51
XP_006454339.1 ATP激酶ATP kinase AGABI1DRAFT_110490 1.65 1.51
XP_006454403.1 膜组分蛋白Membrane component protein AGABI1DRAFT_66797 1.54 1.65
XP_006456787.1 磷脂酸磷酸酯酶Phosphatidic acid phosphatase AGABI1DRAFT_127573 1.52 1.67
XP_006455355.1 超氧化物歧化酶Superoxide dismutase AGABI1DRAFT_114765 1.82 1.56
XP_006454789.1 线粒体膜转运蛋白Mitochondrial membrane transporter AGABI1DRAFT_65989 1.77 1.59
XP_006455653.1 未表征蛋白质Uncharacterized protein AGABI1DRAFT_115714 / 1.56
XP_006459063.1 脂肪酸合酶Fatty acid synthase AGABI1DRAFT_61049 1.61 1.87
XP_006454643.1 膜组分蛋白Membrane component protein AGABI1DRAFT_50813 1.92 1.73
XP_006453790.1 脂肪酶蛋白Lipase protein AGABI1DRAFT_67808 0.65 0.57
XP_006455684.1 ATP结合蛋白ATP-binding protein AGABI1DRAFT_102264 1.64 1.55
XP_006456057.1 乌头酸水合酶Aconitate hydratase AGABI1DRAFT_101681 / 1.82
XP_006456371.1 膜组分蛋白Membrane component protein AGABI1DRAFT_46804 / 2.12
XP_006458132.1 DNA解旋酶活性蛋白DNA helicase active protein AGABI1DRAFT_118129 0.36 0.59
XP_006457745.1 膜水解酶活性蛋白Membrane hydrolase active protein AGABI1DRAFT_124786 0.41 0.61
XP_006459487.1 膜转运蛋白Membrane transporter AGABI1DRAFT_114418 0.62 0.48
XP_006453826.1 CTP活性蛋白CTP active protein AGABI2DRAFT_181860 1.56 1.68
XP_006459152.1 柠檬酸合酶蛋白Citrate synthase protein AGABI1DRAFT_129944 0.64 0.56
XP_006454232.1 RNA结合蛋白RNA binding protein AGABI1DRAFT_96937 1.59 1.52
XP_006457601.1 氧化还原酶活性Oxidoreductase active protein AGABI1DRAFT_116005 0.36 0.52
XP_006453831.1 组蛋白H3 Histone H3 AGABI1DRAFT_52286 / 1.87

Fig. 6

Membrane lipid metabolism pathway and differential protein expression of A. bisporus during storage in different packaging groups Red means up-regulation, and green means down-regulation"

Fig. 7

qPCR analysis of differential proteins in membrane lipid metabolism pathway during storage of A. bisporus in different packaging groups"

[1] BAN Z J, LI L, GUAN J F, FENG J H, WU M Y, XU X M, LI J. Modified atmosphere packaging (MAP) and coating for improving preservation of whole and sliced Agaricus bisporus. Journal of Food Science and Technology, 2014, 51(12): 3894-3901. doi: 10.1007/s13197-013-0935-9.
doi: 10.1007/s13197-013-0935-9
[2] DOKHANIEH A Y, AGHDAM M S. Postharvest browning alleviation of Agaricus bisporus using salicylic acid treatment. Scientia Horticulturae, 2016, 207: 146-151. doi: 10.1016/j.scienta.2016.05.025.
doi: 10.1016/j.scienta.2016.05.025
[3] 徐静, 谷艳杰. 不同包装方式对金针菇冷藏保鲜效果的影响. 山东农业工程学院学报, 2016, 33(12): 122-124.
