Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (20): 4189-4203.doi: 10.3864/j.issn.0578-1752.2020.20.008

• PLANT PROTECTION • Previous Articles     Next Articles

Identification of Rboh Family and the Response to Hormone and Citrus Bacterial Canker in Citrus

QIN XiuJuan(),QI JingJing,DOU WanFu,CHEN ShanChun,HE YongRui(),LI Qiang()   

  1. Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712
  • Received:2020-03-07 Accepted:2020-04-03 Online:2020-10-16 Published:2020-10-26
  • Contact: YongRui HE,Qiang LI E-mail:qinxiujuan-cric@foxmail.com;heyongrui@cric.cn;liqiang@cric.cn

Abstract:

【Objective】Rboh is the main producer of reactive oxygen species (ROS), which is the key molecule involved in plant disease resistance signaling. To clarify the relationships between CsRboh family and citrus bacterial canker (CBC), the Rboh family of Citrus sinensis was identified and the bioinformatics characteristics as well as the expression patterns induced by biotic stress-related plant hormones and Xanthomonas citri subsp. citri (Xcc) were analyzed. It is also aimed to lay the foundation for further research of citrus Rboh genes in molecular breeding.【Method】Firstly, the RedOxiBase database and the citrus (sweet orange) CAP database were used to identify the citrus Rboh family sequences from the whole genome of C. sinensis. Then, series of bioinformatics tools were used to perform analysis of physical and chemical properties, phylogenetic relationships, chromosomal localizations, gene structures, protein functional domains, the conserved motifs and promoter elements systematically. Finally, qRT-PCR was used to analyze the expression patterns of CsRbohs induced by biotic stress-related plant hormones (salicylic acid, SA; jasmonic acid, JA; abscisic acid, ABA) and Xcc.【Result】A total of 7 members of the Rboh family in C. sinensis genome were identified (CsRboh01-CsRboh07). These genes encoded proteins contain 784-946 amino acid (AA) residues with isoelectric points (PI) ranging from 8.67 to 9.40. CsRbohs mainly distribute on the cell membrane system and cytoplasmic. The CsRbohs family can be divided into I to IV sub-groups based on the phylogenetic tree. These 7 genes are unevenly distributed on 5 sweet orange chromosomes. Each of the CsRbohs contains 4 typical functional domains, namely the respiratory burst NADPH oxidase domain (NADPH_Ox), the ferric reductase like transmembrane component (Ferric_reduct), the FAD binding domain (FAD_binding) and the ferric reductase NAD binding domain (NAD_binding). The promoter regions of CsRboh family genes contain different hormone response elements with different numbers and types. qRT-PCR showed that the expression of CsRboh gene family members in susceptible variety Wanjincheng and resistant variety Calamondin had some differences induced by different hormones and Xcc. According to the findings from phylogeny, homologous analysis and cis-acting elements analysis, CsRboh02, CsRboh04 and CsRboh06 had different expression patterns and levels induced by Xcc in resistant variety Calamondin and susceptible variety Wanjincheng.【Conclusion】CsRboh02, CsRboh04 and CsRboh06 may be closely related to the resistance and sensibility of citrus varieties, and they are three potential candidate genes for molecular breeding of resistance to canker disease, and the CsRboh family genes are preliminarily determined to play a key role in the process of citrus canker response.

Key words: citrus bacterial canker (CBC), Rboh family, Xanthomonas citri subsp. citri (Xcc), salicylic acid (SA), jasmonic acid (JA)

Table 1

Primers used for qRT-PCR in this study"

基因Gene 上游引物Forward primer 下游引物Reverse primer
CsRboh01 GCTCTCGGCTTCAACTTCCT TCAAAGCTCGAGCCGCTAAA
CsRboh02 ATGGAGCACCAGCTCAAGAC AGTAGCCCCAATTCCAAGCC
CsRboh03 TTGGCCAGCAGATTGGAGAG CTGCGAAACTTGCCTCAACC
CsRboh04 ACGCCCGTCTTCAGATTTTCT GCCATAAGTGACTGACACGCT
CsRboh05 CCGGCGCAATCTGTTAAAGG TGTAGGCTTCAGCTTCTGGC
CsRboh06 CGCATGAAAGGGACACCGAAT CAAATGAGCCTTGTTCCCTTGTT
CsRboh07 AACCGGTGATCAAGTGGTCG GCATGGCTACAAAATTTGAGGGAA
CsActin CATCCCTCAGCACCTTCC CCAACCTTAGCACTTCTCC