XU J, GU Y J. The effect of different packaging methods on Flammulina velutipes refrigerated preservation. Journal of Shandong Agriculture and Engineering University, 2016, 33(12): 122-124. (in Chinese)
[4] FANG D L, YANG W J, KIMATU B M, AN X X, HU Q H, ZHAO L Y. Effect of nanocomposite packaging on postharvest quality and reactive oxygen species metabolism of mushrooms (Flammulina velutipes). Postharvest Biology and Technology, 2016, 119: 49-57. doi: 10.1016/j.postharvbio.2016.04.012.
doi: 10.1016/j.postharvbio.2016.04.012
[5] YANG W J, SHI C, HU Q H, WU Y Y, FANG D L, PEI F, MARIGA A M. Nanocomposite packaging regulate respiration and energy metabolism in Flammulina velutipes. Postharvest Biology and Technology, 2019, 151: 119-126. doi: 10.1016/j.postharvbio.2019.02.003.
doi: 10.1016/j.postharvbio.2019.02.003
[6] 李志啸, 杨文建, 方东路, 裴斐, 马宁, 方勇, 赵立艳, 安辛欣, 胡秋辉. 纳米包装材料对双孢菇细胞壁代谢及品质的影响. 食品科学, 2016, 37(6): 248-253.
LI Z X, YANG W J, FANG D L, PEI F, MA N, FANG Y, ZHAO L Y, AN X X, HU Q H. Effects of nano-packaging on cell wall metabolism and postharvest qualities of Agaricus bisporus. Food Science, 2016, 37(6): 248-253. (in Chinese)
[7] ZUO C Z, HU Q H, SU A X, XU H, LI X T, MARIGA A M, YANG W J. Nanocomposite packaging delays lignification of Flammulina velutipes by regulating phenylpropanoid pathway and mitochondrial reactive oxygen species metabolisms. Postharvest Biology and Technology, 2021, 171: 111360. doi: 10.1016/j.postharvbio.2020.111360.
doi: 10.1016/j.postharvbio.2020.111360
[8] 剧柠, 苟萌, 张彤彤. 蛋白质组学技术及其在乳及乳制品中的应用研究进展. 食品与发酵工业, 2021, 47(3): 245-251.
JU N, GOU M, ZHANG T T. Advances in proteomics and its application in milk and dairy products. Food and Fermentation Industries, 2021, 47(3): 245-251. (in Chinese)
[9] WU X Q, JIANG L, YU M L, AN X J, MA R J, YU Z F. Proteomic analysis of changes in mitochondrial protein expression during peach fruit ripening and senescence. Journal of Proteomics, 2016, 147: 197-211. doi: 10.1016/j.jprot.2016.06.005.
doi: S1874-3919(16)30244-5 pmid: 27288903
[10] 陈鹏, 周瑞阳, 蒋利和. 线粒体蛋白质组学技术及其在植物细胞质雄性不育机理研究中的应用. 南方农业学报, 2011, 42(4): 353-357. doi: 10.3969/j.issn.2095-1191.2011.04.002.
doi: 10.3969/j.issn.2095-1191.2011.04.002
CEHN P, ZHOU R Y, JIANG L H. Progress in mitochondrial proteomics technology and its applications in studying plant cytoplasmic male sterility. Journal of Southern Agriculture, 2011, 42(4): 353-357. doi: 10.3969/j.issn.2095-1191.2011.04.002. (in Chinese)
doi: 10.3969/j.issn.2095-1191.2011.04.002
[11] 赵巧灵. 金枪鱼在冷藏过程中鲜度变化及差异蛋白质组学研究[D]. 杭州: 浙江工商大学, 2015.
ZHAO Q L. Freshness variation and differential proteome analysis of tuna (Thunnus Obesus) during refrigerated storage[D]. Hangzhou: Zhejiang Gongshang University, 2015. (in Chinese)
[12] FANG D L, YANG W J, DENG Z L, AN X X, ZHAO L Y, HU Q H. Proteomic investigation of metabolic changes of mushroom (Flammulina velutipes) packaged with nanocomposite material during cold storage. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10368-10381. doi: 10.1021/acs.jafc.7b04393.
doi: 10.1021/acs.jafc.7b04393 pmid: 29111700
[13] 杨波若, 李华健, 苏娅宁, 李霞, 瞿静, 陈韬. 基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白. 食品工业科技, 2021, 42(7): 136-144.