Table 2

The information of CsRboh family"

名称
Name
CAP号
CAP ID
大小
Size (aa)
分子量
Molecular weight (Da)
等电点
Isoelectric point (PI)
亲水性平均值
Grand average of hydropathicity
脂肪指数
Aliphatic
index
不稳定系数
Instability index
亚细胞定位
Subcellular localization
CsRboh01 Cs5g02940.1 946 106370.8 9.40 -0.247 87.68 50.16 细胞外膜Outer membrane
CsRboh02 Cs8g12000.1 912 103139.3 9.05 -0.299 83.84 42.57 细胞质Cytoplasmic
CsRboh03 Cs3g14240.1 889 101017.9 9.10 -0.265 85.43 40.96 细胞外膜Outer membrane
CsRboh04 Cs4g06920.1 875 99488.8 9.31 -0.252 82.61 48.38 细胞内膜Inner membrane
CsRboh05 Cs7g19320.1 811 91648.2 8.67 -0.269 86.94 40.91 细胞质Cytoplasmic
CsRboh06 Cs8g17640.1 844 96907.0 8.99 -0.173 84.69 40.42 细胞内膜Inner membrane
CsRboh07 Cs5g11890.1 784 89837.0 9.09 -0.015 89.06 44.93 细胞内膜Inner membrane

Table 3

The secondary structure of CsRbohs"

名称 Name α-螺旋 Alpha helix (%) β-转角 Beta turn (%) 不规则卷曲 Random coil (%) 伸展链 Extended strand (%)
CsRboh01 44.61 4.76 36.79 13.85
CsRboh02 43.75 5.26 34.87 16.12
CsRboh03 44.43 5.29 35.32 14.96
CsRboh04 41.83 4.57 38.29 15.31
CsRboh05 42.17 4.19 37.36 16.28
CsRboh06 43.60 5.21 36.85 14.34
CsRboh07 43.24 5.48 36.48 14.80

Fig. 1

The phylogenetic tree of Rboh family in several organisms"

Fig. 2

The chromosomal loci and gene structures of CsRbohs The chromosomal loci were visualized by Mapchart, gene structures were displayed by GSDS. The sizes of chromosomes and genes are on the scales. Black arrows represent the gene directions. The number above each chromosome represents the chromosome size"

Fig. 3

The functional domains of CsRbohs"

Fig. 4

Conserved protein motifs in CsRboh family"

Table 4

Putative cis-acting elements existed in the 2 kb upstream region of CsRbohs"

基因
Gene
茉莉酸响应元件
CGTCA-motif
水杨酸响应元件
TCA-element
脱落酸响应元件
ABRE
Csrboh01 3 1 7
Csrboh02 1 1 1
Csrboh03 2 - 5
Csrboh04 3 - 5
Csrboh05 - - 6
Csrboh06
Csrboh07
2
1
1
-
1
-

Fig. 5

The relative expression of CsRbohs induced by ABA Different lowercases on the bars indicate significant differences (P<0.05). The same as below"

Fig. 6

The relative expression of CsRbohs induced by JA"

Fig. 7

The relative expression of CsRbohs induced by SA"

Fig. 8

The relative expression of CsRbohs induced by Xcc infection"