YANG B R, LI H J, SU Y N, LI X, QU J, CHEN T. Analysis of different proteins affecting water holding capacity of pork based on microstructure and proteomics. Science and Technology of Food Industry, 2021, 42(7): 136-144. (in Chinese)
[14] 韩冉, 毛凤鑫, 程敦公, 李豪圣, 刘建军, 曹新有, 宋健民, 辛明明, 郭军, 刘成, 刘爱峰. 全糯性小麦济糯116的籽粒蛋白质组学分析. 山东农业科学, 2021, 53(5): 1-7.
HAN R, MAO F X, CHENG D G, LI H S, LIU J J, CAO X Y, SONG J M, XIN M M, GUO J, LIU C, LIU A F.Proteomic analysis of waxy wheat Jinuo 116. Shandong Agricultural Sciences, 2021, 53(5): 1-7. (in Chinese)
[15] BARMAN K, ASREY R, PAL R K, JHA S K, BHATIA K. Post-harvest nitric oxide treatment reduces chilling injury and enhances the shelf-life of mango (Mangifera indica L.) fruit during low-temperature storage. The Journal of Horticultural Science and Biotechnology, 2014, 89(3): 253-260. doi: 10.1080/14620316.2014.11513076.
doi: 10.1080/14620316.2014.11513076
[16] WANG C, CHU J J, FU L L, WANG Y B, ZHAO F, ZHOU D Q. iTRAQ-based quantitative proteomics reveals the biochemical mechanism of cold stress adaption of razor clam during controlled freezing-point storage. Food Chemistry, 2018, 247: 73-80. doi: 10.1016/j.foodchem.2017.12.004.
doi: S0308-8146(17)31942-8 pmid: 29277230
[17] FANG D L, ZHENG Z, MA N, YANG W J, DAI C, ZHAO M W, DENG Z L, HU Q H, ZHAO L Y. Label-free proteomic quantification of packaged Flammulina filiformis during commercial storage. Postharvest Biology and Technology, 2020, 169: 111312. doi: 10.1016/j.postharvbio.2020.111312.
doi: 10.1016/j.postharvbio.2020.111312
[18] HU Y H, CHEN C M, XU L, CUI Y, YU X Y, GAO H J, WANG Q, LIU K, SHI Y, CHEN Q X. Postharvest application of 4-methoxy cinnamic acid for extending the shelf life of mushroom (Agaricus bisporus). Postharvest Biology and Technology, 2015, 104: 33-41. doi: 10.1016/j.postharvbio.2015.03.007.
doi: 10.1016/j.postharvbio.2015.03.007
[19] ZHANG K X, PU Y Y, SUN D W. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends in Food Science & Technology, 2018, 78: 72-82. doi: 10.1016/j.tifs.2018.05.012.
doi: 10.1016/j.tifs.2018.05.012
[20] KAMAL A S M, KHAIR A, BEGUM F, CHOWDHURY K, KARIM R. Effect of respiratory gases (O2; CO2) on shelf-life of fresh oyster mushrooms packaged with different sealable polymeric materials. Bangladesh Journal of Scientific and Industrial Research, 2015, 50(3): 205-210. doi: 10.3329/bjsir.v50i3.25587.
doi: 10.3329/bjsir.v50i3.25587
[21] LI W T, FREUDENBERG J, SUH Y J, YANG Y N. Using volcano plots and regularized-Chi statistics in genetic association studies. Computational Biology and Chemistry, 2014, 48: 77-83. doi: 10.1016/j.compbiolchem.2013.02.003.
doi: 10.1016/j.compbiolchem.2013.02.003 pmid: 23602812
[22] KANEHISA M, ARAKI M, GOTO S, HATTORI M, HIRAKAWA M, ITOH M, KATAYAMA T, KAWASHIMA S, OKUDA S, TOKIMATSU T, YAMANISHI Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2007, 36(suppl_1): D480-D484. doi: 10.1093/nar/gkm882.
doi: 10.1093/nar/gkm882
[23] ZHU Z, ZHANG Y B, LIU J, CHEN Y L, ZHANG X J. Exploring the effects of selenium treatment on the nutritional quality of tomato fruit. Food Chemistry, 2018, 252: 9-15. doi: 10.1016/j.foodchem.2018.01.064.
doi: S0308-8146(18)30071-2 pmid: 29478567
[24] ZHU N, LIU J W, YANG J S, LIN Y J, YANG Y, JI L, LI M, YUAN H L. Comparative analysis of the secretomes of Schizophyllum commune and other wood-decay basidiomycetes during solid-state fermentation reveals its unique lignocellulose-degrading enzyme system. Biotechnology for Biofuels, 2016, 9: 42. doi: 10.1186/s13068-016-0461-x.
doi: 10.1186/s13068-016-0461-x
[25] MARTEZ J, ROLAND S, ANDREAS S, PETER K, RONALD E. Perfil de eficacia y seguridad de Echinacea purpurea en la prevención de episodios de resfriado común: Estudio clínico aleatorizado, doble ciego y controlado con placebo. Revista de Fitoterapia, 2013, 13(24): 125-135. doi: 10.1002/jsfa.
doi: 10.1002/jsfa
[26] 葛亚东, 潘蔚, 汪劼, 朱国萍. 柠檬酸合酶的分子生物学研究进展. 生物学杂志, 2010, 27(3): 59-62.
GE Y D, PAN W, WANG J, ZHU G P. Advances in molecular biology of citrate synthase. Journal of Biology, 2010, 27(3): 59-62. (in Chinese)
[27] 杨文建, 单楠, 杨芹, 方勇, 赵立艳, 安辛欣, 马宁, 刘音宏, 辛志宏, 胡秋辉. 纳米包装材料延长双孢蘑菇贮藏品质的作用. 中国农业科学, 2012, 45(24): 5065-5072.
YANG W J, SHAN N, YANG Q, FANG Y, ZHAO L Y, AN X X, MA N, LIU Y H, XIN Z H, HU Q H. Effect of nano-packing material on improvement of preservation quality of Agaricus bisporus. Scientia Agricultura Sinica, 2012, 45(24): 5065-5072. (in Chinese)
[28] LI P Y, YIN F, SONG L J, ZHENG X L. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chemistry, 2016, 202: 125-132. doi: 10.1016/j.foodchem.2016.01.142.
doi: 10.1016/j.foodchem.2016.01.142 pmid: 26920276
[29] 马宁, 王鹤潼, 方东路, 赵立艳, 杨文建, 裴斐, 胡秋辉. 基于线粒体能量代谢途径的金针菇采后纳米包装保鲜机制. 中国农业科学, 2020, 53(16): 3356-3371.
MA N, WANG H T, FANG D L, ZHAO L Y, YANG W J, PEI F, HU Q H. Nano-packaging preservative mechanism of Flammulina filiformis after harvest based on mitochondrial energy status pathways. Scientia Agricultura Sinica, 2020, 53(16): 3356-3371. (in Chinese)
[30] WU Y Y, HU Q H, LI Z X, PEI F, MUGAMBI M A, YANG W J. Effect of nanocomposite-based packaging on microstructure and energy metabolism of Agaricus bisporus. Food Chemistry, 2019, 276: 790-796. doi: 10.1016/j.foodchem.2018.10.088.
doi: 10.1016/j.foodchem.2018.10.088
[31] GAO H, CHAI H K, CHENG N, CAO W. Effects of 24- epibrassinolide on enzymatic browning and antioxidant activity of fresh-cut lotus root slices. Food Chemistry, 2017, 217: 45-51. doi: 10.1016/j.foodchem.2016.08.063.
doi: 10.1016/j.foodchem.2016.08.063
[32] CHEN Y H, SUN J Z, LIN H T, LIN M S, LIN Y F, WANG H, HUNG Y C. Salicylic acid treatment suppresses Phomopsis longanae Chi-induced disease development of postharvest longan fruit by modulating membrane lipid metabolism. Postharvest Biology and Technology, 2020, 164: 111168. doi: 10.1016/j.postharvbio.2020.111168.
doi: 10.1016/j.postharvbio.2020.111168
[33] YAO W S, XU T T, FAROOQ S U, JIN P, ZHENG Y H. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biology and Technology, 2018, 144: 20-28. doi: 10.1016/j.postharvbio.2018.05.007.