[1] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research, 2015,2:15042.
doi: 10.1038/hortres.2015.42 pmid: 26504581
[2] 胡安华, 祁静静, 张庆雯, 陈善春, 邹修平, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 龙琴, 何永睿, 李强. 柑橘溃疡病相关基因CsPGIP的克隆与表达. 中国农业科学, 2019,52(4):639-650.
HU A H, QI J J, ZHANG Q W, CHEN S C, ZOU X P, XU L Z, PENG A H, LEI T G, YAO L X, LONG Q, HE Y R, LI Q. Cloning and expression analysis of the citrus bacterial canker-related gene CsPGIP in citrus. Scientia Agricultura Sinica, 2019,52(4):639-650. (in Chinese)
[3] 贾瑞瑞, 周鹏飞, 白晓晶, 陈善春, 许兰珍, 彭爱红, 雷天刚, 姚利晓, 陈敏, 何永睿, 李强. 柑橘响应溃疡病菌转录因子CsBZIP40的克隆及功能分析. 中国农业科学, 2017,50(13):2488-2497.
JIA R R, ZHOU P F, BAI X J, CHEN S C, XU L Z, PENG A H, LEI T G, YAO L X, CHEN M, HE Y R, LI Q. Gene cloning and expression analysis of canker-related transcription factor CsBZIP40 in citrus. Scientia Agricultura Sinica, 2017,50(13):2488-2497. (in Chinese)
[4] HE Y R, JIA R R, QI J J, CHEN S C, LEI T G, XU L Z, PENG A H, YAO L X, LONG Q, LI Z G, LI Q. Functional analysis of citrus AP2 transcription factors identified CsAP2-09 involved in citrus canker disease response and tolerance. Gene, 2019,707:178-188.
[5] MENDES B M J, CARDOSO S C, BOSCARIOL-CAMARGO R L, CRUZ R B, MOURAO FILHO F A A, BERGAMIN FILHO A. Reduction in susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis expressing the rice Xa21 gene. Plant Pathology, 2010,59(1):68-75.
[6] 贾瑞瑞, 胡安华, 陈善春, 邹修平, 彭爱红, 许兰珍, 雷天刚, 姚利晓, 白晓晶, 何永睿, 李强. 柑橘响应溃疡病菌转录因子基因CsAP2-09的克隆与功能分析. 园艺学报, 2017,44(10):1881-1893.
JIA R R, HU A H, CHEN S C, ZOU X P, PENG A H, XU L Z, LEI T G, YAO L X, BAI X J, HE Y R, LI Q. Cloning and expression analysis of CsAP2-09: A transcription factor related to citrus canker disease. Acta Horticulturae Sinica, 2017,44(10):1881-1893. (in Chinese)
[7] WANG W, CHEN D D, ZHANG X P, LIU D, CHENG Y Y, SHEN F F. Role of plant respiratory burst oxidase homologs in stress responses. Free Radical Research, 2018,52(8):826-839.
doi: 10.1080/10715762.2018.1473572 pmid: 29732902
[8] FOREMAN J, DEMIDCHIK V, BOTHWELL J H, MYLONA P, MIEDEMA H, TORRES M A, LINSTEAD P, COSTA S, BROWNLEE C, JONES J D, DAVIES J M, DOLAN L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003,422(6930):442-446.
[9] SAVELLI B, LI Q, WEBBER M, JEMMAT A M, ROBITAILLE A, ZAMOCKY M, MATHE C, DUNAND C. RedoxiBase: A database for ROS homeostasis regulated proteins. Redox Biology, 2019,26:101247.
[10] 刘秋圆, 贺浩华, 胡丽芳. 植物Rboh基因功能及其活性调节机制的研究进展. 生物技术通报, 2013(11):8-13.
LIU Q Y, HE H H, HU L F. Research progress in plant Rboh genes function and activity regulation mechanism.Biotechnology Bulletin, 2013(11):8-13. (in Chinese)
[11] STEFFENS B, SAUTER M. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. The Plant Cell, 2009,21(1):184-196.
[12] KELLER T, DAMUDE H G, WERNER D, DOERNER P, DIXON R A, LAMB C. A plant homolog of the neutrophil NADPH oxidase gp91 phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. The Plant Cell , 1998,10(2):255-266.
[13] TORRES M A, ONOUCHI H, HAMADA S, MACHIDA C, HAMMOND-KOSACK K E, JONES J D. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). The Plant Journal , 1998,14(3):365-370.
pmid: 9628030
[14] SAGI M, DAVYDOV O, ORAZOVA S, YESBERGENOVA Z, OPHIR R, STRATMANN J W, FLUHR R. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. The Plant Cell, 2004,16(3):616-628.
pmid: 14973161
[15] OROZCO-CARDENAS M L, NARVAEZ-VASQUEZ J, RYAN C A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell, 2001,13(1):179-191.
pmid: 11158538
[16] ZHANG H J, FANG Q, ZHANG Z G, WANG Y C, ZHENG X B. The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. Journal of Experimental Botany, 2009,60(11):3109-3122.
[17] ASAI S, OHTA K, YOSHIOKA H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. The Plant Cell, 2008,20(5):1390-1406.