doi: 10.1016/j.postharvbio.2018.05.007
[34] LIU H, SONG L L, YOU Y L, LI Y B, DUAN X W, JIANG Y M, JOYCE D C, ASHRAF M, LU W J. Cold storage duration affects litchi fruit quality, membrane permeability, enzyme activities and energy charge during shelf time at ambient temperature. Postharvest Biology and Technology, 2011, 60: 24-30. doi: 10.1016/j.postharvbio.2010.11.008.
doi: 10.1016/j.postharvbio.2010.11.008
[35] 陈牧, 刘锐, 翁屹. 三羧酸循环的发现与启示. 医学与哲学, 2012, 33(1): 71-73.
CHEN M, LIU R, WENG Y. The discovery and revelation of tricarboxylic acid cycle. Medicine and Philosophy, 2012, 33(1): 71-73. (in Chinese)
[36] WIENKOOP S, SAALBACH G. Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology, 2003, 131(3): 1080-1090. doi: 10.1104/pp.102.015362.
doi: 10.1104/pp.102.015362
[37] FERNANDEZ-MOYA R, LEBER C, CARDENAS J, DA SILVA N A. Functional replacement of the Saccharomyces cerevisiae fatty acid synthase with a bacterial type II system allows flexible product profiles. Biotechnology and Bioengineering, 2015, 112(12): 2618-2623. doi: 10.1002/bit.25679.
doi: 10.1002/bit.25679
[38] LIN Y X, LIN Y F, CHEN Y H, WANG H, SHI J, LIN H T. Hydrogen peroxide induced changes in energy status and respiration metabolism of harvested longan fruit in relation to pericarp browning. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4627-4632. doi: 10.1021/acs.jafc.6b01430.
doi: 10.1021/acs.jafc.6b01430
[39] ZHOU Y C, PAN X P, QU H X, UNDERHILL S J R. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development. Journal of Bioenergetics and Biomembranes, 2014, 46(1): 59-69. doi: 10.1007/s10863-013-9538-4.
doi: 10.1007/s10863-013-9538-4 pmid: 24390546
[40] BANCHIO C, SCHANG L M, VANCE D E. Activation of CTP: phosphocholine cytidylyltransferase α expression during the S phase of the cell cycle is mediated by the transcription factor Sp1. The Journal of Biological Chemistry, 2003, 278(34): 32457-32464. doi: 10.1074/jbc.m304810200.
doi: 10.1074/jbc.m304810200
[41] HONG Y Y, ZHAO J, GUO L, KIM S C, DENG X J, WANG G L, ZHANG G Y, LI M Y, WANG X M. Plant phospholipases D and C and their diverse functions in stress responses. Progress in Lipid Research, 2016, 62: 55-74. doi: 10.1016/j.plipres.2016.01.002.
doi: 10.1016/j.plipres.2016.01.002 pmid: 26783886
[42] 杨燕婷, 杨芹, 杨方美, 辛志宏, 赵立艳, 郁志芳, 胡秋辉. 纳米包装材料对金针菇的保鲜作用. 中国农业科学, 2009, 42(9): 3250-3258.
YANG Y T, YANG Q, YANG F M, XIN Z H, ZHAO L Y, YU Z F, HU Q H. Effect of nano-packaging material on quality of Flammulina velutipes. Scientia Agricultura Sinica, 2009, 42(9): 3250-3258. (in Chinese)
[43] KARAKURT Y, HUBER D J. Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit. Journal of Plant Physiology, 2004, 161(4): 381-388. doi: 10.1078/0176-1617-01221.
doi: 10.1078/0176-1617-01221 pmid: 15128025
[44] 李一路, 张晴晴, 胡卫芹, 屈钢, 洪月云. 磷脂酸磷酸酶在脂质代谢和信号转导中的作用及其调控. 植物生理学报, 2017, 53(6): 897-904.