[18] YOSHIOKA H, NUMATA N, NAKAJIMA K, KATOU S, KAWAKITA K, ROWLAND O, JONES J D G, DOKE N. Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. The Plant Cell , 2003,15(3):706-718.
[19] SIMON-PLAS F, ELMAYAN T, BLEIN J P. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells. The Plant Journal, 2002,31(2):137-147.
doi: 10.1046/j.1365-313x.2002.01342.x pmid: 12121444
[20] YOSHIOKA H, SUGIE K, PARK H J, MAEDA H, TSUDA N, KAWAKITA K, DOKE N. Induction of plant gp91 phox homolog by fungal cell wall, arachidonic acid, and salicylic acid in potato. Molecular Plant-Microbe Interactions, 2001,14(6):725-736.
pmid: 11386368
[21] KOBAYASHI M, OHURA I, KAWAKITA K, YOKOTA N, FUJIWARA M, SHIMAMOTO K, DOKE N, YOSHIOKA H. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. The Plant Cell, 2007,19(3):1065-1080.
[22] LIN F, DING H D, WANG J X, ZHANG H, ZHANG A Y, ZHANG Y, TAN M P, DONG W, JIANG M Y. Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. Journal of Experimental Botany, 2009,60(11):3221-3238.
pmid: 19592501
[23] SI Y, DANE F, RASHOTTE A, KANG K, SINGH N K. Cloning and expression analysis of the Ccrboh gene encoding respiratory burst oxidase in Citrullus colocynthis and grafting onto Citrullus lanatus (watermelon). Journal of Experimental Botany, 2010,61(6):1635-1642.
pmid: 20181664
[24] TRUJILLO M, ALTSCHMIED L, SCHWEIZER P, KOGEL K H, HUCKELHOVEN R. Respiratory burst oxidase homologue A of barley contributes to penetration by the powdery mildew fungus Blumeria graminis f. sp. hordei. Journal of Experimental Botany, 2006,57(14):3781-3791.
pmid: 17046982
[25] LIGHTFOOT D J, BOETTCHER A, LITTLE A, SHIRLEY N, ABLE A J. Identification and characterisation of barley (Hordeum vulgare) respiratory burst oxidase homologue family members. Functional Plant Biology, 2008,35(5):347-359.
[26] MARINO D, ANDRIO E, DANCHIN E G, OGER E, GUCCIARDO S, LAMBERT A, PUPPO A, PAULY N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytologist, 2011,189(2):580-592.
[27] MULLER K, LINKIES A, LEUBNER-METZGER G, KERMODE A R. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. Journal of Experimental Botany, 2012,63(18):6325-6334.
doi: 10.1093/jxb/ers284 pmid: 23095998
[28] SAGI M, FLUHR R. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiology, 2006,141(2):336-340.
pmid: 16760484
[29] SAITO N, MUNEMASA S, NAKAMURA Y, SHIMOISHI Y, MORI I C, MURATA Y. Roles of RCNl, regulatory a subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. Plant and Cell Physiology, 2008,49(9):1396-1401.
pmid: 18650210
[30] 李业, 陈银华, 吴家和, 何朝族. OsRboh基因家族在水稻免疫应答中的表达及功能分析. 生物工程学报, 2011,27(11):1574-1585.
LI Y, CHEN Y H, WU J H, HE C Z. Expression and functional analysis of OsRboh gene family in rice immune response. Chinese Journal of Biotechnology, 2011,27(11):1574-1585. (in Chinese)
[31] JIANG M Y, ZHANG J H. Involvement of plasma-membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings. Planta, 2002,215(6):1022-1030.
pmid: 12355163
[32] WU G A, PROCHNIK S, JENKINS J, SALSE J, HELLSTEN U, MURAT F, PERRIER X, RUIZ M, SCALABRIN S, TEROL J,et al. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014,32(7):656-662.
pmid: 24908277
[33] XU Q, CHEN L L, RUAN X, CHEN D, ZHU A, CHEN C, BERTRAND D, JIAO W B, HAO B H, LYON M P,et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013,45(1):59-66.
doi: 10.1038/ng.2472 pmid: 23179022
[34] WANG J, CHEN D, LEI Y, CHANG J W, HAO B H, XING F, LI S, XU Q, DENG X X, CHEN L L. Citrus sinensis annotation project (CAP): A comprehensive database for sweet orange genome. PLoS ONE, 2014,9(1):e87723.
pmid: 24489955
[35] FAWAL N, LI Q, MATHE C, DUNAND C. Automatic multigenic family annotation: Risks and solutions. Trends in Genetics, 2014,30(8):323-325.
pmid: 25017189
[36] FAWAL N, LI Q, SAVELLI B, BRETTE M, PASSAIA G, FABRE M, MATHE C, DUNAND C. PeroxiBase: A database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Research, 2013,41(Database issue):D441-D444.
pmid: 23180785
[37] KELLER O, ODRONITZ F, STANKE M, KOLLMAR M, WAACK S. Scipio: Using protein sequences to determine the precise exon/intron structures of genes and their orthologs in closely related species. BMC Bioinformatics, 2008,9:278.
pmid: 18554390
[38] EI-GEBALI S, MISTRY J, BATEMAN A, EDDY S R, LUCIANI A, POTTER S C, QURESHI M, RICHARDSON L J, SALAZAR G A, SMART A, SONNHAMMER E L L, HIRSH L, PALADIN L, PIOVESAN D, TOSATTO S C E, FINN R D. The Pfam protein families database in 2019. Nucleic Acids Research, 2019,47(Database issue):D427-D432.
[39] LI Q, QI J J, QIN X J, DOU W F, LEI T G, HU A H, JIA R R, JIANG G J, ZOU X P, LONG Q, XU L Z, PENG A H, YAO L X, CHEN S C, HE Y R. CitGVD: A comprehensive database of citrus genomic variations. Horticulture Research, 2020,7:12.
doi: 10.1038/s41438-019-0234-3 pmid: 32025315
[40] ARTIMO P, JONNALAGEDDA M, ARNOLD K, BARATIN D, CSARDI G, DE CASTROE E, DUVAUD S, FLEGEL V, FORTIER A, GASTEIGER E,et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012,40(Web server issue):W597-W603.
doi: 10.1093/nar/gks400 pmid: 22661580
[41] YU C S, LIN C J, HWANG J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Science, 2004,13(5):1402-1406.
[42] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016,33(7):1870-1874.
doi: 10.1093/molbev/msw054 pmid: 27004904
[43] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007,29(8):1023-1026.
GUO A Y, ZHU Q H, CHEN X, LUO J C. GSDS: A gene structure display server. Hereditas, 2007,29(8):1023-1026. (in Chinese)
[44] BAILEY T L, BODEN M, BUSKE F A, FRITH M, GRANT C E, CLEMENTI L, REN J, LI W W, NOBLE W S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 2009,37(Web server issue):W202-W208.
pmid: 19458158
[45] LI Q, DOU W F, QI J J, QIN X J, CHEN S C, HE Y R. Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. Journal of Genetics, 2020,99:10.
pmid: 32089529
[46] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method . Methods, 2001,25(4):402-408.
pmid: 11846609
[47] KURUSU T, KUCHITSU K, TADA Y. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress . Frontiers in Plant Science, 2015,6:427.
pmid: 26113854
[48] NAVATHE S, SINGH S, SINGH V K, CHAND R, MISHRA V K, JOSHI A K. Genome-wide mining of respiratory burst homologs and its expression in response to biotic and abiotic stresses in Triticum aestivum. Genes and Genomics, 2019,41(9):1027-1043.
doi: 10.1007/s13258-019-00821-x pmid: 31140145
[49] YU S Z, KAKAR K U, YANG Z X, NAWAZ Z, LIN S F, GUO Y S, REN X L, BALOCH A A, HAN D J. Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome- wide identification, evolution and role in disease resistance. Genomics, 2020,112(2):1404-1418.
doi: 10.1016/j.ygeno.2019.08.010 pmid: 31430516
[50] CHENG C X, XU X Z, GAO M, LI J, GUO C L, SONG J Y, WANG X P. Genome-wide analysis of respiratory burst oxidase homologs in grape (Vitis vinifera L.). International Journal of Molecular Sciences, 2013,14(12):24169-24186.
pmid: 24351809
[51] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J. WRKY transcription factors. Trends in Plant Science, 2010,15(5):247-258.
[52] SPOEL S H, JOHNSON J S, DONG X N. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(47):18842-18847.
doi: 10.1073/pnas.0708139104 pmid: 17998535
[53] NAKASHIMA K, ITO Y, YAMAGUCHI-SHINOZAKI K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 2009,149(1):88-95.
doi: 10.1104/pp.108.129791 pmid: 19126699
[54] KAUR G, SHARMA A, GURUPRASAD K, PATI P K. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnology Advances, 2014,32(3):551-563.