LI Y L, ZHANG Q Q, HU W Q, QU G, HONG Y Y. Roles and regulation of phosphatidic acid phosphatase in lipid metabolism and signaling. Plant Physiology Journal, 2017, 53(6): 897-904. (in Chinese)
[1] XIE YiTong,ZHANG Fei,SHI Jie,FENG Li,JIANG Li. Effects of Exogenous Sucrose on the Postharvest Quality and Chloroplast of Gynura bicolor D.C [J]. Scientia Agricultura Sinica, 2022, 55(8): 1642-1656.
[2] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[3] ZHOU GuiYing,YANG XiaoMin,TENG ZiWen,SUN LiJuan,ZHENG ChangYing. Quantitative Proteomic Analysis of Spirotetramat Inhibiting Hatching of Frankliniella occidentalis Eggs [J]. Scientia Agricultura Sinica, 2022, 55(15): 2938-2948.
[4] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
[5] ZHU ZhiFeng,LIU Ping,XU RangWei,CHEN ChuanWu,DENG ChongLing,NIU Ying,ZHU Yi,WANG PengWei,DENG XiuXin,CHENG YunJiang. Influence of Plastic Film Covering of Tree Canopy on Fruit Postharvest Storage Performance in Shatangju Tangerine [J]. Scientia Agricultura Sinica, 2021, 54(12): 2630-2643.
[6] Ting WANG,Yu ZHANG,Hong LIU,TianTian HE,Yang BI,JianMin YUN. Effects of Ozone Fumigation Combined with PE Packaging on Postharvest Storage Quality and Antioxidant Capacity of Flammulina velutipes [J]. Scientia Agricultura Sinica, 2020, 53(4): 823-835.
[7] ZHANG WenQiang,CHEN QingJun,ZHANG GuoQing,SHI ShiDa,CAO Na,ABLAT· Tohtirjap,GUO YuXin,LIN WenCai. Effects of Protein Supplements on Agronomic Characters and Quality of the Mushroom Agaricus bisporus [J]. Scientia Agricultura Sinica, 2020, 53(10): 2091-2100.
[8] ZHANG Yan, DONG ZhaoMing, XI XingHang, ZHANG XiaoLu, YE Lin, GUO KaiYu, XIA QingYou, ZHAO Ping. Protein Components of Degumming Bombyx mori Silk [J]. Scientia Agricultura Sinica, 2018, 51(11): 2216-2224.
[9] LIU Lu, LU Jing, WANG Ying, PANG XiaoYang, XU Man, ZHANG ShuWen, Lü JiaPing. Antitumor Effect of Violacein Against HT29 by Comparative Proteomics [J]. Scientia Agricultura Sinica, 2017, 50(9): 1694-1704.
[10] HAO WenYuan, LI FeiWu, YAN Wei, LI CongCong, HAO DongYun, GUO ChangHong. Assessment of the Unintended Effects of Four Genetically Modified Maize Varieties by Proteomic Approach [J]. Scientia Agricultura Sinica, 2017, 50(19): 3652-3664.
[11] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[12] YU Tao, LI Geng, LIU Peng, DONG ShuTing, ZHANG JiWang, ZHAO Bin. Proteomic Analysis of Maize Reveals Expression Characteristics of Stress-Related Proteins During Grain Development [J]. Scientia Agricultura Sinica, 2017, 50(11): 2114-2128.
[13] XU Chuang, ZHU Kui-ling, CHEN Yuan-yuan, YANG Wei, XIA Cheng, ZHANG Hong-you, WU Ling, SHU Shi, SHEN Tai-yu, YU Hong-jiang, XU Qiu-shi, ZHANG Zi-yang . Isolation Identification and Bioinformatics of Differences Protein in Plasma of Cows Suffer from Fatty Liver with SELDI-TOF-MS Techniques [J]. Scientia Agricultura Sinica, 2016, 49(8): 1585-1598.
[14] WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin. The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis [J]. Scientia Agricultura Sinica, 2016, 49(4): 677-685.
[15] XU Ying, YAN Guo-quan, ZHANG Yang, YU Hong-xiu. Differential Proteomic Research of Three Varieties of Tobacco in China [J]. Scientia Agricultura Sinica, 2016, 49(16): 3084-3097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!