doi: 10.1016/j.biotechadv.2014.02.002
[55] TORRES M A, DANGI J L, JONES J D G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America , 2002,99(1):517-522.
doi: 10.1073/pnas.012452499 pmid: 11756663
[56] 周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华. 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2014,47(13):2602-2612.
ZHOU Z, ZHANG C X, ZHANG L Y, WANG Q, LI W X, TIAN Y, CONG P H. Bioinformatics and expression analysis of the LysM gene family in apple. Scientia Agricultura Sinica, 2014,47(13):2602-2612. (in Chinese)
[57] KAUR G, PATI P K. Analysis of cis-acting regulatory elements of respiratory burst oxidase homolog (Rboh) gene families in arabidopsis and rice provides clues for their diverse functions. Computational Biology and Chemistry, 2016,62:104-118.
doi: 10.1016/j.compbiolchem.2016.04.002 pmid: 27111707
[58] CHEN F, HU Y, VANNOZZI A, WU K, CAI H, QIN Y, MULLIS A, LIN Z, ZHANG L. The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences, 2018,36(5/6):311-335.
[59] POTOCKY M, JONES M, BEZVODA R, SMIRNOFF N, ZARSKY V. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytologist, 2007,174(4):742-751.
doi: 10.1111/j.1469-8137.2007.02042.x pmid: 17504458
[60] LI Q, HU A H, DOU W F, QI J J, LONG Q, ZOU X P, LEI T G, YAO L X, HE Y R, CHEN S C. Systematic analysis and functional validation of citrus XTH genes reveal the role of Csxth04 in citrus bacterial canker resistance and tolerance. Frontiers in Plant Science, 2019,10:1109.
doi: 10.3389/fpls.2019.01109 pmid: 31611887
[1] XIAO GuiHua,WEN Kang,HAN Jian,HAO ChenXing,YE RongChun,ZHU YiChi,XIAO ShunYuan,DENG ZiNiu,MA XianFeng. Effects of Calcium on Growth and Development of Poncirus trifoliata and Resistance to Citrus Canker [J]. Scientia Agricultura Sinica, 2022, 55(19): 3767-3778.
[2] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[3] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[4] Yun PENG,TianGang LEI,XiuPing ZOU,JingYun ZHANG,QingWen ZHANG,JiaHuan YAO,YongRui HE,Qiang LI,ShanChun CHEN. Verification of SNPs Associated with Citrus Bacterial Canker Resistance and Induced Expression of SNP-Related Calcium-Dependent Protein Kinase Gene [J]. Scientia Agricultura Sinica, 2020, 53(9): 1820-1829.
[5] YAO LiXiao,FAN HaiFang,ZHANG QingWen,HE YongRui,XU LanZhen,LEI TianGang,PENG AiHong,LI Qiang,ZOU XiuPing,CHEN ShanChun. Function of Citrus Bacterial Canker Resistance-Related Transcription Factor CitMYB20 [J]. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008.
[6] HU AnHua,QI JingJing,ZHANG QingWen,CHEN ShanChun,ZOU XiuPing,XU LanZhen,PENG AiHong,LEI TianGang,YAO LiXiao,LONG Qin,HE YongRui,LI Qiang. Cloning and Expression Analysis of the Citrus Bacterial Canker-Related Gene CsPGIP in Citrus [J]. Scientia Agricultura Sinica, 2019, 52(4): 639-650.
[7] DOU WanFu,QI JingJing,HU AnHua,CHEN ShanChun,PENG AiHong,XU LanZhen,LEI TianGang,YAO LiXiao,HE YongRui,LI Qiang. Screening of Interacting Proteins of Anti-Canker Transcription Factor CsBZIP40 in Citrus by GST Pull-Down Combined with LC-MS/MS [J]. Scientia Agricultura Sinica, 2019, 52(13): 2243-2255.
[8] QianQian ZHOU,HuaRong QIU,XiaoWen HE,XianPu WANG,XiuXia LIU,BaoHua LI,ShuJing WU,XueSen CHEN. MdWRKY40 Mediated Improvement of the Immune Resistance of Apple and Arabidopsis thaliana to Botryosphaeria dothidea [J]. Scientia Agricultura Sinica, 2018, 51(21): 4052-4064.
[9] HUANG Jun-bao, HE Yong-ming, ZENG Xiao-chun, XIANG Miao-lian, FU Yong-qi. Changes of JA Levels in Floral Organs and Expression Analysis of JA Signaling Genes in Lodicules Before Floret Opening in Rice [J]. Scientia Agricultura Sinica, 2015, 48(6): 1219-1227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!